Spelling suggestions: "subject:"laplacian comparison theorem"" "subject:"iaplacian comparison theorem""
1 |
O Teorema de Comparação de Volume de Bishop-Gromov. / Bishop-Gromov s theorem of comparison of volume.Santos, Erikson Alexandre Fonseca dos 27 February 2009 (has links)
IN THIS dissertation, we use the Laplacian comparison theorem to prove the comparison of volume Bishop-Gromov s theorem, which assures that if the Ricci curvatures of a complete Riemannian manifold are larger than or equal to
(n - 1)k, the volume of a ball with center in p and radius R is smaller than or equal to the volume of a geodesic ball with radius R in the space form of sectional constant curvature k, for all p 2 M and R > 0, where k 2 R. Moreover, equality occurs if all sectional curvature throughout geodesics connecting p and x, for plans which contain the radial vector, is constant and equal to k. / Fundação de Amparo a Pesquisa do Estado de Alagoas / NESTA DISSERTAÇÃO, usamos o teorema de comparação do Laplaciano para demonstrar
o teorema de comparação de volume de Bishop-Gromov, o qual assegura que, se as
curvaturas de Ricci de uma variedade Riemanniana completa são maiores ou iguais a (n��1)k,
k uma constante real, então, para todo p 2 M e para todo R > 0, o volume de uma bola
centrada em p e de raio R é menor ou igual que o volume de uma bola geodésica de raio R
na forma espacial de curvatura seccional constante k. Ademais, a igualdade ocorre se toda
curvatura seccional ao longo de geodésicas ligando p e x, para planos contendo o vetor radial
for constante e igual a k.
|
Page generated in 0.058 seconds