• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 10
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of a Novel Lateral-Flow Assay to Detect Yeast Nucleic Acid Sequences

Fill, Catherine E 01 January 2012 (has links) (PDF)
As demand for food increases, rapid testing methods are becoming increasingly important. In the past few years, yogurt has become popular. Yeast species are the most common spoilage organism, costing consumers and food companies money. A novel lateral flow assay has been developed to detect yeast oligonucleotide sequences. Gold nanoparticles were used as the standard reporter and fluorescent nanoparticles were developed as the novel reporter. The fluorescent nanoparticles were ruthenium-doped silica nanoparticles synthesized using the modified Stöber method. Visual analysis of assays using standard reporters showed the limit of detection to be 10 femtomoles of target sequence. Analysis of the fluorescent nanoparticles using a plate reader showed the limit of detection to be 0.027 femtomoles. The fluorescent reporter’s limit of detection is 1000 fold lower due to a sophisticated, more sensitive analysis method. Gold nanoparticles are appropriate for presence or absence testing, but fluorescent nanoparticles are best for obtaining quantitative data with low detection limits. Pathogens have been used as biological warfare for centuries. A brief review of common biowarfare agents is included. Yersinia pestis, the causative agent of the Plague, and Bacillus anthracis, the causative agent of Anthrax, are the focus. Additional work using gold nanoparticles as reporter in a sandwich assay is also included. The novel dye covered reporter was compared to the control, which was a single dye molecule linked to the reporter sequence. Repeated testing showed the novel reporter had a lower limit of detection and higher sensitivity due to increased ability to bind target.
12

Developing Aptamer-based Biosensor for Onsite Detection of Stress Biomarkers in Noninvasive Biofluids

Dalirirad, Shima 27 September 2020 (has links)
No description available.
13

Understanding the Complexities of Anemia in Chronic Inflammatory Diseases from Diagnosis to Treatment

Flindt, Naomi Rae 04 August 2022 (has links)
Iron is an essential nutrient for energy and DNA replication. Its homeostasis is commonly perturbed by chronic inflammatory mechanisms. Chronic inflammation upregulates a cytokine, hepcidin, that degrades the iron export protein ferroportin. Without a way to export iron into the bloodstream iron availability in blood becomes depleted. Iron depletion in the blood stream hinders erythropoiesis and is termed anemia. Herein I investigate and inhibit the mechanism of hepcidin activation. Inhibition of hepcidin activation has released iron from tissues and alleviated anemic conditions in a cancer model. I have laid the foundation to investigate this pathway in a 3D spheroid model. The results show that hepcidin-25 inhibition is a promising treatment for anemia of cancer. More work needs to be done to confirm efficacy in an in vivo model. In addition to anemia of cancer I have also worked with diabetic rats and investigated their anemic state using common anemia diagnostic methods. I found that in this high fat high sugar diet Wistar rat model anemia was not induced. In addition to my studies on anemia I have investigated the use of portable x-ray fluorescence (pXRF) as an accessible and affordable elemental analysis technique for lateral flow immunoassays and biological samples such as cell lysates and animal tissue. While pXRF shows promising results more work needs to be done to increase its sensitivity and pixel size.
14

Functional 3-D Cellulose and Nitrocellulose Paper-Based, Microfluidic Device Utilizing ELISA Technology for the Detection/Distinction Between Hemorrhagic and Ischemic Strokes

Holler, Alicia Leanne 01 December 2016 (has links) (PDF)
The purpose of this thesis project is to demonstrate and evaluate an enzyme-linked immunosorbent assay (ELISA) on a paper microfluidic device platform. The integration of ELISA technology onto paper microfluidic chips allows for a quantitative detection of stroke biomarkers, such as glial fibrillary acidic protein (GFAP). Dye experiments were performed to confirm fluid connectivity throughout the 3D chips. Several chip and housing designs were fabricated to determine an optimal design for the microfluidic device. Once this design was finalized, development time testing was performed. The results confirmed that the paper microfluidic device could successfully route fluid throughout its channels at a reasonable rate. For the biochemistry portion of this thesis project, antibodies were selected to target the intended stroke biomarker: GFAP. However, due to antibody pairing complications, the protein chosen for this project was natural human cardiac troponin T, which is elevated in the bloodstream of patients who have suffered a stroke. Several antibody experiments were performed to help finalize the procedure for performing an ELISA on the paper chip. The final antibody experiment was able to demonstrate that a paper microfluidic device utilizing ELISA techniques can successfully detect a stroke biomarker at physiologically relevant concentrations. Overall, this project supported the ability to accurately and effectively diagnose stroke in a timely manner through the use of a paper microfluidic device.
15

