• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 207
  • 91
  • 44
  • 22
  • 11
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 462
  • 462
  • 404
  • 130
  • 120
  • 100
  • 97
  • 97
  • 94
  • 92
  • 87
  • 78
  • 75
  • 72
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Analyse et modélisation de l'interaction entre thermique et turbulence dans les récepteurs solaires à haute température. / Analysis and modelling of the interaction between heat and turbulence in high-temperature solar receivers

Dupuy, Dorian 27 November 2018 (has links)
Dans les centrales solaires à tour, le flux solaire est concentré vers un récepteur solaire où son énergie est transférée à un fluide caloporteur. L'écoulement au sein du récepteur solaire est turbulent, fortement anisotherme et à bas nombre de Mach. L'optimisation du récepteur solaire exige une meilleure compréhension et modélisation de l'interaction entre la température et la turbulence. Cette thèse cherche à y contribuer selon deux approches. Tout d'abord, on étudie les échanges énergétiques entre les différentes parties de l'énergie totale. On propose pour cela une nouvelle représentation des échanges énergétiques, fondée sur la moyenne de Reynolds. Cette représentation permet la caractérisation, à partir de simulations numériques directes d'un canal plan bipériodique anisotherme, de l'effet du gradient de température sur les échanges énergétiques associées à l'énergie cinétique turbulente dans les domaines spatial et spectral. Ensuite, on étudie la simulation des grandes échelles des équations de bas nombre de Mach. En utilisant les résultats de simulations numériques directes, on identifie les termes sous-mailles spécifiques à modéliser lorsque l'on utilise le filtre classique, non pondéré, et lorsque l'on utilise le filtre de Favre, pondéré par la masse volumique. Dans les deux cas, on évalue a priori la performance de différents modèles sous-mailles. La pertinence des modèles est vérifiée a posteriori par la réalisation de simulation des grandes échelles. / In solar power towers, the solar flux is concentrated towards a solar receiver, wherethrough its energy is transferred to a heat transfer fluid. The flow in the solar receiver is turbulent, strongly anisothermal and at low Mach number. The optimisation of the solar receiver requires a better understanding and modelling of the interaction between temperature and turbulence. In this thesis, this is investigated following two approaches. First, we study the energy exchanges between the different parts of total energy. To this end, a new representation of the energy exchanges, based on the Reynolds averaging, is established. The representation allows the characterisation, from direct numerical simulations of a strongly anisothermal channel flow, of the effect of the temperature gradient on the energy exchanges associated with turbulence kinetic energy in the spatial and spectral domains. Second, we study the large-eddy simulation of the low Mach number equations. Using the results of direct numerical simulations, we identify the specific subgrid terms to model when the unweighted classical filter is used and when the density-weighted Favre filter is used. In both cases, the performance of different subgrid-scale models is assessed a priori. The relevance of the subgrid-scale models is then verified a posteriori by carrying out large-eddy simulations.
402

Estudo comparativo entre os modelos LES e DES para simulação de escoamento compressível turbulento. / A comparative study using les and des models for turbulent compressible flow simulation.

Nelson Pedrão 25 May 2010 (has links)
Neste trabalho foi realizado um estudo utilizando os modelos de turbulência Simulação das Grandes Escalas, Large Eddy Simulation (LES), e Simulação dos Vórtices Desprendidos, Detached Eddy Simulation (DES), para simular o escoamento compressível interno em um duto contendo válvulas controladoras na saída dos gases de combustão de um reator de craqueamento catalítico fluido, com o objetivo de comparar o desempenho numérico e computacional de ambas as técnicas. Para isso foi utilizado um programa comercial de dinâmica dos fluidos computacional, Computational Fluid Dynamics (CFD), que possui em seu código os dois modelos de turbulência. / In the present work a study was conducted using Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) turbulence models in order to simulate the internal compressible flow in a duct containing the flue gas discharge control valves of a fluid catalytic cracking reactor so as to compare the numerical and computational behavior of both techniques. A commercial Computational Fluid Dynamics (CFD) software, which includes these turbulence models in its code, was used.
403

Études du couplage entre turbulence et gradient de température pour l'intensification des transferts de chaleur dans les récepteurs solaires à haute température / Study of the coupling between turbulence and temperature gradient for the heat transfers intensification in high temperature solar receivers

