• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

STRUCTURE AND PHYSICAL PROPERTIES OF TRANSITION METAL BASED COMPOUNDS

Ahmed, Sheikh Jamil January 2018 (has links)
Crystalline systems formed with transition metal elements tend to exhibit strong magneto-structural coupling that gives rise to unusual but exciting physical phenomena in these materials. In this dissertation, we present our findings from the studies of structural and physical properties of single phase compounds Co2MnSi, Ni16Mn6Si7 and Mn(Ni0.6Si0.4)2. In addition, the stability of a Ni2MnSi composition in a multiphase system is discussed by both theoretical and experimental approaches. All the works have been conducted with a focus on explaining the fundamental behaviors of these systems that have not been adequately addressed by other studies in the literature. We present an experimental and theoretical investigation of the half-metallic Heusler compound, Co2MnSi to address disorder occupancies and magnetic interactions in the material. Contrary to previous studies, our neutron diffraction refinement of the polycrystalline sample reveals almost identical amount of Mn and Co antisite disorders of ~6.5% and ~7.6%, respectively which is also supported explicitly by our first-principles calculations on the system with defects. A reduction of the net moment of Co2MnSi due to an antiferromagnetic interaction introduced by disordered Mn is observed by our theoretical study. The neutron refinements at 298 K, 100 K, and 4 K further supports such reduction of moments. The work also reports the growth of single crystal by the Czochralski method and determination of a Curie temperature of ~1014 K measured by both the electrical resistivity and dilatometry measurement. Studies of a Ni2MnSi Heusler system reveal two new systems i.e., the Ni16Mn6Si7 G-phase and the Mn(Ni0.6Si0.4)2 based Laves phase with complex crystal structures. These systems exhibit strong magneto-structural coupling that could lead to interesting physical behaviors. The lack of thorough understanding of the properties of these materials inspired us to undertake the present studies. We address the geometrically frustrated two-dimensional magnetic structure and spin canted weak ferromagnetic behavior of Ni16Mn6Si7. Our magnetization and specific heat measurements on a Czochralski grown single crystal sample depicts the paramagnetic to antiferromagnetic transition at 197 K, and a second phase change at 50 K. Furthermore, a gradual drop of zero field cooled magnetic susceptibility is observed below 6 K that is associated with the spin freezing effect. The neutron diffraction on the polycrystalline powder samples at the temperatures of interest reveals that the antiferromagnetism is governed by the magnetic ordering of the Mn ions in the octahedral network. Below the Néel temperature of 197 K, the 2/3 of Mn atom moments form a two-dimensional magnetic arrangement, while the 1/3 moments remain geometrically frustrated. The phase transition at 50 K is found to be associated with the reorientation of the 2D moments to a canted antiferromagnetic state and development of ordering of the frustrated paramagnetic ions. Magnetization measurements as a function of temperature and magnetic field in principal directions, permit to determine the anisotropic magnetic behavior of Ni16Mn6Si7 in terms of the magnetic structure obtained by the neutron diffraction measurements. We also report an irreversible smeared spin-flop type transition for the system at a higher magnetic field. The diffuse scattering due to the short-range ordering is a commonly occurring phenomenon in Laves phase materials. The occurrence of such distinct atomic arrangement can considerably influence the physical behavior of the material. Nevertheless, no structural reconstruction of such atomic distribution in Laves phase has ever been reported in the literature. In this work, we present the structural ordering, and the associated physical behavior of an antiferromagnetic Ni-Mn-Si Laves phase with a composition Mn(Ni0.6Si0.4)2. The possibility of unique short-range ordering in the material is first concluded based on our single crystal diffraction analysis. With the high-resolution transmission electron microscopy and electron energy loss spectroscopy analysis, our work resolves the distinct atomic ordering of the Laves phase system. The investigations reveal the origin of the short-range ordering to arise from a unique arrangement between Ni and Si. The study also presents the atomic resolution mapping of the Si atoms which has never been reported by any previous studies. With further electrical conductivity measurement, we find one of the consequences of the unique ordering reflected in a semiconducting like temperature dependence of the compound. The neutron diffraction at 298 K suggests Mn(Ni0.6Si0.4)2 to be a strong antiferromagnetic system, which is further supported by the successive magnetic susceptibility measurement. The Néel temperature is determined to be 550 K. We also address the stability of the hypothetical ferromagnetic Heusler compound Ni2MnSi which has been proposed to be a stable system by numerous theoretical studies. Our first-principles work corroborates those studies with a negative formation enthalpy of -1.46 eV/formula unit. However, after numerous attempts to synthesize the composition, we conclude that a single phase Heusler Ni2MnSi compound cannot form under ambient conditions. Our results show that the system crystallizes as a mixture of the two Ni-Mn-Si compounds, i.e., the Ni16Mn6Si7 type G-phase and Mn(Ni0.6Si0.4)2 based Laves phase. Our work provides a possible explanation for the unstable Ni2MnSi Heusler compound with the calculation of formation enthalpy of the hypothetical Heusler system in terms of the computed energies of the neighboring phases Ni16Mn6Si7 and Mn(Ni0.6Si0.4)2. / Thesis / Doctor of Philosophy (PhD)
12

