• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 169
  • 82
  • 42
  • 14
  • 10
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 398
  • 398
  • 398
  • 120
  • 104
  • 89
  • 83
  • 82
  • 81
  • 80
  • 74
  • 67
  • 64
  • 58
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Aspects cinétiques et acoustiques en simulation numérique des grandes échelles, et application à l'étude du contrôle de l'écoulement de jeu en turbomachines

Cahuzac, Adrien 19 July 2012 (has links)
Les écoulements en turbomachines (et notamment en turboréacteurs) sont caractérisés par de larges structures tourbillonnaires et de fortes intensités turbulentes. Ainsi, l’écoulement secondaire dans la région du jeu, en tête d’aube, est l’origine de pertes d’énergie, d’instabilités et de nuisances sonores. Une simulation fine de ces écoulements peut être obtenue par l’emploi de méthodes LES (Large-Eddy Simulation), qui permettent de capturer les fluctuations turbulentes majeures. Compte tenu des phénomènes rencontrés, le modèle de sous-maille SISM (shear-improved Smagorinsky model) est retenu ici. Ce modèle est local dans son écriture, et prend en compte l’influence du cisaillement moyen. Nous proposons ici deux méthodes de filtrage (locales en espace elles aussi) pour obtenir une évaluation du champ moyen requis par le modèle. Ces méthodes sont, dans un premier temps, testées sur une configuration de canal plan. L’écoulement en régime sous-critique autour d’un barreau cylindrique (Re = 4, 7 ×104) est proposé comme cas-test académique sélectif pour ces méthodes : cet écoulement présente de larges structures tourbillonnaires ainsi qu’une turbulence intense, tout comme l’écoulement de jeu. Les simulations permettent l’obtention de résultats très proches des données expérimentales. Une étude comparée des deux algorithmes d’extraction du champ moyen montre que l’adaptativité du filtrage de Kalman offre toutefois des résultats légèrement meilleurs. Enfin, l’analyse d’un écoulement de jeu par une méthode zonale est réalisée (approche LES en tête d’aube, RANS en pied). La simulation de référence obtient des résultats remarquables dans la zone de tête d’aube, en retrouvant notamment les spectres de vitesse expérimentaux. Une seconde simulation avec l’emploi d’un dispositif de contrôle par aspiration au niveau du carter montre deux conséquences principales à ce dispositif: une réduction des niveaux de turbulence aux environs de la tête d’aube, et une modification de la trajectoire du tourbillon de jeu. Celui-ci rencontre l’aube suivante dans la configuration de référence, ce qui n’est plus le cas dans la configuration avec contrôle. Ces deux observations ont une importance certaine dans la réduction des sources acoustiques. / Flows in turbomachines such as jet engines are subject to large vortical structures and strong turbulent intensities. In particular, secondary flows generated in the fan tip region result in energy losses, instabilities and noise radiation. An accurate simulation of such flows can be achieved with large-eddy simulation(LES), which reproduces the most energetic turbulent eddies. In regard of the flowphysics of highly unsteady wall-bounded flows, the SISM (shear-improved Smagorinsky model) is selected to model the sub-grid scales in the present study. This model is local and takes into account the influence of the mean shear. Two smoothing algorithms that are local in space are developed to evaluate the mean flow required by the model : an exponential averaging and an adaptative Kalman filter. These methods are first tested in a channel flow configuration. The numerical approaches are then evaluated on a relevant academic test case :the flow past a circular cylinder in the sub-critical regime (Re = 4, 7 × 104). This flow is dominated by large quasi-periodic vortical structures together with high intensity turbulent fluctuations; quite similarly but much simpler than those found in the tip gap flow. The aerodynamic as well as the acoustic results of the simulations are in very good agreement with the experimental data. A comparative study of the two smoothing algorithms for mean-flow extraction shows that the adaptability of the Kalman filtering leads to slightly better results. Finally, the study of a fan tip-gap flow is carried out with a zonal approach (LES in the tip region, RANS in the hub and midspan region). The reference simulation gives remarkable results in the blade-tip region, particularly for the velocity spectra. A second simulation with a control device by suction through the casing close to the blade leading edge shows two interesting features : a reduction of the turbulence level around the blade tip, and a modification of the tip-vortex trajectory (thus preventing impingement on the adjacent blade). These effects induce a notable reduction of the noise sources.
182

Análise numérica na Engenharia do Vento Computacional empregando computação de alto desempenho e simulação de grandes escalas / Numerical analysis in the computational wind engineering employng high-performance programming and large eddy simulation