Bellec, Morgane 04 January 2017 (has links)
Une voie prometteuse pour améliorer le rendement des centrales solaires à tour consiste à chauffer de l'air pressurisé à haute température afin d'alimenter un cycle thermodynamique de Brayton. Pour cela, il est indispensable de concevoir des récepteurs solaires performants,permettant de forts transferts de chaleur vers le fluide. Le développement de tels récepteurs passe par une compréhension fine de leurs écoulements internes. Il s'agit d'écoulements complexes, combinant de hauts niveaux de turbulence et un fort gradient de température entre la paroi irradiée par le flux solaire concentré et la paroi arrière isolée. On se propose dans ce travail de réaliser une étude amont numérique et expérimentale de ce type d'écoulements.D'une part, des mesures de vitesse par SPIV (vélocimétrie par images de particules stéréoscopique) sont effectuées dans une soufflerie de canal plan turbulent lisse dont la cellule de mesure est représentative d'un récepteur solaire surfacique. On observe en particulier l'influence d'un chauffage asymétrique sur les statistiques de la turbulence. Ces mesures sont d'autre part complétées par des simulations fines LES (simulation des grandes échelles)menées dans les conditions de la soufflerie. Pour finir, une simulation LES d'un canal plan texturé sur une paroi par une géométrie innovante est conduite. Cette architecture interne du récepteur combine des générateurs de tourbillon et des riblets afin d'intensifier les échanges de chaleur vers le fluide. / A promising line of research to increase the efficiency of solar tower power plants consists in heating pressurized air to high temperatures in order to fuel a Brayton thermodynamic cycle. This requires to design effective solar receivers that allow for intense heat transfers toward the fluid. To develop such receivers, an in-depth understanding of their internal flows is needed. These are complex flows, combining strong turbulence and strong temperature gradient between the concentrated sun irradiated wall and the back insulated wall.The aim of this work is to investigate numerically and experimentally such flows.On one hand, velocities are measured by SPIV (Stereoscopic Particle Image Velocimetry) in a turbulent channel flow wind tunnel whom measurement cell is similar to a surface solar receiver. The influence of an asymmetric heating on the turbulence statistics are especially investigated. These measurements are supplemented by Large Eddy Simulations run under the same conditions as the wind tunnel. Finally, a Large Eddy Simulation is run in a channel flow textured on one wall by an innovative geometry. This internal receiver design combines vortex generators and riblets in order to enhance the heat transfers.
404

Experimental and Numerical Studies on Spray in Crossflow

Sinha, Anubhav January 2016 (has links) (PDF)
The phenomenon of spray in crossflow is of relevance in gas turbine combustor development. The current work focuses on spray in crossflow rather than liquid jet in crossflow from the standpoint of enhancing fuel dispersion and mixing. Specifically, the first part of the work involves study of spray structure, droplet sizing, and velocimetry for sprays of water and ethanol in a crossflow under ambient conditions. Laser-based diagnostic techniques such as Particle/Droplet Image Analysis (PDIA) and Particle Tracking Velocimetry (PTV) are utilized. Using spray structure images, trajectory equations are derived by multi-variable regression. It is found that the spray trajectory depends only on the two-phase momentum ratio and is independent of other flow parameters. A generalized correlation for the spray trajectory is proposed incorporating the liquid surface tension, which is found to be effective for our data, with water and ethanol, as well as data on Jet-A from the literature for a wide variety of operating conditions. An interesting phenomenon of spatial bifurcation of the spray is observed at low Gas-to-Liquid ratios (GLRs). The reason for this phenomenon is attributed to the co-existence of large and highly deformed ligaments along with much smaller droplets at low GLR conditions. The smaller droplets lose their vertical momentum rapidly leading to lower penetration, whereas the larger ligaments/droplets penetrate much more due to their larger momentum leading to a spatial separation of the two streams. The second part of the study focuses on evaporating sprays in preheated crossflow. Experiments are conducted using ethanol, decane, Jet-A1 fuel, and a two-component surrogate for Jet-A1 fuel. The crossflow air is heated up to 418 K and the effect of evaporation is studied on spray trajectory and droplet sizes. Measured droplet sizes and velocities at two successive locations are used to estimate droplet evaporation lifetimes. Evaporation constant for the d2 law derived from the droplet lifetimes represents the first-ever data for the above-mentioned liquids under forced convective conditions. This data can be used to validate multi-component droplet evaporation models. The last part of the study focuses on Large Eddy Simulations (LES) of the spray in crossflow. The near-nozzle spray structure is investigated experimentally to obtain droplet size and velocity distributions that are used as inputs to the computational model. For the spray in crossflow under ambient conditions, trajectory and droplet sizes at different locations are compared with experimental results. While the predicted trajectory is found to be in good agreement with data, the predicted droplet sizes are larger than the measured values. This is attributed to the implicit assumption in the secondary breakup model that the droplets are spherical, whereas the experimental data in the near-nozzle region clearly shows presence of mostly ligaments and non-spherical droplets, especially for the low GLR cases. A modified breakup model is found to lead to improved agreement in droplet sizes between predictions and measurements. Overall, the experiments and computations have provided significant insight into spray in crossflow phenomenon, and have yielded useful results in terms of validated spray trajectory correlations, droplet evaporation lifetimes under forced convective conditions, and a methodology for simulation of airblast sprays.
405