Qualitative Blood Coagulation Test Using Paper-Based Microfluidic Lateral Flow Device

Li, Hua 13 October 2014 (has links)
No description available.
16

Point-of-need biosensors for the detection of respiratory biomarkers

Wolfe, Michael January 2019 (has links)
Asthma is a chronic disease affecting over 300 million people worldwide. Airway inflammation is a central feature of asthma. Quantitative sputum cytometry is the most validated method to assess this and to adjust anti-inflammatory therapy, yet it is underutilized due to rigorous processing that requires expensive specialized technicians. To address these limitations, this thesis focuses on the development of several point of need biosensors that rapidly quantify respiratory biomarkers as alternatives to traditional laboratory tests. The project began by developing a paper based sensor for detection of myeloperoxidase (MPO), a neutrophil biomarker. A test was developed using commercially available antibodies, showing direct correlation between the test line colour intensity and total neutrophils. This work was expanded to include a second protein target, eosinophil peroxidase (EPX), for identification of eosinophils. Although the test performed well using neat samples, it failed to identify EPX in clinical sputum samples. Analyzing pre-treatment methods identified that a quick immunoprecipitation technique using protein A/G beads followed by syringe filtration allowed for the device to successfully quantify EPX, eliminating the need for a centrifuge. However, the limited supply of commercial anti-EPX antibodies combined with the need for sample pre-treatment prompted investigation into alternative detection avenues. Nucleic acid aptamers were explored, with aptamer selection for EPX producing several aptamer candidates. Binding affinity and specificity tests were performed, with the T1-5 aptamer emerging. T1-5 was capable of selectively binding EPX over MPO with high affinity. This aptamer was integrated into a simple pull-down assay, capable of detecting EPX with an order of magnitude lower limit of detection than the antibody test. Overall this work has developed multiple sensors with the potential to overcome the limitations of accessibility to sputum cytometry, rapidly identify the presence and type of airway inflammation, and deliver personalized treatment strategies that not only reduce the global healthcare burden, but also greatly improve a patient’s quality of life. / Thesis / Doctor of Philosophy (PhD)
17

Portable platforms for molecular-based detection of pathogens in complex sample matrices

Taylor J Moehling (9187394) 30 July 2020 (has links)
<div>Pathogen identification at the point of use is critical in preventing disease transmission and enabling prompt treatment. Current rapid diagnostic tests suffer from high rates of false negatives because they are not capable of detecting the inherently low concentrations of pathogens found in early stages of infection or in environmental reservoirs. The gold standard method for timely pathogen identification is a nucleic acid amplification assay called polymerase chain reaction. Although polymerase chain reaction is extremely sensitive and specific, it requires expensive laboratory equipment and trained personnel to perform the sample preparation, cyclical heating, and amplicon analysis. Isothermal nucleic acid amplification assays are better suited for field use because they operate at a single temperature and are robust to common sample matrix inhibitors. Thus, there is a need to translate isothermal amplification assays to the point of use for rapid and sensitive detection of pathogens in complex samples.</div><div><br></div><div>Here, I outline an approach to bring laboratory-based sample preparation, assays, and analyses to the point of use via portable platforms. First, I characterize a loop-mediated isothermal amplification assay and combine it with lateral flow immunoassay for simple, colorimetric interpretation of results. Next, I optimize an ambient-temperature reagent storage method to eliminate cold-chain requirements and precision pipetting steps. I then incorporate loop-mediated isothermal amplification, lateral flow immunoassay, and reagent drying into two different integrated paperfluidic platforms and demonstrate their ability to separately detect bacteria and viruses in complex sample matrices. Finally, I couple loop-mediated isothermal amplification with particle diffusometry to optically determine pathogen presence by tracking the Brownian motion of particles added to an amplified sample. The combined loop-mediated isothermal amplification and particle diffusometry method is first characterized on a microscope and then translated to a smartphone-based platform. Each of these portable platforms are broadly applicable because they can be easily modified for identification of other pathogens at the point of use.</div>
18

Development of immunoassays for diagnosis of type 1 diabetes / Développement de dosages d’auto-anticorps pour le diagnostic du diabète de type 1

