Spelling suggestions: "subject:"largescale classification"" "subject:"largescale 1classification""
1 |
Direct L2 Support Vector MachineZigic, Ljiljana 01 January 2016 (has links)
This dissertation introduces a novel model for solving the L2 support vector machine dubbed Direct L2 Support Vector Machine (DL2 SVM). DL2 SVM represents a new classification model that transforms the SVM's underlying quadratic programming problem into a system of linear equations with nonnegativity constraints. The devised system of linear equations has a symmetric positive definite matrix and a solution vector has to be nonnegative.
Furthermore, this dissertation introduces a novel algorithm dubbed Non-Negative Iterative Single Data Algorithm (NN ISDA) which solves the underlying DL2 SVM's constrained system of equations. This solver shows significant speedup compared to several other state-of-the-art algorithms. The training time improvement is achieved at no cost, in other words, the accuracy is kept at the same level. All the experiments that support this claim were conducted on various datasets within the strict double cross-validation scheme. DL2 SVM solved with NN ISDA has faster training time on both medium and large datasets.
In addition to a comprehensive DL2 SVM model we introduce and derive its three variants. Three different solvers for the DL2's system of linear equations with nonnegativity constraints were implemented, presented and compared in this dissertation.
|
2 |
Machine Learning Strategies for Large-scale Taxonomies / Strategies d'apprentissage pour la classification dans les grandes taxonomiesBabbar, Rohit 17 October 2014 (has links)
À l'ère de Big Data, le développement de modèles d'apprentissage machine efficaces et évolutifs opérant sur des Tera-Octets de données est une nécessité. Dans cette thèse, nous étudions un cadre d'apprentissage machine pour la classification hiérarchique à large échelle. Cette analyse comprend l'étude des défis comme la complexité d'entraînement des modèles ainsi que leur temps de prédiction. Dans la première partie de la thèse, nous étudions la distribution des lois de puissance sous-jacente à la création des taxonomies à grande échelle. Cette étude permet de dériver des bornes sur la complexité spatiale des classifieurs hiérarchiques. L'exploitation de ce résultat permet alors le développement des modèles efficaces pour les classes distribuées selon une loi de puissance. Nous proposons également une méthode efficace pour la sélection de modèles pour des classifieurs multi-classes de type séparateurs à vaste marge ou de la régression logistique. Dans une deuxième partie, nous étudions le problème de la classification hiérarichique contre la classification plate d'un point de vue théorique. Nous dérivons une borne sur l'erreur de généralisation qui permet de définir les cas où la classification hiérarchique serait plus avantageux que la classification plate. Nous exploitons en outre les bornes développées pour proposer deux méthodes permettant adapter une taxonomie donnée de catégories à une taxonomies de sorties qui permet d'atteindre une meilleure performance de test. / In the era of Big Data, we need efficient and scalable machine learning algorithms which can perform automatic classification of Tera-Bytes of data. In this thesis, we study the machine learning challenges for classification in large-scale taxonomies. These challenges include computational complexity of training and prediction and the performance on unseen data. In the first part of the thesis, we study the underlying power-law distribution in large-scale taxonomies. This analysis then motivates the derivation of bounds on space complexity of hierarchical classifiers. Exploiting the study of this distribution further, we then design classification scheme which leads to better accuracy on large-scale power-law distributed categories. We also propose an efficient method for model-selection when training multi-class version of classifiers such as Support Vector Machine and Logistic Regression. Finally, we address another key model selection problem in large scale classification concerning the choice between flat versus hierarchical classification from a learning theoretic aspect. The presented generalization error analysis provides an explanation to empirical findings in many recent studies in large-scale hierarchical classification. We further exploit the developed bounds to propose two methods for adapting the given taxonomy of categories to output taxonomies which yield better test accuracy when used in a top-down setup.
|
3 |
Large scale support vector machines algorithms for visual classification / Algorithmes de SVM pour la classification d'images à grande échelleDoan, Thanh-Nghi 07 November 2013 (has links)
Nous présentons deux contributions majeures : 1) une combinaison de plusieurs descripteurs d’images pour la classification à grande échelle, 2) des algorithmes parallèles de SVM pour la classification d’images à grande échelle. Nous proposons aussi un algorithme incrémental et parallèle de classification lorsque les données ne peuvent plus tenir en mémoire vive. / We have proposed a novel method of combination multiple of different features for image classification. For large scale learning classifiers, we have developed the parallel versions of both state-of-the-art linear and nonlinear SVMs. We have also proposed a novel algorithm to extend stochastic gradient descent SVM for large scale learning. A class of large scale incremental SVM classifiers has been developed in order to perform classification tasks on large datasets with very large number of classes and training data can not fit into memory.