Large Eddy Simulation of Free and Impinging Subsonic Jets and their Sound Fields

Subramanian, G January 2014 (has links) (PDF)
Evaluating aerodynamic noise from aircraft engines is a design stage process, so that it conform to regulations at airports. Aerodynamic noise is also a principal source of structural vibration and internal noise in short/vertical take off and landing and rocket launches. Acoustic loads may be critical for the proper functioning of electronic and mechanical components. It is imperative to have tools with capability to predict noise generation from turbulent flows. Understanding the mechanism of noise generation is essential in identifying methods for noise reduction. Lighthill (1952) and Lighthill (1954) provided the first explanation for the mechanism of aerodynamic noise generation and a procedure to estimate the radiated sound field. Many such procedures, known as acoustic analogies are used for estimating the radiated sound field in terms of the turbulent fluid flow properties. In these methods, the governing equations of the fluid flow are rearranged into two parts, the acoustic sources and the propagation terms. The noise source terms and propagation terms are different in different approaches. A good description of the turbulent flow field and the noise sources is required to understand the mechanism of noise generation. Computational aeroacoustics (CAA) tools are used to calculate the radiated far field noise. The inputs to the CAA tools are results from CFD simulations which provide details of the turbulent flow field and noise sources. Reynolds-Averaged Navier Stokes (RANS) solutions can be used as inputs to CAA tools which require only time-averaged mean quantities. The output of such tools will also be mean quantities. While complete unsteady turbulent flow details can be obtained from Direct Numerical Simulation (DNS), the computation is limited to low or moderate Reynolds number flows. Large eddy simulations (LES) provide accurate description for the dynamics of a range of large scales. Most of the kinetic energy in a turbulent flow is accounted by the large-scale structures. It is also the large-scale structures which accounts for the maximum contribution towards the radiated sound field. The results from LES can be used as an input to a suitable CAA tool to calculate the sound field. Numerical prediction of turbulent flow field, the acoustic sources and the radiated sound field is at the focus of this study. LES based on explicit filtering method is used for the simulations. The method uses a low-pass compact filter to account for the sub-grid scale effects. A one-parameter fourth-order compact filter scheme from Lele (1992) is used for this purpose. LES has been carried out for four different flow situations: (i) round jet (ii) plane jet (iii) impinging round jet and (iv) impinging plane jet. LES has been used to calculate the unsteady flow evolution of these cases and the Lighthill’s acoustic sources. A compact difference scheme proposed by Hixon & Turkel (1998) which involves only bi-diagonal matrices are used for evaluating spatial derivatives. The scheme provides similar spectral resolution as standard tridiagonal compact schemes for the first spatial derivatives. The scheme is computationally less intensive as it involves only bi-diagonal matrices. Also, the scheme employs only a two-point stencil. To calculate the radiated sound field, the Helmholtz equation is solved using the Green’s function approach, in the form of the Kirchhoff-Helmholtz integral. The integral is performed over a surface which is present entirely in the linear region and covers the volume where acoustic sources are present. The time series data of pressure and the normal component of the pressure gradient on the surface are obtained from the CFD results. The Fourier transforms of the time series of pressure and pressure gradient are then calculated and are used as input for the Kirchhoff-Helmholtz integral. The flow evolution for free jets is characterised by the growth of the instability waves in the shear layer which then rolls up into large vortices. These large vortical structures then break down into smaller ones in a cascade which are convected downstream with the flow. The rms values of the Lighthill’s acoustic sources showed that the sources are located mainly at regions immediately downstream of jet break down. This corresponds to the large scale structures at break down. The radiated sound field from free jets contains two components of noise from the large scales and from the small scales. The large structures are the dominant source for the radiated sound field. The contribution from the large structures is directional, mainly at small angles to the downstream direction. To account for the difference in jet core length, the far field SPL are calculated at points suitably shifted based on the jet core length. The peak value for the radiated sound field occurs between 30°and 35°as reported in literature. Convection of acoustic sources causes the radiated sound field to be altered due to Doppler effect. Lighthills sources along the shear layer were examined in the form of (x, t) plots and phase velocity pattern in (ω, k) plots to analyse for their convective speeds. These revealed that there is no unique convective speeds for the acoustic sources. The median convective velocity Uc of the acoustic sources in the shear layer is proportional to