Contribution à l'étude de la solidification et à la description thermodynamique des équilibres de phases du système quaternaire Fe-Al-Ti-Zr / Contribution to the study of the solidification and the thermodynamic modeling of the phases equilibria of the Fe-Al-Yi-Zr quaternary system

Rigaud, Vincent 02 July 2009 (has links)
La première partie de ce manuscrit est consacrée à l’étude des microstructures et des microségrégations, héritées de la solidification des alliages ternaires Fe-Al-Ti, Fe-Al-Zr et quaternaires Fe-Al-Ti-Zr. Pour améliorer la compréhension des phénomènes ayant lieu au cours de la solidification et disposer d’un outil permettant de prédire les phases formées au cours de la solidification, une description thermodynamique du coin riche en fer du système quaternaire Fe-Al-Ti-Zr est proposée dans une seconde partie. A partir de l’ensemble des données expérimentales et bibliographiques disponibles concernant les équilibres de phases dans les différents systèmes ternaires, une description thermodynamique de chacun des systèmes ternaires est effectuée. Les systèmes Fe-Al-Zr et Fe-Ti-Zr ont été complètement décrits à l’aide du logiciel ThermoCalc. Le système ternaire Fe-Al-Ti a fait l’objet d’une description partielle. Les résultats obtenus permettent de proposer une première description thermodynamique du coin riche en fer du système quaternaire Fe-Al-Ti-Zr. Des séquences de solidification ont également été calculées à partir de cette description pour les alliages ternaires Fe-Al-Zr et quaternaires Fe-Al-Ti-Zr et comparées aux résultats expérimentaux / The first part of this work deals with the study of the microstructures and micro-segregations phenomena, inherited from the solidification on Fe-Al-Ti, Fe-Al-Zr and Fe-Al-Ti-Zr alloys. To improve our understanding of the phenomena occurring during the solidification process and to dispose of a predictive tool of the phases formed during the solidification process, a thermodynamic modeling of the iron rich corner of the Fe-Al-Ti-Zr quaternary system is proposed on a second part. From the data available in this work and in the literature, a thermodynamic modeling of each of the constituting ternaries systems is performed. Fe-Al-Zr and Fe-Ti-Zr ternaries systems were fully modeled using the ThermoCalc software. The Fe-Al-Ti ternary system is only partially modeled. These results allowed us to propose a first description of the iron rich corner of the Fe-Al-Ti-Zr quaternary system. Solidification sequences were calculated from this thermodynamic model for Fe-Al-Zr ternaries and Fe-Al-Ti-Zr quaternaries alloys and compared to our experimental results
13

Weldability Evaluation of High-Cr Ni-Base Filler Metals using the Cast Pin Tear Test

