• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 10
  • 4
  • 2
  • 2
  • Tagged with
  • 46
  • 21
  • 16
  • 15
  • 15
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Zur Darstellungstheorie von SL1(D)

Kirchner, Göran January 2006 (has links)
Zugl.: Berlin, Humboldt-Univ., Diss., 2006
22

Programme de Langlands p-adique, invariants L et catégories dérivées

Schraen, Benjamin 01 July 2009 (has links) (PDF)
Les résultats de cette thèse s'inscrivent dans le cadre du programme de Langlands p-adique. Lorsque V est une représentation p-adique de dimension 2 du groupe de Galois de Qp, on sait lui associer une représentation p-adique continue B(V) de GL_2(Qp). Dans un premier chapitre, nous considérons le cas où V est semi-stable non cristalline et construisons un foncteur qui, appliqué à une sous-représentation localement analytique Sigma(V) de B(V) construite par Breuil, donne le module de Fontaine de V. Cette méthode, inspirée des travaux de Carayol et Dat dans le cadre l-adique, utilise le complexe de de Rham du demi-plan de Drinfel'd. Lorsque L est une extension finie de Qp, nous étendons cette construction à certaines familles de représentations semi-stables non cristallines de dimension 2 du groupe de Galois de L, paramétrées par un [L:Qp]-uplet d'éléments du corps des coefficients. Nous proposons alors, par analogie avec les constructions de Breuil dans le cas L=Qp, la construction d'une représentation localement analytique de GL_2(L) associée à V et montrons qu'elle permet de retrouver le module de Fontaine de V par le foncteur décrit précédemment. Dans un deuxième chapitre, nous nous intéressons à certaines familles de représentations semi-stables de dimension 3 de G_Qp. Dans ce cas, la situation devient plus compliquée et nous construisons, pour toute représentation V de cette famille, non pas une représentation mais un complexe Sigma(V) de représentations localement analytiques de GL_3(Qp). Nous montrons alors qu'un analogue du foncteur du chapitre 1, mais utilisant l'espace de Drinfel'd de dimension 2, associe à Sigma(V) le module de Fontaine de V.
23

Actions infinitésimales dans la correspondance de Langlands locale p-adique

Dospinescu, Gabriel 13 June 2012 (has links) (PDF)
Cette thèse s'inscrit dans le cadre de la correspondance de Langlands locale $p$-adique, imaginée par Breuil et établie par Colmez pour GL_2(Q_p). Soit L une extension finie de Q_p et soit V une L-représentation irréductible du groupe de Galois absolu de Q_p, de dimension 2. En utilisant la théorie des (phi,Gamma)-modules de Fontaine, Colmez associe à V une GL_2(Q_p)-représentation de Banach Pi(V), unitaire, admissible, topologiquement irréductible. On donne une nouvelle preuve, nettement plus simple, d'un théorème de Colmez, qui permet de décrire les vecteurs localement analytiques Pi(V)^an de Pi(V) en fonction du (phi,\Gamma)-module surconvergent attaché à V. Le résultat principal de cette thèse est une description simple de l'action infinitésimale de GL_2(Q_p) sur Pi(V)^an. En particulier, on montre que Pi(V)^an admet un caractère infinitésimal, que l'on peut calculer en fonction des poids de Hodge-Tate de V, ce qui répond à une question de Harris. En utilisant ces résultats, on montre aussi l'absence d'un analogue p-adique d'un théorème classique de Tunnell et Saito, répondant à une autre question de Harris. Nous étendons et précisons certains résultats de Colmez concernant le modèle de Kirillov des vecteurs U-finis de Pi(V) (U est l'unipotent supérieur de GL_2(Q_p)). En combinant cette étude avec la description de l'action infinitésimale, on obtient une démonstration simple d'un des résultats principaux de Colmez, caractérisant les représentations V telles que Pi(V) possède des vecteurs localement algébriques non nuls. Ce résultat permet de faire le pont avec la correspondance classique et est un des ingrédients clés de la preuve d'Emerton de la conjecture de Fontaine-Mazur en dimension 2. On étend nos méthodes pour démontrer l'analogue de ce résultat pour les déformations infinitésimales de V. Cela répond à une question de Paskunas et a des applications à la conjecture de Breuil-Mézard. Une autre application est l'étude du module de Jacquet de Pi(V)^an. On montre qu'il est non nul si et seulement si V est trianguline, ce qui permet de donner une preuve simple des conjectures de Berger, Breuil et Emerton. Enfin, dans un travail en collaboration avec Benjamin Schraen, nous démontrons le lemme de Schur pour les représentations de Banach et localement analytiques topologiquement irréductibles d'un groupe de Lie p-adique. Ce résultat basique n'était connu que pour des groupes de Lie commutatifs et pour GL_2(Q_p).
24