the jet velocity Uj at the center of the nozzle as Uc ≈ 0.6Uj. Simulations of the round jet at Mach number 0.9 were used for validating the LES approach. Five different cases of the round jet were used to understand the effect of Reynolds number and inflow perturbation on the flow, acoustic sources and the radiated sound field. Simulations were carried out for an Euler and LES at Reynolds number 3600 and 88000 at two different inflow perturbations. The LES results for the mean flow field, turbulence profiles and SPL directivity were compared with DNS of Freund (2001) and experimental data available in literature. The LES results showed that an increase in inflow forcing and higher Reynolds number caused the jet core length to reduce. The turbulent energy spectra showed that the energy content in smaller scale is higher for higher Reynolds number. LES of plane jets were carried out for two different cases, one with a co-flow and one without co-flow. LES of plane jets were carried out to understand the effect of co-flow on the sound field. The plane jets were of Mach number 0.5 and Reynolds number of 3000 based on center-line velocity excess at the nozzle. This is similar to the DNS by Stanley et al. (2002). It was identified that the co-flow leads to a reduction in turbulence levels. This was also corroborated by the turbulent energy spectrum plots. The far field radiation for the case without co-flow is higher over all angles. The contribution from the low frequencies is directional, mainly towards the downstream direction. The range of dominant convective velocities of the acoustic sources were different along shear layers and center-line. The plane jet results were also used to bring out a qualitative comparison of flow and the radiation characteristics with round jets. For the round jet, the center-line velocity decays linearly with the stream-wise distance. In the plane jet case, it is the square of the center-line velocity excess which decays linearly with the stream-wise distance. The turbulence levels at any section scales with the center-line stream-wise velocity. The decay of turbulence level is slower for the plane jet and hence the acoustic sources are present for longer distance along the downstream direction. Subsonic impinging jets are composed of four regions, the jet core, the fully developed jet, the impingement zone and the wall jet. The presence of the second region (fully developed free jet) depends on the distance of the wall from the nozzle and the length of the jet core. In impinging jets, reflection from the wall and the wall jet are additional sources of noise compared to the free jets. The results are analysed for the contribution of the different regions of the flow towards the radiated sound field. LES simulations of impinging round jets and impinging plane jet were carried out for this purpose. In addition, the results have been compared with equivalent free jets. The directivity plots showed that the SPL levels are significantly higher for the impinging jets at all angles. For free jets, a typical time scale for the acoustic sources is the ratio of the nozzle size to the jet velocity. This is ro/Uj for round jets and h/Uj for plane jets. For impinging jets, the non-dimensionlised rms of Lighthill’s source indicates that the time scale for acoustic sources is the ratio of the height of the nozzle from the wall to the jet velocity be L/Uj. LES of impinging round jets was carried out for two cases with different inflow perturbations. The jets were at Reynolds number of 88000 and Mach number of 0.9, same as the free jet cases. The impingement wall was at a distance L = 24ro from the nozzle exit. For impinging round jets, the SPL levels are found to be higher than the equivalent free jets. From the SPL levels and radiated noise spectra it was shown that the contribution from the large scale structures and its reflection from the wall is directional and at small angles to the wall normal. The difference in the range of angles where the radiation from the large scale structures were observed shows the significance of refraction of sound waves inside the flow. The rms values of the Lighthill’s sources indicate two dominant regions for the sources, just downstream of jet breakdown and in the impingement zone. The LES of impinging plane jet was done for a jet of Mach number 0.5 and Reynolds number of 6000. The impingement wall was at a distance L = 10h from the nozzle exit. The radiated sound field appears to emanate from this impingement zone. The directivity and the spectrum plots of the far field SPL indicate that there is no preferred direction of radiation from the impingement zone. The Lighthill’s sources are concentrated mainly in the impingement zone. The rms values of the sources indicate that the peak values occur in the impingement zone. The results from the different flow situations demonstrates the capability of LES with explicit filtering method in predicting the turbulent flow and radiated noise field. The method is robust and has been successfully used for moderate Reynolds number and an Euler simulation. An important feature is that LES can be used to identify acoustic sources and its convective speeds. It has been shown that the Lighthill source calculations, the calculated sound field and the observed radiation patterns agree well. An explanation for these based on the different turbulent flow structures has also been provided.
406