Piccoli, Guilherme Luiz January 2009 (has links)
O presente trabalho tem como objetivo o desenvolvimento de um sistema voltado à solução de problemas relacionados à Engenharia do Vento Computacional. Para o tratamento das estruturas turbulentas, a Simulação das Grandes Escalas é empregada. Esta metodologia resolve diretamente as estruturas que governam a dinâmica local do escoamento (grandes escalas) e utiliza modelos para resolver as escalas com características mais universais (pequenas escalas). Neste estudo, os efeitos sub-malha são obtidos a partir do modelo clássico de Smagorinsky. Na análise numérica, o método dos elementos finitos é avaliado a partir da utilização de elementos hexaédricos e uma formulação baseada nas equações governantes de escoamentos quase-incompressíveis. Para reduzir o requerimento de memória computacional, esquemas explícitos para solução de sistemas de equações são empregados. O primeiro aspecto a ser abordado para o desenvolvimento do sistema proposto é a redução do tempo de processamento. Partindo do algoritmo desenvolvido por [Petry, 2002], desenvolvese um estudo a cerca de técnicas computacionais de alto desempenho visando acelerar o processamento dos problemas. Assim, apresenta-se um comparativo entre alocações estática e dinâmica de vetores e matrizes, juntamente a implementação do paralelismo de memória compartilhada utilizando diretivas OpenMP. A verificação do aumento da velocidade de processamento é desenvolvida simulando o escoamento em um domínio contendo um corpo imerso aerodinamicamente rombudo. As técnicas utilizadas permitiram a obtenção de um aumento de aproximadamente cinco vezes em relação ao código originalmente avaliado. Uma importante dificuldade na avaliação de escoamentos externos está na solução numérica de problemas advectivo-dominantes. O esquema de Taylor-Galerkin explícito-iterativo, originalmente presente no código e validado para escoamentos internos, mostrou-se inadequado para avaliação do escoamento externo proposto, apresentando perturbações no campo de pressões e não convergindo para a solução correta do problema. Estas instabilidades persistiram em uma versão alternativa desenvolvida, a qual utilizava funções de interpolação de igual ordem para solução da pressão e velocidade. Para uma análise de escoamentos não confinados, é implementado o esquema temporal de dois passos utilizando funções de interpolação para velocidade e pressão de mesma ordem. Esta configuração apresentou resultados físicos de boa qualidade e importante redução no tempo de processamento. Após a identificação da alternativa que permitiu a avaliação dos resultados sem a presença de perturbações, apresenta-se a análise do escoamento sobre um prisma quadrado bidimensional, privilegiando o monitoramento da velocidade, pressão e energia cinética total da turbulência na linha central do domínio e nas proximidades do obstáculo. Esta avaliação é efetuada em malhas com configurações uniformes e irregulares para um número de Reynolds igual a 22000. / Development of a system to solve problems related to Computational Wind Engineering is the main aim of this work. In order to treat turbulent structures, Large Eddy Simulation is employed. This methodology compute directly scales governing local flow dynamics (large eddies) and it use models to solve those with universal character (small eddies). In this study, the sub-grid effects are considered using the standard Smagorinsky model. In the numerical analysis, hexahedral finite elements are used and a formulation based on the governing equations of quasi-compressible flows. To reduce the computational memory request, explicit schemes to solve the equations system are used. In order to reduce CPU time, an algorithm developed by [Petry, 2002] is evaluated and high-performance techniques aiming to accelerate the problem solution are studied. Thus, it is showed a comparison between dynamic and static allocations of vectors and matrices associated to the implementation of shared-memory parallelization using OpenMP directives. The speed up verification is developed simulating the flow around an immersed bluff body. As a consequence of the techniques employed here, an acceleration of approximately five times with respect of the original computational code is obtained. An important difficulty in the external flow evaluation is the numerical solution of convection dominated flows. The Taylor-Galerkin explicit-iterative scheme, (originally used by the program), which was validated for confined flows, did not present good results for external flows simulations and pressure field perturbations were observed. These instabilities were persevered even in an alternative version, where interpolations functions with the same order were used to compute velocity and pressure (in the original version, constant pressure field at element level were employed). To analyze unbounded flows accurately, a two-step explicit scheme using velocity and pressure interpolation functions with the same order was implemented. This configuration presented physical results with good quality and achieve an important reduction in the processing time. After identification of the best alternative without perturbations of the pressure field, the numerical simulation of the flow around a two-dimensional square cylinder was investigated favoring velocity, pressure and total kinetic energy evaluations along the mid line of the domain and in the obstacle vicinity. These evaluations were effectuated with uniform and stretched meshes for a Reynolds number equal to 22000.
183

Numerical study of flame stability, stabilization and noise in a swirl-stabilized combustor under choked conditions / Etude numérique de la stabilité, la stabilisation et le bruit de flamme dans un brûleur tourbillonnaire en conditions amorcées