Zur Darstellungstheorie von SL1(D) /

Kirchner, Göran. January 2007 (has links)
Humboldt-Universiẗat, Diss.--Berlin, 2006. / Zusfassung in dt. und engl. Sprache.
25

Berechnung der Kottwitz-Shelstad-Transferfaktoren für unverzweigte Tori in nicht zusammenhängenden reduktiven Gruppen

Ballmann, Joachim. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Mannheim.
26

On the uniqueness of generic representations in an L-packet / L-パケットの中の生成的表現の一意性について

Atobe, Hiraku 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20150号 / 理博第4235号 / 新制||理||1609(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 市野 篤史, 教授 雪江 明彦, 教授 池田 保 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
27

Autour des représentations modulo p des groupes réductifs p-adiques de rang 1 / Mod p representations of p-adic reductive groups of rank 1

Abdellatif, Ramla 02 December 2011 (has links)
Soit p un nombre premier. Cette thèse est une contribution à la théorie des représentations modulo p des groupes réductifs p-adiques, jusque là essentiellement centrée sur le groupe linéaire général GL(n) défini sur un corps local non archimédien F complet pour une valuation discrète, de caractéristique résiduelle p et de corps résiduel fini. L’originalité de nos travaux réside notamment dans le fait qu’ils concernent d’autres groupes : nous nous intéressons en effet à la description des classes d’isomorphisme des représentations modulo p de groupes formés des F-points d’un groupe réductif connexe défini, quasi-déployé de rang semi-simple égal à 1 sur F. Une place particulière est accordée au groupe spécial linéaire SL(2) et au groupe unitaire quasi-déployé non ramifié en trois variables U(2,1). Dans ces deux cas, nous montrons que les classes d’isomorphisme des représentations lisses irréductibles admissibles à coefficients dans un corps algébriquement clos de caractéristique p se scindent en deux familles : les représentations non supersingulières et les représentations supersingulières. Nous décrivons complètement les représentations non supersingulières, et montrons que la notion de supersingularité est équivalence à la notion de supercuspidalité apparaissant dans la théorie complexe. Nous donnons aussi une description explicite des représentations supersingulières de SL(2,Q_{p}), ce qui nous permet de définir dans ce cas une correspondance de Langlands locale semi-simple modulo p compatible à celle construite par Breuil pour GL(2). Nous généralisons ensuite les méthodes utilisées jusqu’alors pour obtenir la description des représentations non supercuspidales de G(F) lorsque G est un groupe réductif connexe défini, quasi-déployé, et rang semi-simple égal à 1 sur F. Elle fait apparaître trois familles deux à deux disjointes de représentations : les caractères, les représentations de la série principale et celles de la série spéciale. Nous terminons par une classification des modules à droite simples sur la pro-p-algèbre de Hecke-Iwahori H de SL(2,F). On déduit en particulier que l’application qui envoie une représentation lisse modulo p de SL(2,F) sur son espace de vecteurs invariants sous l’action du pro-p-sous-groupe d'Iwahori induit une bijection entre l’ensemble des classes d’isomorphisme des représentations lisses irréductibles non supersingulières de SL(2,F) et l’ensemble des classes d’isomorphisme des H-modules à droite simples non supersinguliers. Cette bijection s’étend aux objets supersinguliers lorsque l’on suppose que F = Q_{p}, ce qui est de bon augure dans la recherche d’une équivalence de catégories analogue à celle obtenue par Ollivier dans le cadre de la théorie existant pour GL(2, Q_{p}). / Let p be a prime number. This thesis is a contribution to the theory of mod p representations of p-adic reductive groups, which was until now mainly focused on the general linear group GL(n) defined over a non-archimedean local field F complete with respect to a discrete valuation and with finite residue class field of characteristic p. Our work is original as it deals with other groups : we indeed look for a classification of isomorphism classes of modulo p representations of groups formed by the F-points of a connected reductive group defined, quasi-split and of semi-simple rank 1 over F. A special place is devoted to the special linear group SL(2) and to the unramified quasi-split unitary group. In these two cases, we prove that the isomorphism classes of irreducible smooth representations over an algebraically closed field of characteristic p split into two families : supersingular and non-supersingular representations. We give a complete description of non-supersingular representations and prove that supersingularity is equivalent to the notion of supercuspidality that appears in the complex theory. We also make explicit the supersingular representations of SL(2,Q_{p}), what allows us to define a mod p semi-simple local Langlands correspondence that is compatible to the one built by Breuil for GL(2). We then generalize the methods used above to classify the isomorphism classes of non-supercuspidal representations of G(F) for G a connected reductive group which is defined, quasi-split and of semi-simple rank 1 over F. This classification is made up of three pairwise disjoint families : characters, representations of the principal series, and representations of the special series. We finally come back to SL(2) as we give an exhaustive classification of isomorphism classes of simple right modules on the pro-p-Iwahori-Hecke algebra H of SL(2,F). It implies that the map sending a smooth mod p representation of SL(2,F) on its vector space of invariants vectors under the action of the pro-p-Iwahori subgroup induces a bijection between non-supersingular irreducible smooth representations of SL(2,F) and non-supersingular simple right H-modules. This bijection extends to supersingular objects when F = Q_{p}, what is the first step in the search for an equivalence of categories similar to the one built by Ollivier in the setting of mod p representations of GL(2, Q_{p}).
28