Kikkas, Ingrid 06 October 2014 (has links)
Le diabète de type 1 est une maladie auto-immune caractérisée par la destruction des cellules bêta des îlots de Langerhans du pancréas. Au cours de ce processus auto-immun, des auto-anticorps sont produits contre plusieurs antigènes des cellules bêta, par exemple l'insuline, l'acide glutamique décarboxylase (GAD65), la protéine tyrosine phosphatase (IA-2) et le transporteur de zinc (ZnT8). Au moins un auto-anticorps contre l'un de ces antigènes est présent dans> 95% des personnes atteintes de diabète de type 1 lors de la détection de l'hyperglycémie. Ces auto-anticorps peuvent servir de marqueurs précoces de diabète de type 1, car ils peuvent être présents des années avant l'apparition de la maladie, ce qui permet un diagnostic précoce avant les manifestations cliniques. Dans le cadre de cette thèse, nous avons développé, en partenariat avec une équipe de recherche clinique, une série de tests diagnostiques originaux, basée sur la détection précoce des différents auto-anticorps d’îlots de Langerhans à partir d'échantillons de sérum humain. Ces tests de diagnostic comprennent des tests bridging ELISA pour la détection d'auto-anticorps contre l'insuline, IA-2 et GAD65, qui sont rapides, facile à utiliser et n’utilisent pas de radioactivité. De plus, un test immunochromatographique sur bandelette pour la détection des auto-anticorps contre IA-2 a été développé. Le principal avantage des tests bandelettes est sa convivialité : les résultats peuvent être obtenus en 45 min en utilisant de très petits volumes de sérums et sans l'utilisation d’appareils spécialisés. Tous ces tests développés en interne ont été validés avec des échantillons de sérum de patients atteints de diabète de type 1 et de témoins sains et leurs performances ont été comparées avec celles de tests disponibles sur le marché. En outre, nous avons développé un test multiplex pour la détection simultanée de plusieurs auto-anticorps associés au diabète de type 1, ce qui permet de gagner du temps et d’augmenter la valeur diagnostic et prédictive du test par rapport à la détection d’un seul autoanticorps. Ce test multiplex a été validé pour la détection de deux autoanticorps (IA-2A et GADA) et comparé à nos tests ELISA de IA-2A et GADA. / Type 1 diabetes is an autoimmune disease characterized by the destruction of pancreatic beta cells within the islets of Langerhans. In the course of this autoimmune process, autoantibodies are generated against several beta-cell antigens, e.g. insulin, glutamic acid decarboxylase (GAD65), tyrosine phosphatase-like protein (IA-2) and zinc transporter 8 (ZnT8). At least one autoantibody against one of these antigens is present in >95% of individuals with type 1 diabetes upon hyperglycemia detection. These autoantibodies can serve as early markers of type 1 diabetes, since they can be present years before disease onset, allowing for an early diagnosis before clinical manifestations. In the course of this thesis we have developed, in partnership with a clinical research team, a series of original diagnostic tests, based on the early detection of the different anti-Langerhans islet autoantibodies from human serum samples. These diagnostic tests include bridging ELISAs for the detection of autoantibodies to insulin, IA-2 and GAD65, which are rapid, non-radioactive and easy-to-use. Moreover, a lateral flow immunoassay (dipstick) for detection of autoantibodies to IA-2 was developed. The key advantage of lateral flow immunoassay is its user-friendly format: results can be obtained within 45 min using very small volumes of sera and without the use of any specialized apparatus. All these in-house assays were validated with diabetic and healthy human serum samples and the assay performances were compared to commercially available tests on the market. In addition, we have developed a multiplex assay for simultaneous detection of multiple diabetes-associated autoantibodies, which is time-effective and increases the diagnostic and predictive values of the assay, comparing to single autoantibody detection. This multiplex assay was validated for detection of two autoantibodies i.e. IA-2A and GADA and compared to in-house IA-2A and GADA bridging ELISAs.
19

Transfert de produits phytosanitaires par les écoulements latéraux en proche surface dans le Beaujolais de coteaux : suivi sur parcelle exploitée, expérimentation de traçage in situ et modélisation / Assessment of pesticide transfer in subsurface lateral flow on a sloping vineyard in Beaujolais : field monitoring, tracing experiment and modeling