Przybylowicz, Eric Thomas 20 May 2015 (has links)
No description available.
14

Hydrogen absorption/desorption properties of the Sc(AlxNi1-x)2 system

Ångström, Jonas January 2011 (has links)
Sc(AlxNi1-x)2 is a pseudobinary C14 Laves phase and a potential interstitial hydrogen storage material or anode in a Ni-MH battery. A previous study showed that Sc1Al1Ni1 can store hydrogen reversibly; both interstitially and trough decomposition into ScH2 and AlNi. It is also known that the exact composition is very important for the hydrogen storage properties of pseudobinary Laves phases. This thesis work is aimed at synthesising Sc(AlxNi1-x)2 and study the effect of the Ni/Al ratio on the hydrogen absorption/desorption process as well as the interstitial storage capacity. Compositions with high nickel content had the highest capacity (at least 0.67wt% for ScAl0.66Ni1.34) and ones with high aluminium content had the lowest total storage capacity (0wt% for ScAl1.28Ni0.62). The former composition was also shown to absorb and desorb hydrogen during multiple cycles. Desorption of interstitial hydrogen from ScAl0.66Ni1.34 requires 4.6kJ/mol in activation energy.
15

Untersuchungen zur Natur der Laves-Phasen in Systemen der Übergangsmetalle

Grüner, Daniel 21 February 2007 (has links) (PDF)
Laves-Phasen sind intermetallische Verbindungen der Zusammensetzung AB2, die in den Strukturtypen C14 (MgZn2), C15 (MgCu2), C36 (MgNi2) oder deren Abkömmlingen kristallisieren. Diese sind Polytypen mit einem gemeinsamen grundlegenden Strukturmuster. Insgesamt sind über 1400 binäre und ternäre Laves-Phasen bekannt. Sie stellen damit die größte Gruppe der bislang bekannten intermetallischen Verbindungen dar. Laves-Phasen wurden intensiv untersucht um grundlegende Aspekte der Phasenstabilität zu verstehen. Geometrische und elektronische Faktoren haben sich in ihrer Vorhersagekraft bezüglich des Auftretens und der Stabilität einer Laves-Phase aber nur in wenigen Fällen als hilfreich erwiesen. Das Auftreten von Homogenitätsbereichen und damit einhergehender struktureller Defekte ist in den meisten Fällen immer noch unklar und spiegelt grundsätzliche Probleme in der Chemie intermetallischer Verbindungen wider: Das unvollständige Bild der chemischen Bindung, die Tendenz zur Bildung ausgedehnter Homogenitätsbereiche sowie der Einfluss von Minoritätskomponenten auf Struktur und Phasenstabilität ist bei intermetallischen Verbindungen größer als bei vielen anderen Verbindungsklassen. Daher sind die Informationen über Struktur, Stabiblität und physikalische Eigenschaften intermetallischer Verbindungen im Allgemeinen unvollständig und mitunter unzuverlässig oder widersprüchlich. Um diese Probleme anzugehen wurden in dieser Arbeit Laves-Phasen in den Systemen Nb--TM (TM = Cr, Mn, Fe, Co) und Nb--Cr--TM (TM = Co, Ni) als Modellsysteme ausgewählt. Das Ziel der Untersuchung ist, das Wechselspiel zwischen chemischer Bindung, Struktur und Phasenstabilität für die Laves-Phasen auf der Grundlage genauer experimenteller Daten sowie quantenmechanischer Rechnungen zu beleuchten. Die Untersuchungen des binären Systems Nb--Co nehmen hier eine Schlüsselposition ein. Eine Neubestimmung des Phasendiagramms des Systems Nb--Co im Bereich der Laves-Phasen bestätigt die Existenz von Phasen mit C14-, C15- und C36-Struktur. Dabei wurden schmale Zweiphasenfelder C15 + C36 und C15 + C14 sowie ein schmaler, aber signifikanter Homogenitätsbereich der C36-Phase experimentell nachgewiesen. Die Kristallstrukturen von C36-Nb(1-x)Co(2+x) (x = 0,265), C15-Nb(1-x)Co(2+x) (x = 0,12), C15-NbCo2 und C14-Nb(1+x)Co(2-x) (x = 0,07) wurden mittels Einkristall-Röntgenstrukturanalyse verfeinert. Im Falle von C36-Nb(1-x)Co(2+x) (x = 0,265) und C15-Nb(1-x)Co(2+x) (x = 0,12) wird bestätigt, dass der Homogenitätsbereich durch Substitution von Nb durch Co erzeugt wird. Im Fall von C14-Nb(1+x)Co(2-x) werden Abweichungen von der Zusammensetzung NbCo2 durch Substitution von Co durch überschüssiges Nb erzeugt, wobei nur eine der beiden Co-Lagen gemischt besetzt wird. Quantenmechanische Rechnungen zeigen, dass dieses Besetzungsmuster energetisch bevorzugt ist. Weder mittels Röntgenbeugung noch mittels