• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variação espacial da carga interfoliar de esmectitas do depósto de bentonita de melo (norte do Uruguai): implicações nas propriedades físicas e na organofilização.

Machado, Gabriel Gonzalo January 2012 (has links)
Para a modelização da distribuição espacial da carga interfoliar das esmectitas de Melo foram amostrados quatro perfis, sendo dois obtidos a partir de furos de sondagens e dois com amostras coletadas na frente da cava de exploração da ocorrência. Os perfis formam aproximadamente uma figura com a forma de um trapezoide isósceles possuindo uma mediana em torno de 100 m. Foi analisado um total de 21 amostras a partir dos perfis. A camada de bentonita na área estudada varia de 5 a 6 metros de espessura e no perfil localiza-se entre a camada de solo do topo e uma camada sotoposta de arenito de granulação media a grossa. A composição mineralógica observada em rocha total ao XRD mostra um aumento do conteúdo de esmectita com a profundidade, estimando-se uma proporção de 30% a 50% na profundidade de 1,5m e de 90 a 96% na profundidade de 7 a 8,3 m, variando muito pouco de um perfil em relação a outro, porém, mantendo a tendência de aumento da esmectita em profundidade. Identifica-se montmorilonitas dioctaedricas magnesianas com predomínio de Ca na posição trocável, seguido de quartzo, feldspatos (albita e K-felçdspato) e raramente identifica-se traços de ilita e zeolitas (heulandita-clinoptilolita). A composição química por XRF também é coerente com a tendência observada na mineralogia, com uma diminuição em profundidade do teor de SiO2, K2O, Na2O indicativo de menos quartzo e feldspato e um aumento do MgO oriundo das substituições octaédricas da esmectita que também é responsável pela origem da carga interfoliar, Al2O3 da posição octaédrica das esmectitas, Fe2O3 supostamente octaédrico e CaO que entra no sistema para compensar o desequilíbrio elétrico das cargas. A carga interfoliar foi estimada na fração <1 μm por dois métodos sendo que a distribuição espacial mostra uma tendência de aumentar na parte intermediária da camada com valores em torno de 0,56 e/huc, diminuindo em direção ao topo e em profundidade com valores variando entre 0,46 a 0,48 e/huc. Esta variação gradual é melhor observada nos difratogramas do que através do método de cálculo da carga interfoliar, que não possuem sensibilidade suficiente para identificar as pequenas variações. Entretanto, variações na posição e na forma do pico 001 da esmectita são evidencias significativas que permitem validar as conclusões. O cálculo da formula unitária da montmorilonita mostra uma carga interfoliar de origem octaédrica com uma distribuição heterogenia ao longo do perfil reforçada pela variação na sorção organofílica e no grau de expansão observado na montmorilonita. A avaliação da capacidade de troca de cátions (CEC) utilizada no projeto foi validada com o método do acetado de amônio, sendo que os valores obtidos foram diretamente proporcionais a estimativa da carga interfoliar das amostras. Valores de CEC entre 110 moles/100gr de argila corresponde a uma carga interfoliar da ordem de 0,55 e/huc e valores em torno de 90 moles/100gr de argila correspondem a cargas interfoliares em torno de 0,46 e/huc. A quantidade de cloreto de dodecylammonium (C12H28CIN) utilisado para organofilização foi proporcional a media do CEC. Em relação às propriedades físicas e organofilização, os padrões dos difratogramas das argilas organofilicas mostraram uma tendência de expansibilidade em função da carga interfoliar e a posição do pico 001 da montmorilonita-(C12H28CIN) que variou de 17,05Å a 17,68Å. Pode-se considerar como um complexo bicamadas organo argilas, classicamente esperadas a 17,46Å considerando o tamanho da cadeia alkyl utilizada e a isoterma de sorção conhecida. As pequenas variações são indicativas da presença de camadas não intercaladas devido a heterogeneidade da carga. Embora as pequenas diferenças no espaçamento “d” entre as amostras, a relação da 001 argila organofilica do perfil em função da carga interfoliar, apresentou uma correlação perfeita. Comparando no perfil, o espaçamento 001 da argila orgânica tende a aumentar com a carga intefoliar. A posição do pico 001 varia entre 17,15Å e 17,5Å e a área do pico 001 após a organofilização variou entre 2620,6 (cps x deg) até 418,8 (cps x deg). A tendência observada para a distribuição espacial da carga interfoliar esta provavelmente relacionada com uma variação gradual da permeabilidade e da razão água/rocha durante a alteração. A zona media da camada que concentra os mais elevados valores de carga interfoliar mostrou frequentemente a presença de uma textura esferulítica. Também, traços