Lapeyre, Corentin 18 September 2015 (has links)
Le transport aérien est devenu un mode de déplacement primordial, et le nombre de passagers transportés chaque année est en rapide augmentation à travers le monde. La International Civil Aviation Organization estime que ce nombre est passé de 2.2 milliards en 2009 à 3.0 milliards en 2013, dû en partie à la croissance rapide de pays émergents comme la Chine. Les réglementations concernant les émissions polluantes et sonores s’adaptent et se durcissent, entraînant de nouveaux défis pour les constructeurs aéronautiques. Les chambres de combustion évoluent vers des technologies de combustion pauvre prémélangée prévaporisée pour améliorer l’efficacité et réduire la production de gaz néfastes. Malheureusement, cette technologie tend à réduire la robustesse des moteurs, en diminuant les marges de stabilité et de stabilisation de flamme. Des études récentes indiquent que cela pourrait aussi augmenter le bruit de combustion. Afin de poursuivre le design et l’optimisation des futurs moteurs, de nouvelles méthodes sont nécessaires pour décrire et comprendre les mécanismes en jeu, et d’opérer ces moteurs en toute sécurité tout en atteignant les objectifs de la réglementation. La Simulation aux Grandes Échelles (SGE) est une approche numérique de ces problèmes, qui a montré d’excellents résultats par le passé et qui est très prometteuse pour les designs futurs. La comprehension de ces systèmes énergétiquement denses, confinés et instationnaires passe par la description des interactions flamme-turbulence, de l’acoustique et des couplages multi-physiques. À mesure que la puissance de calcul augmente, la quantité de physique qui peut être modélisée croît également, tout comme la taille des domaines de calcul. Autrefois limités à la zone de fluide réactif, la zone de mélange entre l’air et le carburant a pu être incluse, puis des parois de la chambre et des contournement de flux secondaire, jusqu’à finalement les éléments en amont et en aval de la chambre de combustion. Dans cette thèse, un solveur SGE compressible nommé AVBP est utilisé pour décrire CESAM-HP, un banc d’essai académique situé au laboratoire EM2C: une chambre de combustion pressurisée, siège d’une flamme partiellement prémélangée stabilisée par un tourbillonneur, alimente une tuyère amorcée en fin de chambre. Ces calculs décrivent simultanément la chambre et la tuyère, tout en résolvant l’acoustique, ouvrant la voie à l’étude de la dynamique du système complet, et par là aux instabilités et au bruit de combustion. Cette étude montre enfin que la stabilisation de flamme est impactée par ce comportement dynamique, qui peut parfois entraîner des retours de flamme dans l’injecteur. Ce manuscrit est organisé de la manière suivante : dans une première partie, le contexte pour la chimie, le mouvement et l’acoustique dans un écoulement réactif multi-espèces est donné. L’état de l’art en matière de thermodynamique, de thermoacoustique, de bruit de combustion et de stabilisation de flamme dans les brûleurs tourbillonnaires est présenté. Des modèles simples et des cas test sont exposés pour valider la comprehension des phénomènes en jeu de manière isolée, et des confirmations numériques sont apportées. Dans une seconde partie, les détails pratiques de la mise en œuvre de tels calculs sont donnés. Enfin, la troisième partie décrit l’application de ces outils et méthodes au banc CESAM-HP. L’inclusion de la tuyère compressible dans le domaine fournit des résultats concernant trois sujets majeurs pour le brûleur: (1) la stabilité de la flamme, en lien avec les instabilités de combustion; (2) la stabilisation de la flamme, et l’apparition de retour de flamme dans l’injecteur; (3) le bruit de combustion produit par le brûleur, ainsi que l’identification de ses diverses contributions. / Air transportation is an essential part of modern business and leisure needs, and the number of passengers carried per year is rapidly increasing worldwide. The International Civil Aviation Organization estimates that this number went from 2.2 billion in 2009 to 3.0 billion in 2013, due in part to rapid growth in emerging countries such as China. Many challenges for aircraft designers arise from this increase in air traffic, such as meeting pollutant and noise emission regulations. The engines play a major part in these emissions, and combustor technology has evolved towards high-pressure Lean Prevaporized Premixed (LPP) combustion to increase efficiency and decrease pollutant emissions. Unfortunately, this technology tends to reduce engine robustness, with a decrease in flame stability and stabilization margins. Recent studies suggest that combustion noise could also be increased in these systems. New methods are needed to describe and understand the mechanisms at hand for future design and optimization in order to operate these engines safely while still achieving emission targets. Large Eddy Simulation (LES) is a numerical approach to these problems which has shown excellent results in the past and is very promising for future design. The description of unsteady phenomena in these power-dense, confined and unsteady systems is essential to describe flame-turbulence interactions, acoustics and multiphysic couplings. As computing power grows, so does the amount of physics which can be modeled. Computational domains can be increased, and have gone from including only the reacting zone, to adding the fuel-air mixing areas, the heat liners and secondary flows, and the upstream and downstream elements. In this Ph.D., a compressible LES solver named AVBP is used to describe an academic test rig operated at the EM2C laboratory named CESAM-HP, a pressurized combustion chamber containing a swirl-stabilized partially-premixed flame and ended by a choked nozzle with high-speed flow. This leads to an accurate description of the chamber outlet acoustic behavior, and offers the possibility to investigate the dynamic behavior of the full system, and the occurrence of flame-acoustic coupling leading to combustion instabilities. It also gives insight into the combustion noise mechanisms, which are known to occur both in the reacting zone and in the nozzle. As shown in this study, this behavior also has an impact on flame stabilization in this system. This manuscript is organized as follows. In a first part, the context for chemistry, motion and acoustics of reacting multi-species flow is given. State of the art theories on reacting multi-species flow thermodynamics, thermoacoustics, combustion noise and flame stabilization in swirled burners are presented. Basic toy models and test cases are derived to validate the understanding of direct and indirect combustion noise, and numerical validations are performed. In a second part, the practical details about numerical investigation of such systems are reported. Finally, the third part describes the application of these tools and methods to the CESAM-HP4 test rig. The inclusion of the compressible nozzle in the LES computation yields results concerning three major issues for the burner: (1) flame stability, related to thermoacoustic instabilities; (2) flame stabilization, and the occurrence of flame flashback into the system’s injection duct; (3) combustion noise produced by the system, and identification of its separate contributions.
184

Prediction of pollutants in gas turbines using large eddy simulation / Prédiction des polluants dans les turbines à gaz par simulation aux grandes échelles