Simulation numérique directe et modélisation stochastique de sous-maille de l'accélération dans un écoulement de canal à grand nombre de Reynolds / Acceleration in high Reynolds number turbulent channel flow : numerical simulation and stochastic subgrid model

Zamansky, Rémi 15 April 2011 (has links)
Cette thèse porte sur la caractérisation numérique et la modélisation stochastique de l’accélération du fluide pour l’écoulement en canal à grand nombre de Reynolds. La motivation concerne l’observation et l’analyse des effets de l’intermittence liés aux interactions à longue portée à travers le canal. Dans la première partie, l’accélération est étudiée par simulation numérique directe pour trois différents nombres de Reynolds (180, 590 et 1000). La lognormalité de la norme de l’accélération est observée quelle que soit la distance à la paroi. Un profil universel de la norme de l’accélération est également recherché par analyse dimensionnelle. La seconde partie présente une modélisation stochastique de l’accélération basée sur la décomposition norme/orientation. Le modèle stochastique pour la norme s’appuie sur un processus de fragmentation afin de représenter les interactions à longue portée à travers le canal. Pour l’orientation, l’évolution vers l’isotropie lorsque la distance à la paroi augmente (observée par la DNS) est reproduite grâce à un modèle de marche aléatoire sur une sphère. Ces modèles ont été appliqués à l’approche LES-SSAM (Stochastic Subgrid Acceleration Model) introduite par Sabel’nikov, Chtab et Gorokhovski. Nos calculs montrent que les estimations de la vitesse moyenne, du spectre d’énergie, des contraintes de l’écoulement et de la non-gaussianité des statistiques de l’accélération peuvent être améliorées de façon significative par rapport à la LES classique. L’intérêt de l’approche LES-SSAM, donnant un accès vers la structure intermittente de sous-maille, est illustré dans la dernière partie, par l’étude du transport de particules inertielles ponctuelles par l’écoulement de canal. Cette étude commence par l’analyse par DNS de l’influence des structures de paroi sur la dynamique des particules / The main objective of this thesis is to observe numerically and to analyze the effects of intermittency in a high Reynolds number turbulent channel flow. To this end, the thesis is focused on characterization and stochastic modelling of the fluid acceleration in such a flow, with emphasis on long-range interactions across the channel. In the first part, the acceleration is studied using DNS for three Reynolds numbers (180, 590 et1000). It is observed that the norm of acceleration is log-normal whatever the wall distance is. The universal form of scaling law for the acceleration is proposed by dimensional analysis. In the second part, the acceleration is simulated stochastically, assuming the norm/orientation decomposition. The stochastic model for the norm is based on the fragmentation process in order to represent the long-range interactions across the channel. The orientation is simulated by random walk on a sphere in order to reproduce the relaxation towards isotropy with increasing the wall distance. This was observed preliminary in our DNS. These models were applied in the framework of LES-SSAM approach (Stochastic Subgrid AccelerationModel), which was introduced by Sabel’nikov, Chtab and Gorokhovski and assessed in the case of the box turbulence. Our computations showed that the mean velocity, the energy spectra, the viscous and turbulent stresses, as well as the non-gaussianity of acceleration statistics can be considerably improved in comparison with standard LES. The advantage of the LES-SSAM approach, which accounts for intermittency on subgrid scales, is demonstrated in the last part of this thesis. Here the transport of inertial point wise particles was studied by DNS and by LES-SSAM. The influence of wall structures on the particle’s dynamics is analyzed.
407

LES combined with statistical models of spray formation closely to air-blast atomizer / Modélisation d'atomisation air-assistée au voisinage de l'injecteur : LES couplée avec les approches stochastiques