de zeolitas no XRD foram encontrados somente em amostras da profundidade entre 4 e 6 metros, indicando que a razão água/rocha estava no limiar do campo de estabilidade onde as zeolitas são favorecidas em detrimento das esmectitas no processo alteração do vidro vulcânico. / To model the spatial distribution of key smectite properties, four profiles were sampled, two coming from boreholes and 2 from fresh cut samples over the mining front, Forming roughly an Isosceles Trapezoid with a median of approximately 100 m; 21 samples were analyzed over the four profiles. Bentonite bed ranges in the studied area from 5 to 6 m thick underlying top soil layer and overlaying a gross grain sandstone layer. Mineralogical composition observed on whole rock XRD traces showed an increasing content of the smectitic phase as a function of depth, going from 30% to 50% at around 1,5 m depth to 90 to 96 % at a depth ranging 7 to 8,3 m depth, varying very slightly from one profile to another but keeping the trend. Mayor mineral phases identified were Mg rich dioctahedral montmorillonite with mainly Ca in exchangeable position, Quartz, feldspar (Albite and K-feldspar) and only occasionally as trace phases we observed Illite and Zeolites (heulandite-clinoptilolite). XRF chemical analysis results are also coherent with this vertical tendencies, expressed in a notable decrease of a SiO2, K2O, Na2O indicating less quartz and feldspar species; and with increasing of MgO as octahedral substitution representing the main source of layer charge, Al2O3 most octahedral but also in a rather small amount as tetrahedral substitutions, Fe2O3 presumably octahedral and CaO compensating electrical charge desequilibrium. Layer charge was estimated on the <1 μm size fraction by two methods and spatial distribution shows a clear trend to increase at the middle of the bed up to values around 0,56 e/huc and decrease towards top and bottom over values ranging from 0.46 to 0,48 e/huc. This gradual variations can be better observed on the XRD patters than by actual layer charge calculation methods results, given the fact that for this slight variances, commonly used methods are not sensible enough, Nevertheless the 001 peak position and shape of the smectite phase represents sufficient evidence for conclusions. Layer charge distribution is mainly Octahedral derived from unit formula calculations and Layer charge is clearly heterogeneous due to Organophilic sorption and swelling behavior observed. Cation exchange capacity was calculated by ammonium acetate method, values obtained are directly proportional to layer charge estimations over those samples. CEC values around 110 moles/100gr of clay correspond to Layer charge on the order of 0,55 e/huc and values around 90 moles/100gr of clay to layer charges around 0,46 e/huc. The amount of dodecylammonium Chloride (C12H28CIN) used for organophilization was established proportional to the CEC average. Regarding the implications on physical properties and organophilization, XRD patterns of Organophilic clays showed a tendency on expandability as a function of layer charge in terms of their 001 (C12H28CIN)-Montmorillonite peak position, ranging from 17,05 Å To 17,68 Å. They could all be considered as bilayer intercalated Organoclay complexes, classically expected at 17,46 Å according size of the alkyl chain used, and the known sorption isotherm. The slight variances are indicating the presence of non-intercalated sheets due to charge heterogeneity. Despite the slight d-spacing differences among samples, the relationship 001 Organophilic C profile as a function of layer charge has a perfect correlation. Comparing a single profile, 001 d-spacing of organoclays tends to increase with increasing layer charge. The position of the 001 peak ranges between 17.15 Å and 17.5 Å and the raw 001 peak area after organophilization can vary from 2620.6(cps x deg) to 418.8 (cps x deg). The tendencies observed for layer charge spatial distribution are probably related to gradual variations of permeability and water/rock ratio during alteration, the middle zone of the bed that concentrates higher values of layer charge also has showed very frequent presence of spherulitic textures that may belonged originally of opal-CT but replaced by recrystallized quartz unlike top and bottom of the bed, also Zeolites XRD traces were only found in samples located from 4 to 6 m depth, indicating that water rock ratio close to the threshold where Zeolites are favored with respect to smectites as a product of alteration.
2

Variação espacial da carga interfoliar de esmectitas do depósto de bentonita de melo (norte do Uruguai): implicações nas propriedades físicas e na organofilização.