Jaravel, Thomas 28 April 2016 (has links)
Les réglementations en termes d'émission de polluants qui s'appliquent aux chambres de combustion de nouvelle génération nécessitent de nouvelles approches de conception. Afin d'atteindre simultanément des objectifs de faibles émissions d'oxydes d'azote (NOx) et de monoxyde de carbone (CO), un processus d'optimisation complexe est nécessaire au développement de nouveaux concepts de moteur. La simulation aux grandes échelles (SGE) a déjà fait ses preuves pour la prédiction de la combustion turbulente. C'est aussi un outil prometteur pour mieux comprendre la formation des polluants dans les turbines à gaz, ainsi que pour en fournir une prédiction quantitative. Dans ces travaux, une nouvelle méthodologie pour la prédiction du NOx et du CO dans des configurations réalistes est développée. La méthode est basée sur une description du système chimique par des schémas réduits fidèles dits analytiques (ARC) combinés au modèle de flamme épaissie (TFLES). En particulier, un ARC ayant des capacités de prédiction précise du CO et du NO est développé, validé sur des cas laminaires canoniques et implémenté dans le solveur SGE. Le potentiel de l'approche est démontré par une simulation haute résolution de la flamme académique turbulente Sandia D, pour laquelle une excellente prédiction du CO et du NO est obtenue. La méthodologie est ensuite appliquée à deux configurations industrielles. La configuration SGT-100 est un brûleur commercial partiellement prémélangé de turbine à gaz terrestre pour la production d'énergie, étudié expérimentalement au DLR. La SGE de cette configuration permet de mettre en évidence les processus chimiques de formation des polluants et fournit une compréhension qualitative et quantitative de l'effet des conditions de fonctionnement. La seconde application correspond à un prototype monosecteur de système d'injection aéronautique multipoint à très faibles émissions de NOx développé dans le cadre du projet européen LEMCOTEC et étudié expérimentalement à l'ONERA. Un ARC représentant la cinétique chimique d'un carburant aéronautique modèle est dérivé et employé dans la SGE de la chambre de combustion avec un formalisme eulérien pour décrire la phase dispersée. Les résultats obtenus montrent l'excellente capacité de prédiction de l'ARC en termes de propriétés de flamme et de prédiction des polluants. / Stringent regulations of pollutant emissions now apply to newgeneration combustion devices. To achieve low nitrogen oxides (NOx) and carbon monoxide (CO) emissions simultaneously, a complex optimization process is required in the development of new concepts for engines. Already efficient for the prediction of turbulent combustion, Large Eddy Simulation (LES) is also a promising tool to better understand the processes of pollutant formation in gas turbine conditions and to provide their quantitative prediction at the design stage. In this work, a new methodology for the prediction with LES of NOx and CO in realistic industrial configurations is developed. It is based on a new strategy for the description of chemistry, using Analytically Reduced Chemistry (ARC) combined with the Thickened Flame model (TFLES). An ARC with accurate CO and NO prediction is derived, validated on canonical laminar flames and implemented in the LES solver. The accuracy of this approach is demonstrated with a highly resolved simulation of the academic turbulent Sandia D flame, for which excellent prediction of NO and CO is obtained. The methodology is then applied to two industrial configurations. The first one is the SGT-100, a lean partially-premixed gas turbine model combustor studied experimentally at DLR. LES of this configuration highlights the chemical processes of pollutant formation and provides qualitative and quantitative understanding of the impact of the operating conditions. The second target configuration corresponds to a mono-sector prototype of an ultra-low NOx, staged multipoint injection aeronautical combustor developed in the framework of the LEMCOTEC European project and studied experimentally at ONERA. An ARC for the combustion of a representative jet fuel surrogate is derived and used in the LES of the combustor with an Eulerian formalism to describe the liquid dispersed phase. Results show the excellent performances of the ARC, for both the flame characteristics and the prediction of pollutants.
185

Análise experimental e numérica de escoamentos turbulentos em canais compostos empregando simulação de grandes escalas e método dos elementos finitos / Experimental and numerical analysis of turbulent flows in compound channels employing large eddy simulation and the finite element method

Xavier, Carla Marques January 2013 (has links)
Este trabalho apresenta um estudo experimental e numérico de escoamentos em canais compostos. Simulação de grandes escalas e método dos elementos finitos, em paralelo com medições utilizando anemômetros de fio quente em um canal aerodinâmico são realizadas. Canais compostos estão presentes em muitas aplicações de engenharia. Dispositivos eletrônicos, trocadores de calor, reatores nucleares, canais de irrigação e planícies de inundação são alguns dos desafios enfrentados pela engenharia. A combinação de simulação de grandes escalas e o método dos elementos finitos para a investigação de escoamentos turbulentos pode ser de grande importância para o estudo dos escoamentos na engenharia. No caso dos escoamentos através dos canais compostos, publicações neste tema são ainda raros. Os principais objetivos deste trabalho são: analisar o escoamento de um fluido viscoso, incompressível e isotérmicas em um canal composto, empregando um código de computação tridimensional apresentado por Petry em 2002, que realiza simulação de grandes escalas com o método dos elementos finitos, para comparar os resultados numéricos com os resultados experimentais do escoamento turbulento em um canal composto cuja geometria é exactamente reproduzida pela malha numérica, para verificar a validade do método numérico e o comportamento de modelos em escala subgrade para reproduzir o fluxo no canal composto investigado; e comparar a eficácia dos esquemas Taylor-Galerkin e dois passos para analisar os resultados. O canal investigado consiste em um canal principal com seção transversal retangular, conectado a uma fenda retangular estreita. No código numérico, o modelo clássico de Smargorinsky é comparado com o modelo dinâmico de viscosidade turbulenta, inicialmente proposto por Germano et al. 1991. A segunda filtragem do processo dinâmico é feita através dos elementos finitos independentes propostos por Petry, 2002. Para a implementação do algoritmo, o método dos elementos finitos é usado, Taylor-Galerkin e esquemas dois passos são usados para a discretização no tempo e no espaço e de ligação das equações governantes. O domínio computacional é discretizadas por intermédio de elementos lineares hexaédricos. Os resultados obtidos a partir simulações de grandes escalas, usando o modelo clássico de Smagorinsky e o modelo dinâmico de submalha; mostram o desenvolvimento de uma camada de cisalhamento na direção principal do escoamento com características dinâmicas regidas pelos perfis de velocidade média. Os resultados da simulação mostraram boa concordância com os dados experimentais dos perfis de velocidade média, intensidade de turbulência e tensão de cisalhamento turbulenta. Em geral, o modelo dinâmico com o esquema de duis passos foi mais eficiente para reproduzir estruturas turbulentas, em comparação com o modelo Smagorinsky e o esquema Taylor-Galerkin particularmente ao longo da região da fenda do canal. / This work presents an experimental and numerical study of turbulent flows in compound channels. Large eddy simulation and finite element method in parallel with hot wires measurements in an aerodynamic channel are employed. Compound channels are present in many engineering applications like in electronic devices, heat exchangers, nuclear reactors and irrigation channels and flooding plains are some of the challenges faced by mechanical engineering. The combination of large eddy simulation and the finite element method for the investigation of turbulent flows can be of great relevance to the study of engineering flows. In the case of flows through compound channels, publications in this subject are still rare. The main objectives in this work are: to analyze the flow of viscous, incompressible and isothermal fluids in a compound channel; employing a three-dimensional computation code presented by Petry, 2002, which performs large eddy simulation with the finite element method; to compare the numerical results with experimental results of the turbulent flow in a compound channel whose geometry is exactly reproduced by the numerical mesh; to check the validity of the numerical method and the behavior of subgrid scale models to reproduce the flow in the compound channel investigated and compare the efficacy of the Taylor-Galerkin and Two-Steps schemes in analyzing the results. The compound channel investigated consists of a rectangular channel connected to a rectangular shaped slot. In the numerical code, Smargorinsky´s classical model is compared to the dynamic model of turbulent viscosity, initially proposed by Germano et al. The second filtering of the dynamic process is made through the independent finite elements proposed by Petry, 2002. For the implementation of the algorithm, the finite element method is used, Taylor- Galerkin and Two-Steps schemes are used for discretization in time and space and to link governing equations. The computational domain is discretized by means of linear hexahedrical elements. The results obtained from large eddy simulations, using the classical model of Smagorinsky and the Dynamic subgrid scale model show the development of a shear layer in the main direction of flow with dynamic characteristics governed by the mean velocity profiles. The simulation results showed good agreement compared to experimental data, and analysis of the profiles of mean velocity, turbulence intensities and turbulent shear stress. In general, dynamic model with the two-steps scheme was more able to reproduce turbulent structures in comparison with the Smagorinsky model with Taylor-Galerkin scheme, particularly along the channel slot.
186

