• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 207
  • 91
  • 44
  • 22
  • 11
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 462
  • 462
  • 404
  • 130
  • 120
  • 100
  • 97
  • 97
  • 94
  • 92
  • 87
  • 78
  • 75
  • 72
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Simulation aux Grandes Echelles et chimie complexe pour la modélisation de la structure chimique des flammes turbulentes / Large Eddy Simulations and complex chemistry for modeling the chemical structure of turbulent flames

Mehl, Cédric 12 June 2018 (has links)
La Simulation aux Grandes Echelles (SGE) est appliquée à des brûleurs industriels pour prédire de nombreux phénomènes physiques complexes, tel que l’allumage ou la formation de polluants. La prise en compte de réactions chimiques détaillées est alors indispensable pour obtenir des résultats précis. L’amélioration des moyens de calculs permet de réaliser des simulations de brûleurs avec une chimie de plus en plus détaillée. La principale problématique est le couplage entre les réactions chimiques et l’écoulement turbulent. Bien que la dynamique de flamme soit souvent bien reproduite avec les modèles actuels, la prédiction de phénomènes complexes comme la formation de polluants reste une tâche difficile. En particulier, des études ont montré que l’influence du plissement de sous-maille sur la structure chimique des flammes n’était pas prise en compte de manière précise. Deux modèles basés sur le filtrage explicite des fronts de flammes sont étudiés dans cette thèse afin d’améliorer la prédiction de polluants en combustion turbulente prémélangée : (i) le premier modèle met en jeu une méthode de déconvolution des variables filtrées ; (ii) le second modèle implique l’optimisation de la chimie pour obtenir des flammes turbulentes filtrées. L’objectif de la thèse est d’obtenir une prédiction précise des polluants à coût de calcul réduit. / Large Eddy Simulation (LES) is applied to industrial burners to predict a wide range of complex physical phenomena, such as flame ignition and pollutants formation. The prediction accuracy is tightly linked to the ability to describe in detail the chemical reactions and thus the flame chemical structure. With the improvement of computational clusters, the simulation of industrial burners with detailed chemistry becomes possible. A major issue is then to couple detailed chemical mechanisms to turbulent flows. While the flame dynamics is often correctly simulated with stateof- the-art models, the prediction of complex phenomena such as pollutants formation remains a difficult task. Several investigations show that, in many models, the impact of flame subgrid scale wrinkling on the chemical flame structure is not accurately taken into account. Two models based on explicit flame front filtering are explored in this thesis to improve pollutants formation in turbulent premixed combustion: (i) a model based on deconvolution of filtered scalars; (ii) a model involving the optimization of chemistry to reproduce filtered turbulent flames. The objective of the work is to achieve high accuracy in pollutants formation prediction at low computational costs.
382

Thermodynamique et turbulence dans les épisodes de vent fort sur le Golfe du Lion / Thermodynamics and tubulence during cold air outbreaks over the Gulf of Lion