Peyrard, Xavier 08 July 2016 (has links)
Les transferts latéraux de produits phytosanitaires en proche surface constituent une voie potentielle de contamination des eaux de surface dans certains contextes agro pédo climatique. L'objectif de cette thèse est d'apporter des éléments de connaissance et de compréhension de ces transferts. Un site viticole, dans le Nord Beaujolais, a ainsi été instrumenté avec une tranchée d'interception des écoulements latéraux, un canal Venturi et un réseau piézométrique. Cette instrumentation a ensuite été utilisée pour suivre les transferts latéraux et le ruissellement de produits phytosanitaires sur deux années viticoles. Enfin, une expérimentation de traçage in situ a été menée puis modélisée. Les résultats montrent une relation de seuil entre les volumes évènementiels d'écoulements latéraux captés, le degré de connectivité du versant, les volumes pluviométriques évènementiels, et l'humidité initiale du sol. La dynamique de transfert latéral des pesticides en proche surface s'est avérée très variable à l'échelle de l'évènement, mais en accord avec les propriétés physico chimiques des substances. À l'échelle de l'ensemble des évènements, les concentrations de ces produits dans l'écoulement latéral suivent une décroissance exponentielle temporelle. À l'échelle annuelle, la saisonnalité de l'écoulement latéral et du ruissellement semble expliquer la saisonnalité observée des transferts. L'expérimentation de traçage a permis d'identifier une composante préférentielle de l'écoulement latéral et une composante matricielle. La composante préférentielle a engendré des flux de substance significatifs et de concentrations élevées, mais fugaces. La composante matricielle a généré un flux de faible concentration, mais continu et de longue durée, qui a impliqué une contribution finale plus élevée que la composante préférentielle. Des liens explicatifs entre les propriétés des substances et ces composantes du transfert latéral ont pu être soulignés / Subsurface lateral flow may stand for a risky pathway in several agro pedo climatic contexts: in this way, the aim of this thesis work is to improve our understanding of pesticide transfer and dynamics by this pathway. A farmed vine plot, located on a hillslope in the Nord Beaujolais, was instrumented with a trench, a Venturi flume and a shallow groundwater well network. The instrumentation was used during two farming years to continuously monitor pesticide transfers in both subsurface lateral flows and surface runoff at a fine temporal resolution. Lastly, an in situ tracing experiment was conducted and modeled. Hydrological results highlighted a threshold relationship between subsurface lateral flow volumes measured in the trench, the degree of lateral connectivity of the hillslope, rainfall amounts and initial soil water content. The dynamics of these transfers was very variable at the event scale, and in agreement with the physico chemical properties of the substances. Considering all subsurface lateral flow events, pesticides concentrations were described using a decreasing exponential function depending on the time interval between a given event and the last application of the considered pesticides, and their physico chemical properties. At the year scale, the seasonality of pesticide transfers seemed related with the seasonality of subsurface lateral flow and surface runoff. The tracing experiment highlighted two components in subsurface lateral flow: a matrix related one and a preferential related flow component. The preferential component implied short, highly concentrated and significant lateral fluxes. Matrix related component produced continuous and slightly concentrated fluxes over a long period, and was responsible for a bigger part of the total transfer than the preferential component. Links between substance properties and transfer components were highlighted
20

Modeling, Design, Fabrication, and Characterization of a Highly Sensitive Fluorescence-based Detection Platform for Point-of-Care Applications

January 2018 (has links)
abstract: Over the past several decades, there has been a growing interest in the use of fluorescent probes in low-cost diagnostic devices for resource-limited environments. This dissertation details the design, development, and deployment of an inexpensive, multiplexed, and quantitative, fluorescence-based lateral flow immunoassay platform, in light of the specific constraints associated with resource-limited settings. This effort grew out of the need to develop a highly sensitive, field-deployable platform to be used as a primary screening and early detection tool for serologic biomarkers for the high-risk human papillomavirus (hrHPV) infection. A hrHPV infection is a precursor for developing high-grade cervical intraepithelial neoplasia (CIN 2/3+). Early detection requires high sensitivity and a low limit-of-detection (LOD). To this end, the developed platform (DxArray) takes advantage of the specificity of immunoassays and the selectivity of fluorescence for early disease detection. The long term goal is to improve the quality of life for several hundred million women globally, at risk of being infected with hrHPV. The developed platform uses fluorescent labels over the gold-standard colorimetric labels in a compact, high-sensitivity lateral flow assay configuration. It is also compatible with POC settings as it substitutes expensive and bulky light sources for LEDs, low-light CMOS cameras, and photomultiplier tubes for photodiodes, in a transillumination architecture, and eliminates the need for expensive focusing/transfer optics. The platform uses high-quality interference filters at less than $1 each, enabling a rugged and robust design suitable for field use. The limit of detection (LOD) of the developed platform is within an order of magnitude of centralized laboratory diagnostic instruments. It enhances the LOD of absorbance or reflectometric and visual readout lateral flow assays by 2 - 3 orders of magnitude. This system could be applied toward any chemical or bioanalytical procedure that requires a high performance at low-cost. The knowledge and techniques developed in this effort is relevant to the community of researchers and industry developers looking to deploy inexpensive, quantitative, and highly sensitive diagnostic devices to resource-limited settings. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2018

Page generated in 0.1904 seconds