Extensions entre séries principales p-adiques et modulo p d'un groupe réductif p-adique déployé / Extensions between p-adic and mod p principal series of a split p-adic reductive group

Hauseux, Julien 11 December 2014 (has links)
Cette thèse est une contribution à l'étude des représentations p-adiques (c'est-à-dire continues unitaires sur des espaces de Banach p-adiques) et modulo p (c'est-à-dire lisses sur un corps fini de caractéristique p) d'un groupe réductif p-adique déployé G.Nous déterminons les extensions entre séries principales p-adiques et modulo p de G Pour cela, nous calculons le delta-foncteur H•OrdB des parties ordinaires dérivées d'Emerton relatif à un sous-groupe de Borel sur une série principale en utilisant une filtration de Bruhat.Nous déterminons également les extensions d'une série principale par une représentation ordinaire (c'est-à-dire obtenue par induction parabolique à partir d'une représentation spéciale du Levi tordue par un caractère), ainsi que les extensions de Yoneda de longueur supérieure entre séries principales modulo p sous une conjecture d'Emerton vraie pour GL2.Nous montrons de plus qu'il n'existe pas de « chaîne » de trois séries principales p-adiques ou modulo p distinctes de G. Pour cela, nous calculons partiellement le delta-foncteur H•OrdP relatif à un sous-groupe parabolique quelconque sur une série principale. En exploitant ce résultat, nous prouvons une conjecture de Breuil et Herzig sur l'unicité de certaines représentations p-adiques de G dont les constituants sont des séries principales, ainsi que son analogue modulo p.Enfin, nous énonçons une nouvelle conjecture sur les extensions entre représentations modulo p irréductibles de G obtenues par induction parabolique à partir d'une représentations supersingulière du Levi. Nous prouvons cette conjecture pour les extensions par une série principale. / This thesis is a contribution to the study of p-adic (i.e. unitary continuous on p-adic Banach spaces) and mod p (i.e. smooth over a finite field of characteristic p) representations of a split p-adic reductive group G.We determine the extensions between p-adic and mod p principal series of G. In order to do so, we compute Emerton's delta-functor H•OrdB of derived ordinary parts with respect to a Borel subgroup on a principal series using a Bruhat filtration.We also determine the extensions of a principal series by an ordinary representation (i.e. parabolically induced from a special representation of the Levi twisted by a character), as well as the Yoneda extensions of higher length between mod p principal series under a conjecture of Emerton true for GL2.Moreover, we show that there exists no “chain” of three distinct p-adic or mod p principal series of G. In order to do so, we partially compute the delta-functor H•OrdP with respect to any parabolic subgroup on a principal series. Exploiting this result, we prove a conjecture of Breuil and Herzig on the uniqueness of certain p-adic representations of G whose constituents are principal series, as well as its mod p analogue.Finally, we formulate a new conjecture on the extensions between irreducible mod p representations of G parabolically induced from a supersingular representation of the Levi. We prove this conjecture for extensions by a principal series.
29