Brilouet, Pierre-Etienne 28 November 2017 (has links)
En période hivernale, le golfe du Lion est sujet à des conditions de vents régionaux forts (Mistral et/ou Tramontane) qui transportent des masses d'air continentales froides et sèches au dessus de la mer. Ces événements, les Cold Air Outbreaks (CAO) , conduisent à d'intenses échanges air-mer et donc à un pompage de chaleur qui favorise la formation d'eaux denses et le déclenchement de la convection océanique profonde. La bonne représentation de ces échanges air-mer intenses dans les modèles de climat et de prévision numérique du temps reste à l'heure actuelle une problématique majeure. Elle est au cœur du projet ASICS-MED centré sur compréhension des mécanismes de formation d'eaux denses en Méditerranée et qui s'inscrit dans le cadre de la thématique " Échanges air-mer intenses " du programme HyMeX dédié à l'étude du cycle de l'eau en Méditerranée. Les processus qui s'opèrent au sein de la couche limite atmosphérique marine (CLAM) et de la couche de mélange océanique (CMO) interagissent entre eux à différentes échelles spatiales et temporelles. La compréhension de l'évolution globale de la CLAM mais également des mécanismes locaux nécessitent la prise en compte de l'ensemble des processus. L'étude présentée ici est consacrée à la structure moyenne et turbulente de la CLAM en conditions de vents forts. L'objectif est de déterminer comment l'organisation du champ turbulent est impactée lors d'épisodes de CAO et d'estimer les flux de surface associés à ces conditions de vents forts. La méthodologie adoptée est basée sur l'utilisation conjointe d'observations aéroportées collectées lors de la campagne de mesure SOP2 d'HyMeX et de simulations numériques. La campagne de mesure SOP2 d'HyMeX qui a eu lieu au cours de l'hiver 2013 dans le golfe du Lion a permis de documenter grâce à l'avion de recherche ATR42 la structure moyenne et turbulente de la CLAM lors de 11 épisodes de CAO. Une analyse spectrale s'appuyant sur un modèle analytique a été réalisé sur 181 paliers (i.e. segments de vol rectilignes et stabilisés en altitude). Les profils verticaux des échelles turbulentes caractéristiques ainsi que la forme du spectre de la vitesse verticale ont permis de mettre en évidence un allongement des structures énergétiques dans l'axe du vent moyen associé à l'organisation du champ turbulent sous la forme de rouleaux longitudinaux. Une description unidirectionnelle du champ turbulent tridimensionnel peut conduire à une représentativité limitée des structures cohérentes au sein des échantillons. Cependant, la connaissance des profils de flux sur toute l'épaisseur de la CLAM est nécessaire pour l'estimation des échanges air-mer. Une méthode de correction des flux turbulents calculés par eddy correlation a été appliqué afin de prendre en compte les erreurs systématique et aléatoire relatives à la mesure et au traitement de données. Cette correction a permis de déterminer les meilleures estimations possibles des flux extrapolés à la surface avec une marge d'incertitude pour les 11 épisodes de CAO documentés lors de la campagne SOP2 d'HyMeX. La comparaison de ces estimations aéroportées aux autres sources d'information dérivées de paramétrisations des flux a permis de mettre en évidence une sous-estimation systématique du flux de chaleur latente en conditions de vents forts. Une approche numérique a permis de compléter l'analyse de la structure moyenne et turbulente de la CLAM lors d'épisodes de CAO. / During winter, local strong winds (Mistral or Tramontana) occurred in the Gulf of Lion which bring cold and dry continental air over a warmer sea. Those events, the cold air outbreaks, can lead to intense air-sea interactions which favour dense water formation and deep oceanic convection. The representation of air-sea exchanges is a fundamental aspect of of climate modelling and numerical weather forecasting. The ASICS-MED project aims to identify fine-scale processes leading to dense water formation and is a part of the "Intense air-sea exchanges" topic of the HyMeX program devoted to hydrological cycle in the Mediterranean. The processes occurring within the marine atmospheric boundary layer (MABL) and the oceanic mixing layer (ML) interact with one another at different spatial and temporal scales. Understanding the overall evolution of the MABL but also the local mechanisms requires taking into account all the processes. The study presented here is devoted to the mean and turbulent structure of the MABL under strong wind conditions. The objective is to determine how the organization of the turbulent field is impacted during CAO events and to estimate the surface fluxes associated with these strong wind conditions. The methodology adopted is based on the joint use of airborne observations collected during the HyMeX-SOP2 field campaign and numerical simulations. The HyMeX-SOP2 field campaign took place during the winter of 2013 in the Gulf of Lion. The research aircraft ATR42 was operated to document the mean and turbulent structure of the MABL during 11 CAO events. A spectral analysis based on an analytic model was carried out on 181 legs (i.e. stacked straight and level runs stabilized in altitude). The vertical profiles of the turbulent characteristic scales as well as the shape of the vertical velocity spectrum revealed an elongation of the energy structures in the mean wind direction associated with the organization of the turbulent field into longitudinal rolls. A unidirectional sampling of the three-dimensional turbulent field may lead to a limited representativeness of the coherent structures within the samples. However, knowledge of kinematic fluxes profiles over the entire thickness of the CLAM is necessary to estimate air-sea exchanges. A correction method was applied to turbulent fluxes calculated by eddy correlation in order to take into account systematic and random errors related to measurement and data processing. This correction made it possible to determine the best possible estimates of the extrapolated surface fluxes with a margin of uncertainty for the 11 CAO events documented during the HyMeX-SOP2 field campaign. The comparison of these airborne estimates with the other sources of information derived from bulk parameterizations show a systematic underestimation of the latent heat flux under strong wind conditions. A numerical approach allowed to complete the analysis of the mean and turbulent structure of the MABL during CAO events. The numerical study, based on the non-hydrostatic Meso-NH model, focuses on an episode of strong Tramontana with winds greater than 25m/s documented during the HyMeX-SOP2 field campaign. In a first step, a one-dimensional framework made it possible to understand the forcing terms necessary to reproduce in a realistic way the development of the observed MABL. This reference configuration allowed, in a second time, a Large-Eddy Simulation of the CAO event. This simulation has been validated using airborne data and has allowed to deepen the description of the turbulent field as well as the evolution of the coherent structures oriented in the axis of the mean wind.
383