Deng, Tian 09 November 2011 (has links)
Cette thèse présente une extension de l'approche stochastique de l'atomisation primaire de type air assisté près d'un injecteur. Cette approche avait déjà été introduite dans les publications de Gorokhovski et al. Dans le cadre de la simulation des grandes échelles, la zone d'atomisation primaire est simulée comme un corps immergé avec une structure stochastique. Ce dernier est défini par la simulation stochastique de la position et de la courbure de l'interface entre le liquide et le gaz. La simulation de la position de l'interface est basée sur l'hypothèse de symétrie d'échelle pour la fragmentation. La normale extérieure à l'interface est modélisée en supposant une relaxation statistique vers l'isotropie. Les statistiques de la force du corps immergé servent de conditions aux limites pour le champ de vitesse issu de la LES ainsi que pour la production des gouttes de l'atomisation primaire. Celles-ci sont ensuite transportées par une approche lagrangienne. Les collisions entre les gouttes dans la zone d'atomisation primaire sont prises en compte par analogie avec l'approche standard de la théorie cinétique des gaz. Une fermeture est proposée pour la température statistique des gouttelettes. Cette approche est validée par des comparaisons avec les mesures expérimentales de la thèse de Hong. Les résultats numériques pour la vitesse et de la taille des gouttes dans le spray à différentes distances du centre du jet et de l'orifice de la buse sont relativement proches des résultats expérimentaux. Différentes conditions d'entrée pour la vitesse sont testées et comparées aux résultats expérimentaux. Par ailleurs, le rôle spécifique de la zone de recirculation devant le dard liquide est soulignée par le battement du dard liquide et la production de gouttelettes. / This thesis introduced an extension to stochastic approach for simulation of air-blast atomization closely to injector. This approach was previously proposed in publications of Gorokhovski with his PHD students. Our extension of this approach is as follows. In the framework of LES approach, the contribution of primary atomization zone is simulated as an immersed solid body with stochastic structure. The last one is defined by stochastic simulation of position-and-curvature of interface between the liquid and the gas. As it was done previously in this approach, the simulation of the interface position was based on statistical universalities of fragmentation under scaling symmetry. Additionally to this, we simulate the outwards normal to the interface, assuming its stochastic relaxation to isotropy along with propagation of spray in the down-stream direction. In this approach, the statistics of immersed body force plays role of boundary condition for LES velocity field, as well as for production of primary blobs, which are then tracked in the Lagrangian way. In this thesis, the inter-particle collisions in the primary atomisation zone are accounted also by analogy with standard kinetic approach for the ideal gas. The closure is proposed for the statistical temperature of droplets. The approach was assessed by comparison with measurements of Hong in his PHD. The results of computation showed that predicted statistics of the velocity and of the size in the spray at different distances from the center plane, at different distances from the nozzle orifice, at different inlet conditions (different gas velocity at constant gas-to-liquid momentum ratio, different gas-to-liquid momentum ratio) are relatively close to measurements. Besides, the specific role of recirculation zone in front of the liquid core was emphasized in the flapping of the liquid core and in the droplets production.
408