hochauflösender Elektronenmikroskopie und Elektronenbeugeng wurden Ordnungsvarianten oder Stapelvarianten der Laves-Phasen beobachtet. In der Kristallstruktur von C36-Nb(1-x)Co(2+x) (x = 0,265) ist mehr als ein Viertel des Nb durch überschüssiges Co ersetzt. Von zwei kristallographischen Nb-Lagen wird eine bevorzugt von Co besetzt, so dass sich der Co-Anteil der beiden Lagen etwa wie 2:1 verhält. Co-Antistrukturatome sind relativ zu der Nb-Position verschoben. Triebkraft dieser Verschiebungen ist die Bildung von Nb--Co-Kontakten innerhalb der A-Teilstruktur. Gemischte Besetzung der Nb-Lagen, die Verteilung der Co-Antistrukturatome und mit der Substitution einhergehende Verzerrungen führen zu einer komplizierten Realstruktur. Zur Beschreibung der elektronischen Struktur von C36-Nb(1-x)Co(2+x) (x = 0,265) werden daher verschiedene Modelle verwendet, die Tendenzen sowohl zur beobachteten Mischbesetzung als auch zur Verzerrung der Kristallstruktur aufzeigen. Die elektronische Struktur und chemische Bindung von C14-, C15- und C36-NbCo2 wurde vergleichend untersucht. Berechnungen der Gesamtenergie zeigen sehr geringe Energiedifferenzen zwischen den drei Strukturen, die mit einer sehr ähnlichen Bindungssituation der Polytypen im Einklang ist. In den Systemen Nb--Cr und Nb--Fe wurde der Verlauf der Gitterparameter innerhalb des gesamten Homogenitätsbereichs der Laves-Phase bei ausgewählten Temperaturen untersucht. Die Kristallstrukturen von C15-NbCr2 und C14-NbFe2 wurden erstmals verfeinert. Vorläufige Untersuchungen bestätigen die Existenz von zwei Hochtemperaturmodifikationen (C14 und C36) von NbCr2. Im System Nb--Mn wurde die Mn-reiche Seite des Homogenitätsbereichs bei 800 °C und 1100 °C an aus zweiphasigen (Mn(Nb) + C14) Präparaten isolierten Einkristallen untersucht. Bei 800 °C wird ein Kristall der Zusammensetzung NbMn2 erhalten, während bei 1100 °C ausgeprägte Löslichkeit von Mn in der C14-Phase beobachtet wird. Die Summenformel kann als Nb(1-x)Mn(2+x) (x = 0,13) geschrieben werden. Die Substitution von Nb durch Mn führt zu Verschiebungen der Antistrukturatome bezüglich der Nb-Lagen und damit zur Bildung kurzer Nb--Mn-Abstände. In den ternären Systemen Nb--Cr--Co und Nb--Cr--Ni wurden die Kristallstrukturen der C14-Phasen C14-Nb(Cr(1-x)Co(x))2 und C14-Nb(Cr(1-x)Ni(x))2 am Einkristall untersucht. Neben den auch für die binären C14-Phasen beobachteten Verzerrungen zeigen die Kristallstrukturen eine teilweise geordnete Verteilung von Cr und Co bzw. Cr und Ni auf die beiden kristallographischen Lagen der B-Teilstruktur. Die bevorzugte Besetzung wurde auf der Grundlage von Extended-Hückel-Rechnungen untersucht. Zwar können diese Rechnungen kein quantitatives Bild liefern, jedoch werden Tendenzen im System Nb--Cr--Co richtig wiedergegeben. Im System Nb--Cr--Ni liefern die Rechnungen jedoch dem Experiment widersprechende Ergebnisse. Die Vorhersagekraft der Methode ist also begrenzt. Vergleichende Untersuchungen der Reihe NbTM2, TM = Cr, Mn, Fe, Co mittels Röntgenabsorptionsspektroskopie und Bandstrukturrechnungen zeigen, dass die chemische Bindung der untersuchten Verbindungen im wesentlichen ähnlich ist, aber dass durchaus Entwicklungen innerhalb der Reihe festgestellt werden können. Diese Entwicklung wird besonders in der Verzerrung der C14-Phasen und hier speziell der B-Teilstruktur deutlich, die in den experimentell zugänglichen C14-Phasen in NbMn2 deutlicher ausgeprägt ist als in NbFe2. Analysen der chemischen Bindung mit Hilfe der COHP-Methoden zeigen eine ähnliche Tendenz zur Verzerrung, die vereinfacht auch als Funktion der Valenzelektronenkonzentration aufgefasst werden kann. Berechnungen der Gesamtenergie unterstützen diese Interpretation. Im Gesamtbild der elektronischen Struktur ist eine leichte Zunahme des ionischen Bindungsanteils von TM = Cr zu TM = Co zu erkennen. Die Natur der Laves-Phasen in Systemen der Übergangsmetalle ist ein sehr vielschichtiges Problem, das weiterhin intensive und interdisziplinäre Forschung erfordert. Insbesondere mit der Charakterisierung nichtstöchiometrischer Laves-Phasen wurden aber bereits wichtige Beiträge zum Verständnis der Bildung der Homogenitätsbereiche erarbeitet.
16