Análise numérica na Engenharia do Vento Computacional empregando computação de alto desempenho e simulação de grandes escalas / Numerical analysis in the computational wind engineering employng high-performance programming and large eddy simulation

Piccoli, Guilherme Luiz January 2009 (has links)
O presente trabalho tem como objetivo o desenvolvimento de um sistema voltado à solução de problemas relacionados à Engenharia do Vento Computacional. Para o tratamento das estruturas turbulentas, a Simulação das Grandes Escalas é empregada. Esta metodologia resolve diretamente as estruturas que governam a dinâmica local do escoamento (grandes escalas) e utiliza modelos para resolver as escalas com características mais universais (pequenas escalas). Neste estudo, os efeitos sub-malha são obtidos a partir do modelo clássico de Smagorinsky. Na análise numérica, o método dos elementos finitos é avaliado a partir da utilização de elementos hexaédricos e uma formulação baseada nas equações governantes de escoamentos quase-incompressíveis. Para reduzir o requerimento de memória computacional, esquemas explícitos para solução de sistemas de equações são empregados. O primeiro aspecto a ser abordado para o desenvolvimento do sistema proposto é a redução do tempo de processamento. Partindo do algoritmo desenvolvido por [Petry, 2002], desenvolvese um estudo a cerca de técnicas computacionais de alto desempenho visando acelerar o processamento dos problemas. Assim, apresenta-se um comparativo entre alocações estática e dinâmica de vetores e matrizes, juntamente a implementação do paralelismo de memória compartilhada utilizando diretivas OpenMP. A verificação do aumento da velocidade de processamento é desenvolvida simulando o escoamento em um domínio contendo um corpo imerso aerodinamicamente rombudo. As técnicas utilizadas permitiram a obtenção de um aumento de aproximadamente cinco vezes em relação ao código originalmente avaliado. Uma importante dificuldade na avaliação de escoamentos externos está na solução numérica de problemas advectivo-dominantes. O esquema de Taylor-Galerkin explícito-iterativo, originalmente presente no código e validado para escoamentos internos, mostrou-se inadequado para avaliação do escoamento externo proposto, apresentando perturbações no campo de pressões e não convergindo para a solução correta do problema. Estas instabilidades persistiram em uma versão alternativa desenvolvida, a qual utilizava funções de interpolação de igual ordem para solução da pressão e velocidade. Para uma análise de escoamentos não confinados, é implementado o esquema temporal de dois passos utilizando funções de interpolação para velocidade e pressão de mesma ordem. Esta configuração apresentou resultados físicos de boa qualidade e importante redução no tempo de processamento. Após a identificação da alternativa que permitiu a avaliação dos resultados sem a presença de perturbações, apresenta-se a análise do escoamento sobre um prisma quadrado bidimensional, privilegiando o monitoramento da velocidade, pressão e energia cinética total da turbulência na linha central do domínio e nas proximidades do obstáculo. Esta avaliação é efetuada em malhas com configurações uniformes e irregulares para um número de Reynolds igual a 22000. / Development of a system to solve problems related to Computational Wind Engineering is the main aim of this work. In order to treat turbulent structures, Large Eddy Simulation is employed. This methodology compute directly scales governing local flow dynamics (large eddies) and it use models to solve those with universal character (small eddies). In this study, the sub-grid effects are considered using the standard Smagorinsky model. In the numerical analysis, hexahedral finite elements are used and a formulation based on the governing equations of quasi-compressible flows. To reduce the computational memory request, explicit schemes to solve the equations system are used. In order to reduce CPU time, an algorithm developed by [Petry, 2002] is evaluated and high-performance techniques aiming to accelerate the problem solution are studied. Thus, it is showed a comparison between dynamic and static allocations of vectors and matrices associated to the implementation of shared-memory parallelization using OpenMP directives. The speed up verification is developed simulating the flow around an immersed bluff body. As a consequence of the techniques employed here, an acceleration of approximately five times with respect of the original computational code is obtained. An important difficulty in the external flow evaluation is the numerical solution of convection dominated flows. The Taylor-Galerkin explicit-iterative scheme, (originally used by the program), which was validated for confined flows, did not present good results for external flows simulations and pressure field perturbations were observed. These instabilities were persevered even in an alternative version, where interpolations functions with the same order were used to compute velocity and pressure (in the original version, constant pressure field at element level were employed). To analyze unbounded flows accurately, a two-step explicit scheme using velocity and pressure interpolation functions with the same order was implemented. This configuration presented physical results with good quality and achieve an important reduction in the processing time. After identification of the best alternative without perturbations of the pressure field, the numerical simulation of the flow around a two-dimensional square cylinder was investigated favoring velocity, pressure and total kinetic energy evaluations along the mid line of the domain and in the obstacle vicinity. These evaluations were effectuated with uniform and stretched meshes for a Reynolds number equal to 22000.
187