RANS and LES of multi-hole sprays for the mixture formation in piston engines

Khan, Muhammad 20 January 2014 (has links)
Cette thèse porte sur la simulation des jets de gouttes générés par des pulvérisateurs essence haute pression, pulvérisateurs qui sont un point clef des systèmes de combustion automobile de la présente et future génération devant diminuer les émissions de CO2 et de polluants. Dans un premier temps les jets de gouttes (« sprays ») sont simulés par simulation moyennée. Les résultats de simulation d’un jet donnant des résultats en moyenne satisfaisant, l'interaction de jets en injecteurs multi-trous est alors simulée. Les résultats sont cohérents par rapport aux mesures d'entraînement d’air. La simulation permettant d'avoir accès au champ complet 3D, le mécanisme d'interaction jet à jet et de développement instationnaire du spray est décrit en détail. La formation d’un mouvement descendant au centre du spray et celle d'un point d'arrêt central sont trouvés. Finalement, Ces résultats sont étendus au cas surchauffé, cas où la pression dans la chambre est inférieure à la pression de vapeur saturante. Un modèle simple semi-empirique est proposé pour tenir compte de la modification des conditions proches de la buse d’injection. Le modèle prédit correctement les tendances des variations de paramètres et capture la forme générale du spray qui se referme sur lui-même. La seconde grande partie est consacrée au développement d’un modèle de spray par l’approche des grandes échelles (SGE), limité ici aux cas non évaporant. Il comprend la modélisation de sous-maille de la dispersion turbulente, des collisions-coalescence et des termes d’échange de quantité de mouvement de sous-maille. L'effet du choix du modèle de sous-maille pour la viscosité turbulente de sous-maille est montré, le choix retenu étant le modèle de Smagorinski dynamique. Afin d'améliorer la représentativité cruciale des conditions d’injections, un couplage faible est réalisé à partir de résultats de simulations existantes de l'écoulement interne aux buses. Les fonctions densité de probabilité simple et jointes extraits des résultats de simulations sont validés par rapport aux mesures PDA en situation pseudo-stationnaire et la pénétration liquide et la forme du spray est comparée aux visualisations par ombroscopie. Enfin, différentes zones caractéristiques sont identifiées et des longueurs sont notées pour les cas d'injection à 100 et 200bar. / Over the years numerical modelling and simulation techniques have constantly been improved with the increase in their use. While keeping the computational resources in mind, numerical simulations are usually adapted to the required degree of accuracy and quality of results. The conventional Reynolds Average Navier Stokes (RANS) is a robust, cheap but less accurate approach. Large Eddy Simulation (LES) provides very detailed and accurate results to the some of the most complex turbulence cases but at higher computational cost. On the other hand, Direct Numerical Simulation (DNS) is although the most accurate of the three approaches but at the same time it is computationally very expensive which makes it very difficult to be applied to the most of the complex industrial problems. The current work is aimed to develop a deeper understanding of multi-hole Gasoline Direct Injection (GDI) sprays which pose many complexities such as; air entrainment in the multi-hole spray cone, Jet-to-Jet interactions, and changes in the spray dynamics due to the internal flow of the injector. RANS approach is used to study multi-hole injector under cold, hot and superheated conditions. Whereas, LES is utilized to investigate the changes in the dynamics of the single spray plume due to the internal flow of the GDI injector. To reduce computational cost of the simulations, dynamic mesh refinement has been incorporated for both LES and RANS simulation. A thorough investigation of air entrainment in three and six hole GDI injectors has been carried out using RANS approach under non superheated and superheated conditions. The inter plume interactions caused by the air entrainment effects have been analysed and compared to the experimental results. Moreover, the tendencies of semi collapse and full collapse of multi-hole sprays under non superheated and superheated conditions have been investigated in detail as well. A methodology of LES has been established using different injection strategies along with various subgrid scale models for a single spray plume. In GDI multi-hole sprays, the internal flow of the injector plays a very crucial role in the outcome the spray plume. A separate already available internal flow LES simulation of the injector has been coupled with the external spray simulation in order to include the effect of nozzle geometry and the cavitation phenomenon which completely change the dynamics of the spray.
409

Advanced numerical simulation of corner separation in a linear compressor cascade / Simulation numérique avancée du décollement de coin dans une grille d’aubes linéaire de compresseur