Machado, Gabriel Gonzalo January 2012 (has links)
Para a modelização da distribuição espacial da carga interfoliar das esmectitas de Melo foram amostrados quatro perfis, sendo dois obtidos a partir de furos de sondagens e dois com amostras coletadas na frente da cava de exploração da ocorrência. Os perfis formam aproximadamente uma figura com a forma de um trapezoide isósceles possuindo uma mediana em torno de 100 m. Foi analisado um total de 21 amostras a partir dos perfis. A camada de bentonita na área estudada varia de 5 a 6 metros de espessura e no perfil localiza-se entre a camada de solo do topo e uma camada sotoposta de arenito de granulação media a grossa. A composição mineralógica observada em rocha total ao XRD mostra um aumento do conteúdo de esmectita com a profundidade, estimando-se uma proporção de 30% a 50% na profundidade de 1,5m e de 90 a 96% na profundidade de 7 a 8,3 m, variando muito pouco de um perfil em relação a outro, porém, mantendo a tendência de aumento da esmectita em profundidade. Identifica-se montmorilonitas dioctaedricas magnesianas com predomínio de Ca na posição trocável, seguido de quartzo, feldspatos (albita e K-felçdspato) e raramente identifica-se traços de ilita e zeolitas (heulandita-clinoptilolita). A composição química por XRF também é coerente com a tendência observada na mineralogia, com uma diminuição em profundidade do teor de SiO2, K2O, Na2O indicativo de menos quartzo e feldspato e um aumento do MgO oriundo das substituições octaédricas da esmectita que também é responsável pela origem da carga interfoliar, Al2O3 da posição octaédrica das esmectitas, Fe2O3 supostamente octaédrico e CaO que entra no sistema para compensar o desequilíbrio elétrico das cargas. A carga interfoliar foi estimada na fração <1 μm por dois métodos sendo que a distribuição espacial mostra uma tendência de aumentar na parte intermediária da camada com valores em torno de 0,56 e/huc, diminuindo em direção ao topo e em profundidade com valores variando entre 0,46 a 0,48 e/huc. Esta variação gradual é melhor observada nos difratogramas do que através do método de cálculo da carga interfoliar, que não possuem sensibilidade suficiente para identificar as pequenas variações. Entretanto, variações na posição e na forma do pico 001 da esmectita são evidencias significativas que permitem validar as conclusões. O cálculo da formula unitária da montmorilonita mostra uma carga interfoliar de origem octaédrica com uma distribuição heterogenia ao longo do perfil reforçada pela variação na sorção organofílica e no grau de expansão observado na montmorilonita. A avaliação da capacidade de troca de cátions (CEC) utilizada no projeto foi validada com o método do acetado de amônio, sendo que os valores obtidos foram diretamente proporcionais a estimativa da carga interfoliar das amostras. Valores de CEC entre 110 moles/100gr de argila corresponde a uma carga interfoliar da ordem de 0,55 e/huc e valores em torno de 90 moles/100gr de argila correspondem a cargas interfoliares em torno de 0,46 e/huc. A quantidade de cloreto de dodecylammonium (C12H28CIN) utilisado para organofilização foi proporcional a media do CEC. Em relação às propriedades físicas e organofilização, os padrões dos difratogramas das argilas organofilicas mostraram uma tendência de expansibilidade em função da carga interfoliar e a posição do pico 001 da montmorilonita-(C12H28CIN) que variou de 17,05Å a 17,68Å. Pode-se considerar como um complexo bicamadas organo argilas, classicamente esperadas a 17,46Å considerando o tamanho da cadeia alkyl utilizada e a isoterma de sorção conhecida. As pequenas variações são indicativas da presença de camadas não intercaladas devido a heterogeneidade da carga. Embora as pequenas diferenças no espaçamento “d” entre as amostras, a relação da 001 argila organofilica do perfil em função da carga interfoliar, apresentou uma correlação perfeita. Comparando no perfil, o espaçamento 001 da argila orgânica tende a aumentar com a carga intefoliar. A posição do pico 001 varia entre 17,15Å e 17,5Å e a área do pico 001 após a organofilização variou entre 2620,6 (cps x deg) até 418,8 (cps x deg). A tendência observada para a distribuição espacial da carga interfoliar esta provavelmente relacionada com uma variação gradual da permeabilidade e da razão água/rocha durante a alteração. A zona media da camada que concentra os mais elevados valores de carga interfoliar mostrou frequentemente a presença de uma textura esferulítica. Também, traços de zeolitas no XRD foram encontrados somente em amostras da profundidade entre 4 e 6 metros, indicando que