ENGINEERING MAGNETIC TRANSITIONS AND MAGNETOCALORIC EFFECT IN RARE-EARTH TRANSITION METAL ICOSAGENIDES

George Agbeworvi (8800547) 05 May 2020 (has links)
<div>The global demand for energy of mankind, the ever-increasing cost of energy, and the expected depletion of fossil energy carriers within the next centuries urge the exploration of alternative and more sustainable ways to provide energy. The current quest for energy-efficient technologies for the replacement of existing cooling devices has made the magnetocaloric effect a field of current scientific interest. Cooling technologies based on magnetic refrigerants are expected to have a better environmental impact compared with those based on the gas compression-expansion cycle. This technology provides an alternative for refrigeration applications with advantages, such as high energy efficiency, environmental friendliness, and low power consumption. In search of promising magnetocaloric materials, several rare earth-depleted transition metal-based materials were designed and investigated.</div><div>In this work, RCrxAl2-x and RZnAl (R = Gd, Tb, Dy, Ho) belonging to the ternary rare-earth transition-metal Laves phases, were chosen as the starting point to establish the effect of valence electron concentration (VEC) on the magnetic behavior and magnetocaloric effect. Our result and the results from the previously studied RTAl phases (T = Cu, Ni, Co, Fe, Mn) shows that the perturbation of the valence electron concentration at the Fermi level is found to be the driving force that dictates the crystal structure, magnetocaloric and magnetic properties of these systems. Most notably, the decrease in the valence electron concentration at the Fermi level leads to an increase in the curie temperature.</div><div>In addition, we have further extended this theory to GdNiAl2 systems. GdNiAl2 is a known magnetocaloric material which exhibits an isothermal magnetic entropy change of ΔSM = 16.0 Jkg-1K-1 at TC = 28K under a magnetic field change from 0-5T. However, the low TC limits its application as a room temperature refrigerant. We, therefore, substituted Co for (Ni/Al) in the structure of GdNiAl2, intending to substantially perturb the position of the Fermi level of Ni since that will lead to a decrease in the VEC and hence elevate the TC. The study was also extended to another Icosagenides (Ga,), which saw the substitution of Ga for Al in GdNiAl2 and its Co substituted analogs. The Ga analogs exhibit complex magnetic behavior with a cascade (multiple) of magnetic transitions, as opposed to the rather simple magnetism of their Al congeners.</div>
17