Etude du méandrement du sillage éolien lointain dans différentes conditions de rugosité / Study of the meandering of the far wake of a wind turbine in various roughness conditions

Muller, Yann-Aël 10 December 2014 (has links)
Le phénomène connu sous l'appellation "méandrement" (ou meandering) désigne les variations aléatoires de la trajectoire du sillage aérodynamique d'une éolienne. Ce phénomène est responsable de contraintes mécaniques particulières sur les éoliennes positionnées dans le sillage d'autres éoliennes et joue donc rôle dans la conception et dans la prévision de production des parcs éoliens.Ce travail propose d'étudier le méandrement par des moyens expérimentaux et numériques. La problématique est traitée en deux parties, la première portant sur la modélisation de l'écoulement de couche limite atmosphérique, avec une attention particulière portée à la modélisation des grandes échelles de la turbulence atmosphérique. La seconde partie porte sur l'étude du sillage d'un disque actuateur soumis à un écoulement atmosphérique. Chacune de ces parties comporte un volet expérimental et un volet numérique. La modélisation numérique instationnaire de l'écoulement atmosphérique fait intervenir une technique de génération stochastique de champs de vitesse turbulente avec évolution temporelle, spécialement développée au cours de la présente thèse et à laquelle un chapitre spécifique est dédié.L'un des principaux résultats est que le méandrement du sillage est fortement corrélé avec les grandes échelles de la turbulence atmosphérique. / The phenomenon known as meandering describes the unsteady trajectory variations of the wake of a wind turbine. This phenomenon is responsible for specific mechanical stresses on turbines positioned in the wake of other turbines. As such, this phenomenon must be accounted for in the design and operation of wind turbine plants.This work uses numerical fluid simulation and wind tunnel testing in order to study the meandering of the wake of a wind turbine. The subject is discussed in two parts. The first part discusses the modeling of the atmospheric boundary layer, with a focus on the large scales of the atmospheric turbulence. The second part is a study of the behavior of the wake of an actuator disc model in atmospheric wind conditions.Both parts include experimental and numerical work. The numerical simulation of the atmospheric boundary layer involves the generation of synthetic turbulent velocity time series by mean of a stochastic technique developed during this thesis, to which a chapter is dedicated.One of the main results of this work is that the meandering is highly correlated with the large scales of the atmospheric turbulence.
384

Spectral-element simulations of turbulent wall-bounded flows including transition and separation

Malm, Johan January 2011 (has links)
The spectral-element method (SEM) is used to study wall-bounded turbulent flowsin moderately complex geometries. The first part of the thesis is devoted to simulations of canonical flow cases, such as temporal K-type transitionand turbulent channel flow, to investigate general resolution requirements and computational efficiency of the numerical code nek5000. Large-eddy simulation (LES) is further performed of a plane asymmetric diffuser flow with an opening angle of 8.5 degrees, featuring turbulent flow separation. Good agreement with numerical studies of Herbst (2007) is obtained, and it is concluded that the use of a high-order method is advantageous for flows featuring pressure-induced separation. Moreover, it is shown, both a priori on simpler model problems and a posteriori using the full Navier--Stokes equations, that the numerical instability associated with SEM at high Reynolds numbers is cured either by employing over-integration (dealiasing) or a filter-based stabilisation, thus rendering simulations of moderate to high Reynolds number flows possible. The second part of the thesis is devoted to the first direct numerical simulation (DNS) of a truly three-dimensional, turbulent and separated diffuser flow at Re = 10 000 (based on bulk velocity and inflow-duct height), experimentally investigated by Cherry et al. (2008). The massively parallel capabilities of the spectral-element method are exploited by running the simulations on up to 32 768 processors. Very good agreement with experimental mean flow data is obtained and it is thus shown that well-resolved simulations of complex turbulent flows with high accuracy are possible at realistic Reynolds numberseven in complicated geometries. An explanation for the discovered asymmetry of the mean separated flow is provided and itis demonstrated that a large-scale quasi-periodic motion is present in the diffuser. In addition, a new diagnostic measure, based on the maximum vorticity stretching component in every spatial point, is designed and tested in a number of turbulent and transitional flows. Finally, Koopman mode decomposition is performed of a minimal channel flow and compared to classical proper orthogonal decomposition (POD). / QC 20111206
385

