• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 11
  • 11
  • 11
  • 11
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Theoretical and Simulation Studies of a Driven Diffusive System

Rudzinsky, Michael Steven 12 February 2000 (has links)
We explore steady-state properties of a driven lattice gas, which is a simple model of interacting many-particle systems, driven far from equilibrium by an external field. First, we study a system on a square lattice with periodic boundary conditions (PBC) along both principal lattice axes, while the drive acts along only one of these axes. For such systems, we analyze the full distribution of structure factors. Next, we investigate the effects of imposing other boundary conditions on the system. In particular, we focus on models with shifted periodic boundary conditions (SPBC) along one axis and open boundary conditions (OBC) along the other axis. The OBC allow us to have a steady flux of particles through the system while the SPBC permits us to drive the system in a range of possibilities. Using Monte Carlo simulation techniques, we discover a rich variety of phenomena, especially at low temperatures. A continuum theory for the densities, based on Langevin equations, is formulated and its predictions compared to simulation data. Many large scale properties are described successfully. / Ph. D.
12

Cooperative Behavior in Driven Lattice Systems with Shifted Periodic Boundary Conditions

Anderson, Mark Jule Jr. 05 June 1998 (has links)
We explore the nature of driven stochastic lattice systems with non-periodic boundary conditions. The systems consist of particle and holes which move by exchanges of nearest neighbor particle-hole pairs. These exchanges are controlled by the energetics associated with an internal Hamiltonian, an external drive and a stochastic coupling to a heat reservoir. The effect of the drive is to bias particle-hole exchanges along the field in such a way that a particle current can be established. Hard-core volume constraints limit the occupation of only one particle (hole) per lattice site. For certain regimes of the overall particle density and temperature, a system displays a homogeneous disordered phase. We investigate cooperative behavior in this phase by using two-point spatial correlation functions and structure factors. By varying the particle density and the temperature, the system orders into a phase separated state, consisting of particle-rich and particle-poor regions. The temperature and density for the co-existence state depend on the boundary conditions. By using Monte Carlo simulations, we establish co-existence curves for systems with shifted periodic boundary conditions. / Ph. D.
13

Equilibrium states on thin energy shells.

Thompson, Richard L. January 1974 (has links)
Thesis--Cornell. / Bibliography: p. 108-110.
14

Lorentz Lattice Gases on Graphs

Kreslavskiy, Dmitry Michael 26 November 2003 (has links)
The present work consists of three parts. In the first part (chapters III and IV), the dynamics of Lorentz lattice gases (LLG) on graphs is analyzed. We study the fixed scatterer model on finite graphs. A tight bound is established on the size of the orbit for arbitrary graphs, and the model is shown to perform a depth-first search on trees. Rigidity models on trees are also considered, and the size of the resulting orbit is established. In the second part (chapter V), we give a complete description of dynamics for LLG on the one-dimensional integer lattice, with a particular interest in showing that these models are not capable of universal computation. Some statistical properties of these models are also analyzed. In the third part (chapter VI) we attempt to partition a pool of workers into teams that will function as independent TSS lines. Such partitioning may be aimed to make sure that all groups work at approximately the same rate. Alternatively, we may seek to maximize the rate of convergence of the corresponding dynamical systems to their fixed points with optimal production at the fastest rate. The first problem is shown to be NP-hard. For the second problem, a solution for splitting into pairs is given, and it is also shown that this solution is not valid for partitioning into teams composed of more than two workers.
15

Scaling and phase transitions in one-dimensional nonequilibrium driven systems /

Ha, Meesoon, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 99-114).
16

格子ガスオートマトン法による燃焼場の数値計算

山本, 和弘, YAMAMOTO, Kazuhiro, 小沼, 義昭, ONUMA, Yoshiaki 25 November 2001 (has links)
No description available.
17

Monte Carlo analysis of non-equilibrium steady states and relaxation kinetics in driven lattice gases