Untersuchungen zur Natur der Laves-Phasen in Systemen der Übergangsmetalle

Grüner, Daniel 08 January 2007 (has links)
Laves-Phasen sind intermetallische Verbindungen der Zusammensetzung AB2, die in den Strukturtypen C14 (MgZn2), C15 (MgCu2), C36 (MgNi2) oder deren Abkömmlingen kristallisieren. Diese sind Polytypen mit einem gemeinsamen grundlegenden Strukturmuster. Insgesamt sind über 1400 binäre und ternäre Laves-Phasen bekannt. Sie stellen damit die größte Gruppe der bislang bekannten intermetallischen Verbindungen dar. Laves-Phasen wurden intensiv untersucht um grundlegende Aspekte der Phasenstabilität zu verstehen. Geometrische und elektronische Faktoren haben sich in ihrer Vorhersagekraft bezüglich des Auftretens und der Stabilität einer Laves-Phase aber nur in wenigen Fällen als hilfreich erwiesen. Das Auftreten von Homogenitätsbereichen und damit einhergehender struktureller Defekte ist in den meisten Fällen immer noch unklar und spiegelt grundsätzliche Probleme in der Chemie intermetallischer Verbindungen wider: Das unvollständige Bild der chemischen Bindung, die Tendenz zur Bildung ausgedehnter Homogenitätsbereiche sowie der Einfluss von Minoritätskomponenten auf Struktur und Phasenstabilität ist bei intermetallischen Verbindungen größer als bei vielen anderen Verbindungsklassen. Daher sind die Informationen über Struktur, Stabiblität und physikalische Eigenschaften intermetallischer Verbindungen im Allgemeinen unvollständig und mitunter unzuverlässig oder widersprüchlich. Um diese Probleme anzugehen wurden in dieser Arbeit Laves-Phasen in den Systemen Nb--TM (TM = Cr, Mn, Fe, Co) und Nb--Cr--TM (TM = Co, Ni) als Modellsysteme ausgewählt. Das Ziel der Untersuchung ist, das Wechselspiel zwischen chemischer Bindung, Struktur und Phasenstabilität für die Laves-Phasen auf der Grundlage genauer experimenteller Daten sowie quantenmechanischer Rechnungen zu beleuchten. Die Untersuchungen des binären Systems Nb--Co nehmen hier eine Schlüsselposition ein. Eine Neubestimmung des Phasendiagramms des Systems Nb--Co im Bereich der Laves-Phasen bestätigt die Existenz von Phasen mit C14-, C15- und C36-Struktur. Dabei wurden schmale Zweiphasenfelder C15 + C36 und C15 + C14 sowie ein schmaler, aber signifikanter Homogenitätsbereich der C36-Phase experimentell nachgewiesen. Die Kristallstrukturen von C36-Nb(1-x)Co(2+x) (x = 0,265), C15-Nb(1-x)Co(2+x) (x = 0,12), C15-NbCo2 und C14-Nb(1+x)Co(2-x) (x = 0,07) wurden mittels Einkristall-Röntgenstrukturanalyse verfeinert. Im Falle von C36-Nb(1-x)Co(2+x) (x = 0,265) und C15-Nb(1-x)Co(2+x) (x = 0,12) wird bestätigt, dass der Homogenitätsbereich durch Substitution von Nb durch Co erzeugt wird. Im Fall von C14-Nb(1+x)Co(2-x) werden Abweichungen von der Zusammensetzung NbCo2 durch Substitution von Co durch überschüssiges Nb erzeugt, wobei nur eine der beiden Co-Lagen gemischt besetzt wird. Quantenmechanische Rechnungen zeigen, dass dieses Besetzungsmuster energetisch bevorzugt ist. Weder mittels Röntgenbeugung noch mittels hochauflösender Elektronenmikroskopie und Elektronenbeugeng wurden Ordnungsvarianten oder Stapelvarianten der Laves-Phasen beobachtet. In der Kristallstruktur von C36-Nb(1-x)Co(2+x) (x = 0,265) ist mehr als ein Viertel des Nb durch überschüssiges Co ersetzt. Von zwei kristallographischen Nb-Lagen wird eine bevorzugt von Co besetzt, so dass sich der Co-Anteil der beiden Lagen etwa wie 2:1 verhält. Co-Antistrukturatome sind relativ zu der Nb-Position verschoben. Triebkraft dieser Verschiebungen ist die Bildung von Nb--Co-Kontakten innerhalb der A-Teilstruktur. Gemischte Besetzung der Nb-Lagen, die Verteilung der Co-Antistrukturatome und mit der Substitution einhergehende Verzerrungen führen