|
4 |
Learning Image Classification and Retrieval Models / Apprentissage de modèles pour la classification et la recherche d'imagesMensink, Thomas 26 October 2012 (has links)
Nous assistons actuellement à une explosion de la quantité des données visuelles. Par exemple, plusieurs millions de photos sont partagées quotidiennement sur les réseaux sociaux. Les méthodes d'interprétation d'images vise à faciliter l'accès à ces données visuelles, d'une manière sémantiquement compréhensible. Dans ce manuscrit, nous définissons certains buts détaillés qui sont intéressants pour les taches d'interprétation d'images, telles que la classification ou la recherche d'images, que nous considérons dans les trois chapitres principaux. Tout d'abord, nous visons l'exploitation de la nature multimodale de nombreuses bases de données, pour lesquelles les documents sont composés d'images et de descriptions textuelles. Dans ce but, nous définissons des similarités entre le contenu visuel d'un document, et la description textuelle d'un autre document. Ces similarités sont calculées en deux étapes, tout d'abord nous trouvons les voisins visuellement similaires dans la base multimodale, puis nous utilisons les descriptions textuelles de ces voisins afin de définir une similarité avec la description textuelle de n'importe quel document. Ensuite, nous présentons une série de modèles structurés pour la classification d'images, qui encodent explicitement les interactions binaires entre les étiquettes (ou labels). Ces modèles sont plus expressifs que des prédicateurs d'étiquette indépendants, et aboutissent à des prédictions plus fiables, en particulier dans un scenario de prédiction interactive, où les utilisateurs fournissent les valeurs de certaines des étiquettes d'images. Un scenario interactif comme celui-ci offre un compromis intéressant entre la précision, et l'effort d'annotation manuelle requis. Nous explorons les modèles structurés pour la classification multi-étiquette d'images, pour la classification d'image basée sur les attributs, et pour l'optimisation de certaines mesures de rang spécifiques. Enfin, nous explorons les classifieurs par k plus proches voisins, et les classifieurs par plus proche moyenne, pour la classification d'images à grande échelle. Nous proposons des méthodes d'apprentissage de métrique efficaces pour améliorer les performances de classification, et appliquons ces méthodes à une base de plus d'un million d'images d'apprentissage, et d'un millier de classes. Comme les deux méthodes de classification permettent d'incorporer des classes non vues pendant l'apprentissage à un coût presque nul, nous avons également étudié leur performance pour la généralisation. Nous montrons que la classification par plus proche moyenne généralise à partir d'un millier de classes, sur dix mille classes à un coût négligeable, et les performances obtenus sont comparables à l'état de l'art. / We are currently experiencing an exceptional growth of visual data, for example, millions of photos are shared daily on social-networks. Image understanding methods aim to facilitate access to this visual data in a semantically meaningful manner. In this dissertation, we define several detailed goals which are of interest for the image understanding tasks of image classification and retrieval, which we address in three main chapters. First, we aim to exploit the multi-modal nature of many databases, wherein documents consists of images with a form of textual description. In order to do so we define similarities between the visual content of one document and the textual description of another document. These similarities are computed in two steps, first we find the visually similar neighbors in the multi-modal database, and then use the textual descriptions of these neighbors to define a similarity to the textual description of any document. Second, we introduce a series of structured image classification models, which explicitly encode pairwise label interactions. These models are more expressive than independent label predictors, and lead to more accurate predictions. Especially in an interactive prediction scenario where a user provides the value of some of the image labels. Such an interactive scenario offers an interesting trade-off between accuracy and manual labeling effort. We explore structured models for multi-label image classification, for attribute-based image classification, and for optimizing for specific ranking measures. Finally, we explore k-nearest neighbors and nearest-class mean classifiers for large-scale image classification. We propose efficient metric learning methods to improve classification performance, and use these methods to learn on a data set of more than one million training images from one thousand classes. Since both classification methods allow for the incorporation of classes not seen during training at near-zero cost, we study their generalization performances. We show that the nearest-class mean classification method can generalize from one thousand to ten thousand classes at negligible cost, and still perform competitively with the state-of-the-art.
|
Page generated in 0.0877 seconds