a razão água/rocha estava no limiar do campo de estabilidade onde as zeolitas são favorecidas em detrimento das esmectitas no processo alteração do vidro vulcânico. / To model the spatial distribution of key smectite properties, four profiles were sampled, two coming from boreholes and 2 from fresh cut samples over the mining front, Forming roughly an Isosceles Trapezoid with a median of approximately 100 m; 21 samples were analyzed over the four profiles. Bentonite bed ranges in the studied area from 5 to 6 m thick underlying top soil layer and overlaying a gross grain sandstone layer. Mineralogical composition observed on whole rock XRD traces showed an increasing content of the smectitic phase as a function of depth, going from 30% to 50% at around 1,5 m depth to 90 to 96 % at a depth ranging 7 to 8,3 m depth, varying very slightly from one profile to another but keeping the trend. Mayor mineral phases identified were Mg rich dioctahedral montmorillonite with mainly Ca in exchangeable position, Quartz, feldspar (Albite and K-feldspar) and only occasionally as trace phases we observed Illite and Zeolites (heulandite-clinoptilolite). XRF chemical analysis results are also coherent with this vertical tendencies, expressed in a notable decrease of a SiO2, K2O, Na2O indicating less quartz and feldspar species; and with increasing of MgO as octahedral substitution representing the main source of layer charge, Al2O3 most octahedral but also in a rather small amount as tetrahedral substitutions, Fe2O3 presumably octahedral and CaO compensating electrical charge desequilibrium. Layer charge was estimated on the <1 μm size fraction by two methods and spatial distribution shows a clear trend to increase at the middle of the bed up to values around 0,56 e/huc and decrease towards top and bottom over values ranging from 0.46 to 0,48 e/huc. This gradual variations can be better observed on the XRD patters than by actual layer charge calculation methods results, given the fact that for this slight variances, commonly used methods are not sensible enough, Nevertheless the 001 peak position and shape of the smectite phase represents sufficient evidence for conclusions. Layer charge distribution is mainly Octahedral derived from unit formula calculations and Layer charge is clearly heterogeneous due to Organophilic sorption and swelling behavior observed. Cation exchange capacity was calculated by ammonium acetate method, values obtained are directly proportional to layer charge estimations over those samples. CEC values around 110 moles/100gr of clay correspond to Layer charge on the order of 0,55 e/huc and values around 90 moles/100gr of clay to layer charges around 0,46 e/huc. The amount of dodecylammonium Chloride (C12H28CIN) used for organophilization was established proportional to the CEC average. Regarding the implications on physical properties and organophilization, XRD patterns of Organophilic clays showed a tendency on expandability as a function of layer charge in terms of their 001 (C12H28CIN)-Montmorillonite peak position, ranging from 17,05 Å To 17,68 Å. They could all be considered as bilayer intercalated Organoclay complexes, classically expected at 17,46 Å according size of the alkyl chain used, and the known sorption isotherm. The slight variances are indicating the presence of non-intercalated sheets due to charge heterogeneity. Despite the slight d-spacing differences among samples, the relationship 001 Organophilic C profile as a function of layer charge has a perfect correlation. Comparing a single profile, 001 d-spacing of organoclays tends to increase with increasing layer charge. The position of the 001 peak ranges between 17.15 Å and 17.5 Å and the raw 001 peak area after organophilization can vary from 2620.6(cps x deg) to 418.8 (cps x deg). The tendencies observed for layer charge spatial distribution are probably related to gradual variations of permeability and water/rock ratio during alteration, the middle zone of the bed that concentrates higher values of layer charge also has showed very frequent presence of spherulitic textures that may belonged originally of opal-CT but replaced by recrystallized quartz unlike top and bottom of the bed, also Zeolites XRD traces were only found in samples located from 4 to 6 m depth, indicating that water rock ratio close to the threshold where Zeolites are favored with respect to smectites as a product of alteration.
3

Variação espacial da carga interfoliar de esmectitas do depósto de bentonita de melo (norte do Uruguai): implicações nas propriedades físicas e na organofilização.