Daquila, George Lawrence 24 August 2011 (has links)
We numerically investigate the long-time behavior of the density-density auto-correlation function in driven lattice gases, with particle exclusion and periodic boundary conditions in one, two, and three dimensions using precise Monte Carlo simulations of larger system sizes than previous studies. In the one-dimensional asymmetric exclusion process on a ring with half the lattice sites occupied, we find that correlations induce extremely slow relaxation to the asymptotic power law decay We compare the crossover functions obtained from our simulations with various analytic results in the literature, and analyze the characteristic oscillations that occur in finite systems away from half-filling. As expected, correlations are weak in three dimensions and consequently the mean-field description is adequate. We also investigate the relaxation towards the non-equilibrium steady state in the two-time density-density auto-correlations, starting from strongly correlated initial conditions. We obtain simple aging scaling behavior in one, two, and three dimensions, with the expected power laws. We numerically investigate the behavior of driven lattice gases with nearest neighbor interactions at half-filling with periodic boundary conditions below and at the critical temperature using Monte Carlo simulations of very large lattices in two dimensions. This work is one of few that explores the relaxation to a non-equilibrium steady state. We obtain data collapse for the finite-size scaling form of density-density auto-correlation function at the critical point. We achieve data collapse using finite-size scaling of the time-dependent order parameter during the transient regime starting from strongly correlated initial conditions. We present simple aging scaling of the density-density auto-correlation function at the critical point starting from strongly correlated initial conditions using Monte Carlo simulations of two different lattice anisotropies. We thus unambiguously confirm the critical exponents determined by renormalization group methods using measurement of dynamic quantities in the transient regime. Measuring these dynamic quantities in the transient regime provides more conclusive measurements of the critical exponents than previous studies measuring static quantities in the stationary state. We provide qualitative arguments that the lattice anisotropy determines the steady-state for sub-critical quenches. / Ph. D.
18

Lane Preference in a Simple Traffic Model

Krometis, Justin 06 May 2004 (has links)
We examine the effect of lane preference on a quasi one-dimensional three-state driven lattice gas, consisting of holes and positive and negative particles, and periodic boundary conditions in the longitudinal direction. Particles move via particle-hole and, with a lesser rate, particle-particle exchanges; the species are driven in opposite directions along the lattice, each preferring one of the lanes with a given probability, <I>p</I>. The model can be interpreted as traffic flow on a two-lane beltway, with fast cars preferring the left lane and slow cars preferring the right, viewed in a comoving frame. In steady-sate, the system typically exhibits a macroscopic cluster containing a majority of the particles. At very high values of <I>p</I>, a first order transition takes the system to a spatially disordered state. Using Monte Carlo simulations to analyze the system, we find that the size of the cluster increases with lane preference. We also observe a region of negative response, where increasing the lane preference <I>decreases</I> the number of particles in their favored lane, against all expectations. In addition, simulations show an intriguing sequence of density profiles for the two species. We apply mean-field theory, continuity equations, and symmetries to derive relationships between observables to make a number of predictions verified by the Monte Carlo data. / Master of Science
19

Systems Driven out of Equilibrium with Energy Input at Interfaces or Boundaries

Li, Linjun 10 December 2015 (has links)
We study the non-equilibrium behavior of systems that are driven out of equilibrium from the interface. In the first part of this thesis, we study a model of a two-dimensional lattice gas that is in contact with two heat baths that are at different temperatures. Performing Monte Carlo simulations, we find that there are three possible types of non-equilibrium steady states, depending on the values of certain system parameters. They include a disordered phase, a fully phase separated state, and an interesting state with striped patterns in the half of the lattice where the temperature is lower. The last one is a novel non-equilibrium steady state that we study systematically by varying the system parameters. To obtain the non-equilibrium finite-size phase diagram, we perform a spectrum analysis to classify not only the three major states, but also the sub-states of the striped phase. In the second part of the thesis, we study magnetic friction that results when two Potts systems move with respect to each other. In this research, we first study a model that consists of two interacting Potts blocks, where one block moves on top of the other. As a result, the system is driven out of equilibrium constantly. In our research we find for weak interfacial couplings that the contacting surfaces behave rather similar to a free surface. If the interfacial coupling is strong, however, anisotropic spin patterns appear on the contacting surfaces. This study is extended to a three-dimensional Potts wedge with a tip sliding along the surface of a Potts block. It is found that the shape of the Potts lattice influences the surface behavior of the system. / Ph. D.
20

Non-equilibrium Phase Transitions and Steady States in Biased Diffusion of Two Species

Korniss, György 21 April 1997 (has links)
We investigate the dynamics of a three-state stochastic lattice gas, consisting of holes and two oppositely "charged" species of particles, under the influence of an "electric" field, at zero total charge. Interacting only through an excluded volume constraint, particles can hop to nearest neighbor empty sites, but particle-particle exchange between oppositely charged particles is also allowed on a separate time scale. Controlled by this relative time scale, particle density and drive, the system orders into a charge-segregated state. Using a combination of Monte Carlo simulations and continuum field theory techniques, we study the order of these transitions and map out the steady state phase diagram of the system. On a single sheet of transitions, a line of multicritical points is found, separating the first order and continuous transitions. Furthermore, we study the steady-state structure factors in the disordered phase where homogeneous configurations are stable against small harmonic perturbations. The average structure factors show a discontinuity singularity at the origin which in real space predicts an intricate crossover between power laws of different kinds. We also seek for generic statistical properties of these quantities. The probability distributions of the structure factors are universal asymmetric exponential distributions. This research was supported in part by grants from the National Science Foundation through the Division of Materials Research. / Ph. D.

Page generated in 0.1977 seconds