zu einer komplizierten Realstruktur. Zur Beschreibung der elektronischen Struktur von C36-Nb(1-x)Co(2+x) (x = 0,265) werden daher verschiedene Modelle verwendet, die Tendenzen sowohl zur beobachteten Mischbesetzung als auch zur Verzerrung der Kristallstruktur aufzeigen. Die elektronische Struktur und chemische Bindung von C14-, C15- und C36-NbCo2 wurde vergleichend untersucht. Berechnungen der Gesamtenergie zeigen sehr geringe Energiedifferenzen zwischen den drei Strukturen, die mit einer sehr ähnlichen Bindungssituation der Polytypen im Einklang ist. In den Systemen Nb--Cr und Nb--Fe wurde der Verlauf der Gitterparameter innerhalb des gesamten Homogenitätsbereichs der Laves-Phase bei ausgewählten Temperaturen untersucht. Die Kristallstrukturen von C15-NbCr2 und C14-NbFe2 wurden erstmals verfeinert. Vorläufige Untersuchungen bestätigen die Existenz von zwei Hochtemperaturmodifikationen (C14 und C36) von NbCr2. Im System Nb--Mn wurde die Mn-reiche Seite des Homogenitätsbereichs bei 800 °C und 1100 °C an aus zweiphasigen (Mn(Nb) + C14) Präparaten isolierten Einkristallen untersucht. Bei 800 °C wird ein Kristall der Zusammensetzung NbMn2 erhalten, während bei 1100 °C ausgeprägte Löslichkeit von Mn in der C14-Phase beobachtet wird. Die Summenformel kann als Nb(1-x)Mn(2+x) (x = 0,13) geschrieben werden. Die Substitution von Nb durch Mn führt zu Verschiebungen der Antistrukturatome bezüglich der Nb-Lagen und damit zur Bildung kurzer Nb--Mn-Abstände. In den ternären Systemen Nb--Cr--Co und Nb--Cr--Ni wurden die Kristallstrukturen der C14-Phasen C14-Nb(Cr(1-x)Co(x))2 und C14-Nb(Cr(1-x)Ni(x))2 am Einkristall untersucht. Neben den auch für die binären C14-Phasen beobachteten Verzerrungen zeigen die Kristallstrukturen eine teilweise geordnete Verteilung von Cr und Co bzw. Cr und Ni auf die beiden kristallographischen Lagen der B-Teilstruktur. Die bevorzugte Besetzung wurde auf der Grundlage von Extended-Hückel-Rechnungen untersucht. Zwar können diese Rechnungen kein quantitatives Bild liefern, jedoch werden Tendenzen im System Nb--Cr--Co richtig wiedergegeben. Im System Nb--Cr--Ni liefern die Rechnungen jedoch dem Experiment widersprechende Ergebnisse. Die Vorhersagekraft der Methode ist also begrenzt. Vergleichende Untersuchungen der Reihe NbTM2, TM = Cr, Mn, Fe, Co mittels Röntgenabsorptionsspektroskopie und Bandstrukturrechnungen zeigen, dass die chemische Bindung der untersuchten Verbindungen im wesentlichen ähnlich ist, aber dass durchaus Entwicklungen innerhalb der Reihe festgestellt werden können. Diese Entwicklung wird besonders in der Verzerrung der C14-Phasen und hier speziell der B-Teilstruktur deutlich, die in den experimentell zugänglichen C14-Phasen in NbMn2 deutlicher ausgeprägt ist als in NbFe2. Analysen der chemischen Bindung mit Hilfe der COHP-Methoden zeigen eine ähnliche Tendenz zur Verzerrung, die vereinfacht auch als Funktion der Valenzelektronenkonzentration aufgefasst werden kann. Berechnungen der Gesamtenergie unterstützen diese Interpretation. Im Gesamtbild der elektronischen Struktur ist eine leichte Zunahme des ionischen Bindungsanteils von TM = Cr zu TM = Co zu erkennen. Die Natur der Laves-Phasen in Systemen der Übergangsmetalle ist ein sehr vielschichtiges Problem, das weiterhin intensive und interdisziplinäre Forschung erfordert. Insbesondere mit der Charakterisierung nichtstöchiometrischer Laves-Phasen wurden aber bereits wichtige Beiträge zum Verständnis der Bildung der Homogenitätsbereiche erarbeitet.
18

Grain Structure Modification in Additively Manufactured Inconel 718 Using in situUltrasonic Vibration

McNees, Nathaniel Gregory January 2022 (has links)
No description available.

Page generated in 0.0594 seconds