Etude aéroacoustique d'un canal avec obstacle(s) - Application à la production de fricatives / Aeroacoustic study of a duct with obstacle(s) - Application to fricative production

Fujiso, Yo 14 February 2014 (has links)
L'air que nous respirons au travers des voies aériennes supérieures est essentiel pour la vie et pour la communication orale. Dans les études de production de parole humaine, l'écoulement d'air est en général extrêmement simplifié. Or cet écoulement est complexe car turbulent et fortement sensible aux conditions limites. Dans le cas de la production de fricatives non voisées, une description plus fine de l'écoulement s'avère nécessaire pour pouvoir modéliser correctement les mécanismes aéroacoustiques sous-jacents. A l'aide d'expériences in-vitro et de simulations numériques, l'objectif de cette thèse est de contribuer à la modélisation et la caractérisation aéroacoustique d'écoulements dans des configurations de type canal avec obstacle(s), avec application à la production de fricatives non voisées. Une attention toute particulière est portée à l'influence des conditions limites et à la turbulence. / Airflow through the human upper airways is essential for life and for oral communication. In studies dealing with human speech production, airflow is mostly severely simplified. Nevertheless, this airflow is complex owing to turbulence and extreme sensitivity to boundary conditions. Recently, deeper attention has been given to characterize the airflow in the case of unvoiced fricative production and the necessity of obtaining a more detailed flow description has been outlined. With the aid of in-vitro experiments and numerical simulations, the aim of the current PhD research is to contribute to the aeroacoustic modeling and characterization of airflows through various configurations of ducts with obstacle(s), relevant for unvoiced fricative speech production. Special interest is given to the influence of boundary conditions and to turbulence.
188

Análise experimental e numérica de escoamentos turbulentos em canais compostos empregando simulação de grandes escalas e método dos elementos finitos / Experimental and numerical analysis of turbulent flows in compound channels employing large eddy simulation and the finite element method