Fluxes and Mixing Processes in the Marine Atmospheric Boundary Layer

Nilsson, Erik Olof January 2013 (has links)
Atmospheric models are strongly dependent on the turbulent exchange of momentum, sensible heat and moisture (latent heat) at the surface. Oceans cover about 70% of the Earth’s surface and understanding the processes that control air-sea exchange is of great importance in order to predict weather and climate. In the atmosphere, for instance, hurricane development, cyclone intensity and track depend on these processes. Ocean waves constitute an obvious example of air-sea interaction and can cause the air-flow over sea to depend on surface conditions in uniquely different ways compared to boundary layers over land. When waves are generated by wind they are called wind sea or growing sea, and when they leave their generation area or propagate faster than the generating wind they are called swell. The air-sea exchange is mediated by turbulent eddies occurring on many different scales. Field measurements and high-resolution turbulence resolving numerical simulations have here been used to study these processes. The standard method to measure turbulent fluxes is the eddy covariance method. A spatial separation is often used between instruments when measuring scalar flux; this causes an error which was investigated for the first time over sea. The error is typically smaller over ocean than over land, possibly indicating changes in turbulence structure over sea. Established and extended analysis methods to determine the dominant scales of momentum transfer was used to interpret how reduced drag and sometimes net upward momentum flux can persist in the boundary layer indirectly affected by swell. A changed turbulence structure with increased turbulence length scales and more effective mixing was found for swell. A study, using a coupled wave-atmosphere regional climate model, gave a first indication on what impact wave mixing have on atmosphere and wave parameters. Near surface wind speed and wind gradients was affected especially for shallow boundary layers, which typically increased in height from the introduced wave-mixing. A large impact may be expected in regions of the world with predominant swell. The impact of swell waves on air-sea exchange and mixing should be taken into account to develop more reliable coupled Earth system models.
386

Investigation of the scalar variance and scalar dissipation rate in URANS and LES

Ye, Isaac Keeheon January 2011 (has links)
Large-eddy simulation (LES) and unsteady Reynolds-averaged Navier-Stokes (URANS) calculations have been performed to investigate the effects of different mathematical models for scalar variance and its dissipation rate as applied to both a non-reacting bluff-body turbulent flow and an extension to a reacting case. In the conserved scalar formalism, the mean value of a thermo-chemical variable is obtained through the PDF-weighted integration of the local description over the conserved scalar, the mixture fraction. The scalar variance, one of the key parameters for the determination of a presumed β-function PDF, is obtained by solving its own transport equation with the unclosed scalar dissipation rate modelled using either an algebraic expression or a transport equation. The proposed approach is first applied to URANS and then extended to LES. Velocity, length and time scales associated with the URANS modelling are determined using the standard two-equation k-ε transport model. In contrast, all three scales required by the LES modelling are based on the Smagorinsky subgrid scale (SGS) algebraic model. The present study proposes a new algebraic and a new transport LES model for the scalar dissipation rate required by the transport equation for scalar variance, with a time scale consistent with the Smagorinsky SGS model.
387

Turbulent Jet Diffusion Flame : Studies On Lliftoff, Stabilization And Autoignition