Machado, Gabriel Gonzalo January 2012 (has links)
Para a modelização da distribuição espacial da carga interfoliar das esmectitas de Melo foram amostrados quatro perfis, sendo dois obtidos a partir de furos de sondagens e dois com amostras coletadas na frente da cava de exploração da ocorrência. Os perfis formam aproximadamente uma figura com a forma de um trapezoide isósceles possuindo uma mediana em torno de 100 m. Foi analisado um total de 21 amostras a partir dos perfis. A camada de bentonita na área estudada varia de 5 a 6 metros de espessura e no perfil localiza-se entre a camada de solo do topo e uma camada sotoposta de arenito de granulação media a grossa. A composição mineralógica observada em rocha total ao XRD mostra um aumento do conteúdo de esmectita com a profundidade, estimando-se uma proporção de 30% a 50% na profundidade de 1,5m e de 90 a 96% na profundidade de 7 a 8,3 m, variando muito pouco de um perfil em relação a outro, porém, mantendo a tendência de aumento da esmectita em profundidade. Identifica-se montmorilonitas dioctaedricas magnesianas com predomínio de Ca na posição trocável, seguido de quartzo, feldspatos (albita e K-felçdspato) e raramente identifica-se traços de ilita e zeolitas (heulandita-clinoptilolita). A composição química por XRF também é coerente com a tendência observada na mineralogia, com uma diminuição em profundidade do teor de SiO2, K2O, Na2O indicativo de menos quartzo e feldspato e um aumento do MgO oriundo das substituições octaédricas da esmectita que também é responsável pela origem da carga interfoliar, Al2O3 da posição octaédrica das esmectitas, Fe2O3 supostamente octaédrico e CaO que entra no sistema para compensar o desequilíbrio elétrico das cargas. A carga interfoliar foi estimada na fração <1 μm por dois métodos sendo que a distribuição espacial mostra uma tendência de aumentar na parte intermediária da camada com valores em torno de 0,56 e/huc, diminuindo em direção ao topo e em profundidade com valores variando entre 0,46 a 0,48 e/huc. Esta variação gradual é melhor observada nos difratogramas do que através do método de cálculo da carga interfoliar, que não possuem sensibilidade suficiente para identificar as pequenas variações. Entretanto, variações na posição e na forma do pico 001 da esmectita são evidencias significativas que permitem validar as conclusões. O cálculo da formula unitária da montmorilonita mostra uma carga interfoliar de origem octaédrica com uma distribuição heterogenia ao longo do perfil reforçada pela variação na sorção organofílica e no grau de expansão observado na montmorilonita. A avaliação da capacidade de troca de cátions (CEC) utilizada no projeto foi validada com o método do acetado de amônio, sendo que os valores obtidos foram diretamente proporcionais a estimativa da carga interfoliar das amostras. Valores de CEC entre 110 moles/100gr de argila corresponde a uma carga interfoliar da ordem de 0,55 e/huc e valores em torno de 90 moles/100gr de argila correspondem a cargas interfoliares em torno de 0,46 e/huc. A quantidade de cloreto de dodecylammonium (C12H28CIN) utilisado para organofilização foi proporcional a media do CEC. Em relação às propriedades físicas e organofilização, os padrões dos difratogramas das argilas organofilicas mostraram uma tendência de expansibilidade em função da carga interfoliar e a posição do pico 001 da montmorilonita-(C12H28CIN) que variou de 17,05Å a 17,68Å. Pode-se considerar como um complexo bicamadas organo argilas, classicamente esperadas a 17,46Å considerando o tamanho da cadeia alkyl utilizada e a isoterma de sorção conhecida. As pequenas variações são indicativas da presença de camadas não intercaladas devido a heterogeneidade da carga. Embora as pequenas diferenças no espaçamento “d” entre as amostras, a relação da 001 argila organofilica do perfil em função da carga interfoliar, apresentou uma correlação perfeita. Comparando no perfil, o espaçamento 001 da argila orgânica tende a aumentar com a carga intefoliar. A posição do pico 001 varia entre 17,15Å e 17,5Å e a área do pico 001 após a organofilização variou entre 2620,6 (cps x deg) até 418,8 (cps x deg). A tendência observada para a distribuição espacial da carga interfoliar esta provavelmente relacionada com uma variação gradual da permeabilidade e da razão água/rocha durante a alteração. A zona media da camada que concentra os mais elevados valores de carga interfoliar mostrou frequentemente a presença de uma textura esferulítica. Também, traços de zeolitas no XRD foram encontrados somente em amostras da profundidade entre 4 e 6 metros, indicando que a razão água/rocha estava no limiar do campo de estabilidade onde as zeolitas são favorecidas em detrimento das esmectitas no processo alteração do vidro vulcânico. / To model the spatial distribution of key smectite properties, four profiles were sampled, two coming from boreholes and 2 from fresh cut samples over the mining front, Forming roughly an Isosceles Trapezoid with a median of approximately 100 m; 21 samples were analyzed over the four profiles. Bentonite bed ranges in the studied area from 5 to 6 m