Xavier, Carla Marques January 2013 (has links)
Este trabalho apresenta um estudo experimental e numérico de escoamentos em canais compostos. Simulação de grandes escalas e método dos elementos finitos, em paralelo com medições utilizando anemômetros de fio quente em um canal aerodinâmico são realizadas. Canais compostos estão presentes em muitas aplicações de engenharia. Dispositivos eletrônicos, trocadores de calor, reatores nucleares, canais de irrigação e planícies de inundação são alguns dos desafios enfrentados pela engenharia. A combinação de simulação de grandes escalas e o método dos elementos finitos para a investigação de escoamentos turbulentos pode ser de grande importância para o estudo dos escoamentos na engenharia. No caso dos escoamentos através dos canais compostos, publicações neste tema são ainda raros. Os principais objetivos deste trabalho são: analisar o escoamento de um fluido viscoso, incompressível e isotérmicas em um canal composto, empregando um código de computação tridimensional apresentado por Petry em 2002, que realiza simulação de grandes escalas com o método dos elementos finitos, para comparar os resultados numéricos com os resultados experimentais do escoamento turbulento em um canal composto cuja geometria é exactamente reproduzida pela malha numérica, para verificar a validade do método numérico e o comportamento de modelos em escala subgrade para reproduzir o fluxo no canal composto investigado; e comparar a eficácia dos esquemas Taylor-Galerkin e dois passos para analisar os resultados. O canal investigado consiste em um canal principal com seção transversal retangular, conectado a uma fenda retangular estreita. No código numérico, o modelo clássico de Smargorinsky é comparado com o modelo dinâmico de viscosidade turbulenta, inicialmente proposto por Germano et al. 1991. A segunda filtragem do processo dinâmico é feita através dos elementos finitos independentes propostos por Petry, 2002. Para a implementação do algoritmo, o método dos elementos finitos é usado, Taylor-Galerkin e esquemas dois passos são usados para a discretização no tempo e no espaço e de ligação das equações governantes. O domínio computacional é discretizadas por intermédio de elementos lineares hexaédricos. Os resultados obtidos a partir simulações de grandes escalas, usando o modelo clássico de Smagorinsky e o modelo dinâmico de submalha; mostram o desenvolvimento de uma camada de cisalhamento na direção principal do escoamento com características dinâmicas regidas pelos perfis de velocidade média. Os resultados da simulação mostraram boa concordância com os dados experimentais dos perfis de velocidade média, intensidade de turbulência e tensão de cisalhamento turbulenta. Em geral, o modelo dinâmico com o esquema de duis passos foi mais eficiente para reproduzir estruturas turbulentas, em comparação com o modelo Smagorinsky e o esquema Taylor-Galerkin particularmente ao longo da região da fenda do canal. / This work presents an experimental and numerical study of turbulent flows in compound channels. Large eddy simulation and finite element method in parallel with hot wires measurements in an aerodynamic channel are employed. Compound channels are present in many engineering applications like in electronic devices, heat exchangers, nuclear reactors and irrigation channels and flooding plains are some of the challenges faced by mechanical engineering. The combination of large eddy simulation and the finite element method for the investigation of turbulent flows can be of great relevance to the study of engineering flows. In the case of flows through compound channels, publications in this subject are still rare. The main objectives in this work are: to analyze the flow of viscous, incompressible and isothermal fluids in a compound channel; employing a three-dimensional computation code presented by Petry, 2002, which performs large eddy simulation with the finite element method; to compare the numerical results with experimental results of the turbulent flow in a compound channel whose geometry is exactly reproduced by the numerical mesh; to check the validity of the numerical method and the behavior of subgrid scale models to reproduce the flow in the compound channel investigated and compare the efficacy of the Taylor-Galerkin and Two-Steps schemes in analyzing the results. The compound channel investigated consists of a rectangular channel connected to a rectangular shaped slot. In the numerical code, Smargorinsky´s classical model is compared to the dynamic model of turbulent viscosity, initially proposed by Germano et al. The second filtering of the dynamic process is made through the independent finite elements proposed by Petry, 2002. For the implementation of the algorithm, the finite element method is used, Taylor- Galerkin and Two-Steps schemes are used for discretization in time and space and to link governing equations. The computational domain is discretized by means of linear hexahedrical elements. The results obtained from large eddy simulations, using the classical model of Smagorinsky and the Dynamic subgrid scale model show the development of a shear layer in the main direction of flow with dynamic characteristics governed by the mean velocity profiles. The simulation results showed good agreement compared to experimental data, and analysis of the profiles of mean velocity, turbulence intensities and turbulent shear stress. In general, dynamic model with the two-steps scheme was more able to reproduce turbulent structures in comparison with the Smagorinsky model with Taylor-Galerkin scheme, particularly along the channel slot.
189

Développement d'un modèle de flamme épaissie dynamique pour la simulation aux grandes échelles de flammes turbulentes prémélangées / Development of the dynamic thickened flame model for large eddy simulation of turbulent premixed combustion

Yoshikawa, Itaru 23 June 2010 (has links)
La simulation numérique est l’un des outils les plus puissants pour concevoir etoptimiser les systèmes industriels. Dans le domaine de la Dynamique des FluidesNumériques (CFD, "Computational Fluid Dynamics"), la simulation auxgrandes échelles (LES, "Large Eddy Simulation") est aujourd’hui largementutilisée pour calculer les écoulements turbulents réactifs, où les tourbillons degrande taille sont calculés explicitement, tandis que l’effet de ceux de petitetaille est modelisé. Des modèles de sous-mailles sont requis pour fermer leséquations de transport en LES, et dans le contexte de la simulation de la combustionturbulente, le plissement de la surface de flamme de sous-maille doitêtre modélisé.En général, augmenter le plissement de la surface de flamme de sous-maille favorisela combustion. L’amplitude de la promotion est donnée par une fonctiond’efficacité, qui est dérivée d’une hypothèse d’équilibre entre la production etla destruction de la surface de flamme. Dans les méthodes conventionnelles,le calcul de la fonction d’efficacité nécessite une constante qui dépend de lagéométrie de la chambre de combustion, de l’intensité de turbulence, de larichesse du mélange de air-carburant etc, et cette constante doit être fixée audébut de la simulation. Autrement dit, elle doit être déterminé empiriquement.Cette thèse développe un modèle de sous-maille pour la LES en combustionturbulente, qui est appelé le modèle dynamique de flammelette épaissie (DTF,"dynamic thickened flamelet model"), qui détermine la valeur de la constanteen fonction des conditions de l’écoulement sans utiliser des données empiriques.Ce modèle est tout d’abord testé sur une flamme laminaire unidimensionnellepour vérifier la convergence de la fonction d’efficacité vers l’unité (aucun plissementde la surface de flamme de sous-maille). Puis il est appliqué en combinaisonavec le modèle dynamique de Smagorinsky (Dynamic Smagorinskymodel) aux simulations multidimensionnelles d’une flamme en V, stabilisée enaval d’un dièdre. Les résultats de la simulation en trois dimensions sont alorscomparés avec les données expérimentales obtenues sur une expérience de mêmegéométrie. La comparaison montre la faisabilité de la formulation dynamique. / Numerical simulation is one of the most powerful tools to design and optimizeindustrial facilities. In the field of Computational Fluid Dynamics (CFD),Large Eddy Simulation (LES) is widely used to compute turbulent reactingflows, where larger turbulent motions are explicitly computed, while only theeffect of smaller ones is modeled. Subgrid models are required to close thetransport equations in LES, and in the context of the simulation of turbulentcombustion, the subgrid-scale wrinkling of the flame front must be modeled.In general, subgrid-scale flame wrinkling promotes the chemical reaction. Themagnitude of the promotion is given through an efficiency function derivedfrom an equilibrium assumption between production and destruction of flamesurface. In conventional methods, the calculation of the efficiency functionrequires a constant which depends on the geometry of the combustion chamber,turbulence intensity, the equivalence ratio of the fuel-air mixture, and so on;this constant must be prescribed at the beginning of the simulation. In otherwords, empirical knowledge is required.This thesis develops a subgrid-scale model for LES of turbulent combustion,called the dynamic thickened flamelet (DTF) model, which determines the valueof the constant from the flow conditions without any empirical input.The model is first tested in a one-dimensional laminar flame to verify the convergenceof the efficiency function to unity (no subgrid-scale flame front wrinkling).Then it is applied to multi-dimensional simulations of V-shape flamestabilized downstream of a triangular flame holder in combination with the dynamicSmagorinsky model. The results of the three-dimensional simulation arethen compared with the experimental data obtained through the experimentof the same geometry. The comparison proves the feasibility of the dynamicformulation.
190