Patwardhan, Saurabh Sudhir 07 1900 (has links)
This thesis is concerned with investigations on two related issues of turbulent jet diffusion flame, namely (a) stabilization at liftoff and (b) autoignition in a turbulent jet diffusion flame. The approach of Conditional Moment Closure (CMC) has been taken. Fully elliptic first order CMC equations are solved with detailed chemistry to simulate lifted H2/N2 flame in vitiated coflow. The same approach is further used to simulate transient autoignition process in inhomogeneous mixing layers. In Chapter 1, difficulties involved in numerical simulation of turbulent combustion problems are explained. Different numerical tools used to simulate turbulent combustion are briefly discussed. Previous experimental, theoretical and numerical studies of lifted jet diffusion flames and autoignition are reviewed. Various research issues related to objectives of the thesis are discussed. In Chapter 2, the first order CMC transport equations for the reacting flows are presented. Various closure models that are required for solving the governing equations are given. Calculation of mean reaction rate term for detailed chemistry is given with special focus on the reaction rates for pressure dependent reactions. In Chapter 3, starting with the laminar flow code, further extension is carried to include kε turbulence model and PDF model. The code is validated at each stage of inclusion of different model. In this chapter, the code is first validated for the test problem of constant density, 2D, axisymmetric turbulent jet. Further, validation of PDF model is carried out by simulating the problem of nonreacting jet of cold air issuing into a vitiated coflow. The results are compared with the published data from experiments as well as numerical simulations. It is shown that the results compare well with the data. In Chapter 4, numerical results of lifted jet diffusion flame are presented. Detailed chemistry is modelled using Mueller mechanism for H2/O2 system with 9 species and 21 reversible reactions. Simulations are carried out for different jet velocities and coflow stream temperatures. The predicted liftoff generally agrees with experimental data, as well as joint PDF results. Profiles of mean scalar fluxes in the mixture fraction space, for different coflow temperatures reveal that (1) Inside the flamezone, the chemical term balances the molecular diffusion term, and hence the structure is of a diffusion flamelet for both cases. (2) In the preflame zone, the structure depends on the coflow temperature: for low coflow temperatures, the chemical term being small, the advective term balances the axial diffusion term. However, for the high coflow temperature case, the chemical term is large and balances the advective term, the axial diffusion term being small. It is concluded that, liftoff is controlled (a) by turbulent premixed flame propagation for low cofflow temperature while (b) by autoignition for high coflow temperature. In Chapter 5, the numerical results of autoignition in inhomogeneous mixing layer are presented. The configuration consists of a fuel jet issued into hot air for which transient simulations are performed. It is found that the constants assumed in various modelling terms can severely influence the results, particularly the flame temperature. Hence, modifications to these constants are suggested to obtain improved predictions. Preliminary work is carried out to predict autoignition lengths (which may be defined by Tign × Ujet incase of jet- and coflowvelocities being equal) by varying the coflow temperature. The autoignition lengths show a reasonable agreement with the experimental data and LES results. In Chapter 6, main conclusions of this thesis are summarized. Possible future studies on this problem are suggested.
388

Προσομοίωση τυρβωδών ροών φυσικής και μικτής συναγωγής σε ηλιακά και ενεργειακά συστήματα

Καλούδης, Ευστάθιος 13 January 2015 (has links)
Αντικείμενο της διατριβής είναι η προσομοίωση της ροής και της μεταφοράς θερμότητας σε ηλιακά και ενεργειακά συστήματα. Η έμφαση δόθηκε στις δεξαμενές αποθήκευσης της θερμότητας που παράγεται στα συγκεκριμένα συστήματα, με στόχο τον χαρακτηρισμό των ενεργειακών απωλειών και την βελτιστοποίηση του σχεδιασμού τους. Κύριες δραστηριότητες της διατριβής θα είναι η περαιτέρω ανάπτυξη διαθέσιμων εργαλείων προσομοίωσης ροών φυσικής και μικτής συναγωγής, με διερεύνηση των νεώτερων εξελίξεων στην μοντελοποίηση με τη μέθοδο Προσομοίωσης Μεγάλων Δινών (LES). Αρχικά γίνεται εκτεταμένη επικύρωση με πειραματικά αποτελέσματα σε απλές γεωμετρικές διατάξεις (π.χ. ορθογωνικά κανάλια ή κοιλώματα με βαθμίδα θερμοκρασίας) από την βιβλιογραφία. Στη συνέχεια η μεθοδολογία εφαρμόζεται στον υπολογισμό ροών σε πιο ρεαλιστικές γεωμετρίες, επιλεγμένες από πρακτικές εφαρμογές, όπως οι δεξαμενές αποθήκευσης νερού. Αναλύονται σε βάθος οι δυναμικές διεργασίες και τα ροϊκά φαινόμενα τόσο κατά την προσαγωγή της θερμότητας στη δεξαμενή (φόρτιση) όσο και κατά την απαγωγή της (εκφόρτιση) και η επίδραση που έχουν αυτά στην αποδοτικότητα της αποθήκευσης με βάση κατάλληλους ποσοτικούς δείκτες. Από τα αποτελέσματα αναδεικνύεται η σημασία της μοντελοποίησης σε τέτοιου είδους συστήματα ως ένα σημαντικό εργαλείο στη διερεύνηση της απόδοσης τους, του ενεργειακού χαρακτηρισμού τους και ακολούθως στην προσπάθεια επίτευξης του βέλτιστου σχεδιασμού τους. / The subject of the thesis is the Simulation of Turbulent Flow and Heat Transfer in Solar and Energy Systems. Emphasis is given in the thermal storage component of these systems, with the aim of characterizing their energy losses and improve their design. Main activities of the thesis will be the further development of available computational tools for the simulation of flows in natural and mixed convection, incorporating some of the most recent developments in modeling, particularly in the Large Eddy Simulation (LES) method. Initially, an extensive validation with experimental results in simple geometric configurations is carried out (e.g. channels or differentially heated cavities). Subsequently, the methodology is applied in the calculation of flows for more realistic geometries selected from practical applications, such as various hot water storage tanks. Analysis is conducted of the dynamic processes and relevant physical phenomena during the heat supply (charging) to and removal (discharging) from the tank and their influence on the storage effectiveness using appropriate thermodynamic indices. From the simulation results, the significance of the flow and heat transfer modeling in these systems as a practical tool for studying their performance is demonstrated, by characterizing their energy content and significantly contributing to the process of optimizing their design.
389