Gao, Feng 10 April 2014 (has links)
La demande croissante pour alléger les moteurs d’avions et diminuer les émissions polluantes de la propulsion aéronautique réclame à rendre plus compact le système de compression des moteurs, qui représente environ 40%-50% de la masse totale. Or, à taux de compression global égal, la réduction du nombre d’étage exige d’un point de vue aérodynamique une augmentation de la charge des aubes de compresseur par étage. La charge d’aube est aujourd’hui limitée car elle induit différents mécanismes de pertes tridimensionnelles très pénalisant. L’un des plus importants est le décollement de coin qui se forme à la jonction entre l’extrados de l’aube et le moyeu ou le carter. Bien que des travaux existent sur les mécanismes et paramètres intervenant dans le décollement de coin, il est encore difficile de proposer une méthode de contrôle efficace. Cela est principalement dû à deux raisons : (i) le manque de compréhension fine des mécanismes physiques, (ii) l’utilisation pour la conception de modèles de turbulence classiques de type RANS (Reynolds-averaged Navier-Stokes) qui ne sont pas capables de prédire précisément le décollement de coin, car ils ne peuvent pas décrire correctement les mécanismes de transport turbulent. Des simulations de type RANS et LES (large-eddy simulation = simulation des grandes échelles) sont présentées dans cette thèse sur une configuration de grille d’aubes de compresseur, et comparées avec les données expérimentales obtenues au LMFA (issues de travaux séparés). L’approche RANS surestime globalement le décollement de coin. Une amélioration significative est obtenue par la méthode LES, en particulier pour le coefficient de pression statique sur l’aube et les pertes de pression totale. Ces résultats montrent que la zone de décollement de coin, qui est la source principale des pertes, génère des tourbillons de grande échelle associés à de forts niveaux d’énergie. Les histogrammes bimodaux de la vitesse tangentielle qui ont été observés expérimentalement semblent confirmés par les résultats LES. En ce qui concerne les amplitudes des fluctuations de vitesse tangentielle, les résultats expérimentaux et ceux de la LES mettent en évidence deux pics sur certains profils perpendiculaires aux parois. Enfin, grâce à l’approche LES, les bilans de l’énergie cinétique turbulente sont calculés et analysés. Ils décrivent l’équilibre entre les termes de production, de dissipation et de transport. Une des perspectives de cette analyse est d’aider à améliorer la modélisation de la turbulence en approche RANS. / The increasing demand to reduce the mass of aircraft jet engines and emissions of aircraft propulsion requires to make the compression system of engines more compact, since this component accounts for about 40%-50% of the total mass. However, at a given overall pressure ratio, decreasing the number of stages will raise the compressor blade loading per stage. The blade loading is extremely restricted by different three-dimensional flow loss mechanisms. One of them is the corner separation that forms between the blade suction side and the hub or shroud. Although some works previously investigated the mechanisms and the parameters of corner separation, it is still difficult to propose an effective control method of the corner separation. That is mainly due to two reasons: (i) the lack of knowledge of the physical mechanisms, (ii) the nowadays classical RANS (Reynolds-averaged Navier-Stokes) turbulence models are not capable to accurately predict the corner separation, since they cannot correctly describe the turbulent transport mechanisms. RANS (Reynolds-averaged Navier-Stokes) and LES (large-eddy simulation) simulations are here presented on a compressor cascade configuration, in comparison with experimental data obtained at LMFA (from separate works). The RANS approach globally over-estimates the corner separation, whereas a significant improvement is achieved with the LES, especially for the blade surface static pressure coefficient and the total pressure losses. The corner separation region, which is the main source of the total pressure losses, is shown to generate large-scale energy-containing eddies. The bimodal histograms of the streamwise velocity that were observed experimentally seem to be confirmed by the LES results. Concerning the streamwise velocity fluctuations (RMS), both the experiment and the LES show some profiles with two peaks. Finally, thanks to the LES approach, the turbulent kinetic energy budget, which represents the balance between the production, dissipation and transport terms, are computed and analyzed. This may help the improvement of RANS turbulence modeling.
410

Development of Stabilized Finite Element Method for Numerical Simulation of Turbulent Incompressible Single and Eulerian-Eulerian Two-Phase Flows

Banyai, Tamas 12 August 2016 (has links)
The evolution of numerical methods and computational facilities allow re- searchers to explore complex physical phenomenons such as multiphase flows. The specific regime of incompressible, turbulent, bubbly two-phase flow (where a car- rier fluid is infused with bubbles or particles) is also receiving increased attention due to it’s appearance in major industrial processes. The main challenges arise from coupling individual aspects of the physics into a unified model and to provide a robust numerical framework. The presented work aimed at to achieve the second part by employing the most frequently used dispersed two-phase flow model and another incompressible, turbulent single phase solver as a base flow provider for coupled Lagrangian or surface tracking tools. Among the numerical techniques, the finite element method is a powerful can- didate when the need arises for multiphysics simulations (for example coupling with an electrochemical module) where the counterpart has a node based ap- proach. Stabilization schemes such as PSPG/SUPG/BULK provide remedies for the pressure decoupling and the inherent instability of the central discretization when applied for convective flow problems. As an alternative to unsteady solvers based upon an explicit or a fully im- plicit nonlinear treatment of the convective terms, a semi-implicit scheme results in a method of second order accurate in both space and time, has absolute linear stability and requires only a single or two linear system solution per time step. The application of the skew symmetric approach to the convective term further stabilizes the solution procedure and in some cases it even prevents divergence. The Eulerian-Eulerian two-phase flow model poses various issues to be over- come. The major difficulty is the density ratio between the phases; for an ordinary engineering problem it is in the order of thousands or more. The seemingly minus- cule differences in the formulation of the stabilizations can cause very different end results and require careful analysis. Volume fraction boundedness is of concern as well, but it is treatable by solving for its logarithm. Since the equations allow jumps (even separation of the phases) in the volume fraction field, discontinuity capturing techniques are also needed. Besides the standard ’spatial’ stabilization temporal smoothing is also necessary, otherwise the limitation in time step size becomes too stringent. Designing a flow solver is one side of the adventure, but verification is equally important. Comparison against analytical solution (such as the single and two- phase Taylor-Green testcase) provides insight and confirmation about the mathe- matical and physical properties. Meanwhile comparing with real life experiments prove the industrialization and usability of a code, dealing with low quality meshes and effective utilization of computer clusters. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished

Page generated in 0.1895 seconds