Análise numérica na Engenharia do Vento Computacional empregando computação de alto desempenho e simulação de grandes escalas / Numerical analysis in the computational wind engineering employng high-performance programming and large eddy simulation

Piccoli, Guilherme Luiz January 2009 (has links)
O presente trabalho tem como objetivo o desenvolvimento de um sistema voltado à solução de problemas relacionados à Engenharia do Vento Computacional. Para o tratamento das estruturas turbulentas, a Simulação das Grandes Escalas é empregada. Esta metodologia resolve diretamente as estruturas que governam a dinâmica local do escoamento (grandes escalas) e utiliza modelos para resolver as escalas com características mais universais (pequenas escalas). Neste estudo, os efeitos sub-malha são obtidos a partir do modelo clássico de Smagorinsky. Na análise numérica, o método dos elementos finitos é avaliado a partir da utilização de elementos hexaédricos e uma formulação baseada nas equações governantes de escoamentos quase-incompressíveis. Para reduzir o requerimento de memória computacional, esquemas explícitos para solução de sistemas de equações são empregados. O primeiro aspecto a ser abordado para o desenvolvimento do sistema proposto é a redução do tempo de processamento. Partindo do algoritmo desenvolvido por [Petry, 2002], desenvolvese um estudo a cerca de técnicas computacionais de alto desempenho visando acelerar o processamento dos problemas. Assim, apresenta-se um comparativo entre alocações estática e dinâmica de vetores e matrizes, juntamente a implementação do paralelismo de memória compartilhada utilizando diretivas OpenMP. A verificação do aumento da velocidade de processamento é desenvolvida simulando o escoamento em um domínio contendo um corpo imerso aerodinamicamente rombudo. As técnicas utilizadas permitiram a obtenção de um aumento de aproximadamente cinco vezes em relação ao código originalmente avaliado. Uma importante dificuldade na avaliação de escoamentos externos está na solução numérica de problemas advectivo-dominantes. O esquema de Taylor-Galerkin explícito-iterativo, originalmente presente no código e validado para escoamentos internos, mostrou-se inadequado para avaliação do escoamento externo proposto, apresentando perturbações no campo de pressões e não convergindo para a solução correta do problema. Estas instabilidades persistiram em uma versão alternativa desenvolvida, a qual utilizava funções de interpolação de igual ordem para solução da pressão e velocidade. Para uma análise de escoamentos não confinados, é implementado o esquema temporal de dois passos utilizando funções de interpolação para velocidade e pressão de mesma ordem. Esta configuração apresentou resultados físicos de boa qualidade e importante redução no tempo de processamento. Após a identificação da alternativa que permitiu a avaliação dos resultados sem a presença de perturbações, apresenta-se a análise do escoamento sobre um prisma quadrado bidimensional, privilegiando o monitoramento da velocidade, pressão e energia cinética total da turbulência na linha central do domínio e nas proximidades do obstáculo. Esta avaliação é efetuada em malhas com configurações uniformes e irregulares para um número de Reynolds igual a 22000. / Development of a system to solve problems related to Computational Wind Engineering is the main aim of this work. In order to treat turbulent structures, Large Eddy Simulation is employed. This methodology compute directly scales governing local flow dynamics (large eddies) and it use models to solve those with universal character (small eddies). In this study, the sub-grid effects are considered using the standard Smagorinsky model. In the numerical analysis, hexahedral finite elements are used and a formulation based on the governing equations of quasi-compressible flows. To reduce the computational memory request, explicit schemes to solve the equations system are used. In order to reduce CPU time, an algorithm developed by [Petry, 2002] is evaluated and high-performance techniques aiming to accelerate the problem solution are studied. Thus, it is showed a comparison between dynamic and static allocations of vectors and matrices associated to the implementation of shared-memory parallelization using OpenMP directives. The speed up verification is developed simulating the flow around an immersed bluff body. As a consequence of the techniques employed here, an acceleration of approximately five times with respect of the original computational code is obtained. An important difficulty in the external flow evaluation is the numerical solution of convection dominated flows. The Taylor-Galerkin explicit-iterative scheme, (originally used by the program), which was validated for confined flows, did not present good results for external flows simulations and pressure field perturbations were observed. These instabilities were persevered even in an alternative version, where interpolations functions with the same order were used to compute velocity and pressure (in the original version, constant pressure field at element level were employed). To analyze unbounded flows accurately, a two-step explicit scheme using velocity and pressure interpolation functions with the same order was implemented. This configuration presented physical results with good quality and achieve an important reduction in the processing time. After identification of the best alternative without perturbations of the pressure field, the numerical simulation of the flow around a two-dimensional square cylinder was investigated favoring velocity, pressure and total kinetic energy evaluations along the mid line of the domain and in the obstacle vicinity. These evaluations were effectuated with uniform and stretched meshes for a Reynolds number equal to 22000.

Page generated in 0.1335 seconds