Numerical Studies of Flow and AssociatedLosses in the Exhaust Port of a Diesel Engine

Wang, Yue January 2013 (has links)
In the last decades, the focus of internal combustion engine development has moved towards more efficient and less pollutant engines. In a Diesel engine, approximately 30-40% of the energy provided by combustion is lost through the exhaust gases. The exhaust gases are hot and therefore rich of energy. Some of this energy can be recovered by recycling the exhaust gases into turbocharger. However, the energy losses in the exhaust port are highly undesired and the mechanisms driving the total pressure losses in the exhaust manifold not fully understood. Moreover, the efficiency of the turbine is highly dependent on the upstream flow conditions. Thus, a numerical study of the flow in the exhaust port geometry of a Scania heavy-duty Diesel engine is carried out mainly by using the Large Eddy Simulation (LES) approach. The purpose is to characterize the flow in the exhaust port, analyze and identify the sources of the total pressure losses. Unsteady Reynolds Averaged Navier-Stokes (URANS) simulation results are included for comparison purposes. The calculations are performed with fixed valve and stationary boundary conditions for which experimental data are available. The simulations include a verification study of the solver using different grid resolutions and different valve lift states. The calculated numerical data are compared to existent measured pressure loss data. The results show that even global parameters like total pressure losses are predicted better by LES than by URANS. The complex three-dimensional flow structures generated in the flow field are qualitatively assessed through visualization and analyzed by statistical means. The near valve region is a major source of losses. Due to the presence of the valve, an annular, jet-like flow structure is formed where the high-velocity flow follows the valve stem into the port. Flow separation occurs immediately downstream of the valve seat on the walls of the port and also on the surface of the valve body. Strong longitudinal, non-stationary secondary flow structures (i.e. in the plane normal to the main flow direction) are observed in the exhaust manifold. Such structures can degrade the efficiency of a possible turbine of a turbocharger located downstream on the exhaust manifold. The effect of the valve and piston motion has also been studied by the Large Eddy Simulation (LES) approach. Within the exhaust process, the valves open while the piston continues moving in the combustion chamber. This process is often analyzed modeling the piston and valves at fixed locations, but conserving the total mass flow. Using advanced methods, this process can be simulated numerically in a more accurate manner. Based on LES data, the discharge coefficients are calculated following the strict definition. The results show that the discharge coefficient can be overestimated (about 20 %) when using simplified experiments, e. g. flow bench. Simple cases using fixed positions for valve and piston are contrasted with cases which consider the motion of piston and/or valves. The overall flow characteristics are compared within the cases. The comparison shows it is impossible to rebuild the dynamic flow field with the simplification with fixed valves. It is better to employ LES to simulate the dynamic flow and associated losses with valve and piston motion. / <p>QC 20131204</p>
390

Numerical simulations of supersonic turbulent wall-bounded flows

Ben Nasr, Ouissem 16 May 2012 (has links) (PDF)
This work deals with spatially-evolving supersonic turbulent boundary layers over adiabatic and cold walls at M∞ = 2 and up to Re0 ≈ 2600 using 3 different SGS models. The numerical methodology is based on high-order split-centered scheme to discretize the convective fluxes of the Navier-Stokes equations . For the adiabatic case, it is demonstrated that all SGS models require a comparable minimum grid-refinement in order to capture accurately the near-wall-turbulence. Overall, the models exhibit correct behavior when predictiong the dynamic properties, but show different performances for the temperature distribution in the near-wall region. For the isothermal case, it is found that the compressibility effects are not enhanced due to the wall cooling. As expected, the total temperature fluctuations are not negligible in the near-wall region. The study shows that the anti-correlation linking both velocity and temperature fields, derived from the Morkovin's hypothesis, is not satisfied.

Page generated in 0.0347 seconds