Correspondance de Jacquet-Langlands et distinction / Jacquet-Langlands correspondence and distinguishness

Coniglio-Guilloton, Charlène 11 July 2014 (has links)
Soit K/F une extension quadratique modérément ramifiée de corps locaux non archimédiens. Soit GLm (D) une forme intérieure de GLn (F) et GLμ (∆) = (Mm (D) ⊗ K)× . Alors GLμ (∆) est une forme intérieure de GLn (K), les quotients GLμ (∆)/GLm (D) et GLn (K)/GLn (F) sont des espaces symétriques. En utilisant la paramétrisation de Silberger et Zink, nous déterminons des critères de GLm (D)-distinction pour les cuspidales de niveau 0 de GLμ (∆), puis nous prouvons qu’une cuspidale de niveau 0 de GLn (K) est GLn (F)-distinguée si et seulement si son image par la correspondance de Jacquet-Langlands est GLm (D)-distinguée. Puis, dans le cas particulier où μ = 2 et m = 1, nous regardons le cas des séries discrètes de niveau 0 non cuspidales, en utilisant le système de coefficients sur l’immeuble associé à la représentation, donné par Schneider et Stuhler. / Let K/F be a tamely ramified quadratic extension of non-archimedean locally compact fields. Let GLm (D) be an inner form of GLn (F) and GLμ (∆) = (Mm (D)⊗K)× . Then GLμ (∆) is an inner form of GLn (K), the quotients GLμ (∆)/GLm (D) and GLn (K)/GLn (F) are symmetric spaces. Using the parametrization of Silberger and Zink, we determine conditions of GLm (D)-distinction for level zero cuspidal representations of GLμ (∆). We also show that a level zero cuspidal representation of GLn (K) is GLn (F)-distinguished if and only if its image by the Jacquet-Langlands correspondence is GLm (D)-distinguished. Then, we treat the case of level zero non supercuspidal representations when μ = 2 and m = 1 using the coefficient system of the Bruhat-Tits building associated to the representation by Schneider and Stuhler.
30

Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman / Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification

Ye, Lizao 27 September 2019 (has links)
Dans cette thèse, d’une part, nous généralisons au cas équivariant un résultat de J. Denef et F. Loeser sur les sommes trigonométriques sur un tore ; d’autre part, nous étudions la stratification de Thom-Boardman associée à la multiplication des sections globales des fibrés en droites sur une courbe. Nous montrons une inégalité subtile sur les dimensions de ces strates. Notre motivation vient du programme de Langlands géométrique. En s’appuyant sur les travaux de W. T. Gan, N. Gurevich, D. Jiang et de S. Lysenko, nous proposons, pour le groupe réductif G de type G2, une construction conjecturale du faisceau automorphe dont le paramètre d’Arthur est unipotent et sous-régulier. En utilisant nos deux résultats ci-dessus, nous déterminons les rangs génériques de toutes les composantes isotypiques d’un faisceau S₃-équivariant qui apparaît dans notre conjecture, ce S₃ étant le centralisateur du SL2 sous-régulier dans le groupe dual de Langlands de G. / In this thesis, on the one hand, we generalise to the equivariant case a result of J. Denef and F. Loeser about trigonometric sums on tori ; on the other hand, we study the Thom-Boardman stratification associated to the multiplication of global sections of line bundles on a curve. We prove a subtle inequaliity about the dimensions of these strata. Our motivation comes from the geometric Langlands program. Based on works of W. T. Gan, N. Gurevich, D. Jiang and S. Lysenko, we propose, for the reductive group G of type G2, a conjectural construction of the automorphic sheaf whose Arthur parameter is unipotent and sub-regular. Using our two results above, we determine the generic ranks of all isotypic components of an S3-equivaraint sheaf which appears in our conjecture, this S3 being the centraliser of the sub-regular SL2 inside the Langlands dual group of G.

Page generated in 0.0423 seconds