thick underlying top soil layer and overlaying a gross grain sandstone layer. Mineralogical composition observed on whole rock XRD traces showed an increasing content of the smectitic phase as a function of depth, going from 30% to 50% at around 1,5 m depth to 90 to 96 % at a depth ranging 7 to 8,3 m depth, varying very slightly from one profile to another but keeping the trend. Mayor mineral phases identified were Mg rich dioctahedral montmorillonite with mainly Ca in exchangeable position, Quartz, feldspar (Albite and K-feldspar) and only occasionally as trace phases we observed Illite and Zeolites (heulandite-clinoptilolite). XRF chemical analysis results are also coherent with this vertical tendencies, expressed in a notable decrease of a SiO2, K2O, Na2O indicating less quartz and feldspar species; and with increasing of MgO as octahedral substitution representing the main source of layer charge, Al2O3 most octahedral but also in a rather small amount as tetrahedral substitutions, Fe2O3 presumably octahedral and CaO compensating electrical charge desequilibrium. Layer charge was estimated on the <1 μm size fraction by two methods and spatial distribution shows a clear trend to increase at the middle of the bed up to values around 0,56 e/huc and decrease towards top and bottom over values ranging from 0.46 to 0,48 e/huc. This gradual variations can be better observed on the XRD patters than by actual layer charge calculation methods results, given the fact that for this slight variances, commonly used methods are not sensible enough, Nevertheless the 001 peak position and shape of the smectite phase represents sufficient evidence for conclusions. Layer charge distribution is mainly Octahedral derived from unit formula calculations and Layer charge is clearly heterogeneous due to Organophilic sorption and swelling behavior observed. Cation exchange capacity was calculated by ammonium acetate method, values obtained are directly proportional to layer charge estimations over those samples. CEC values around 110 moles/100gr of clay correspond to Layer charge on the order of 0,55 e/huc and values around 90 moles/100gr of clay to layer charges around 0,46 e/huc. The amount of dodecylammonium Chloride (C12H28CIN) used for organophilization was established proportional to the CEC average. Regarding the implications on physical properties and organophilization, XRD patterns of Organophilic clays showed a tendency on expandability as a function of layer charge in terms of their 001 (C12H28CIN)-Montmorillonite peak position, ranging from 17,05 Å To 17,68 Å. They could all be considered as bilayer intercalated Organoclay complexes, classically expected at 17,46 Å according size of the alkyl chain used, and the known sorption isotherm. The slight variances are indicating the presence of non-intercalated sheets due to charge heterogeneity. Despite the slight d-spacing differences among samples, the relationship 001 Organophilic C profile as a function of layer charge has a perfect correlation. Comparing a single profile, 001 d-spacing of organoclays tends to increase with increasing layer charge. The position of the 001 peak ranges between 17.15 Å and 17.5 Å and the raw 001 peak area after organophilization can vary from 2620.6(cps x deg) to 418.8 (cps x deg). The tendencies observed for layer charge spatial distribution are probably related to gradual variations of permeability and water/rock ratio during alteration, the middle zone of the bed that concentrates higher values of layer charge also has showed very frequent presence of spherulitic textures that may belonged originally of opal-CT but replaced by recrystallized quartz unlike top and bottom of the bed, also Zeolites XRD traces were only found in samples located from 4 to 6 m depth, indicating that water rock ratio close to the threshold where Zeolites are favored with respect to smectites as a product of alteration.
4

Potassium fixation by oxidized and reduced forms of different phyllosilicates

Tran, Angela M. January 1900 (has links)
Master of Science / Department of Agronomy / Michel D. Ransom / Factors governing potassium fixation and release are poorly understood. This study was conducted to investigate the effects of clay mineralogy and structural iron oxidation state on potassium fixation. Five reference clays and two soil clays were used to capture a range in mineralogical compositions and potassium behaviors. Reference clays used were illite (IMt-1), kaolinite (KGa-1b), montmorillonite (STx-1b), nontronite (NAu-2), and vermiculite (VTx-1). Soil clays used were from the upper 15 cm of a Belvue loam (BEL) and a Cherokee silt (CHE). Potassium fixation capacities were measured on unaltered as well as sodium dithionite reduced forms of each clay. Ferrous and total iron contents were determined photometrically using 1, 10-phenanthroline. Potassium fixation was measured by potassium saturating the clays and washing off exchangeable and solution potassium with solutions of magnesium chloride; samples were then acid digested and the amount fixed was calculated as the amount of potassium in the acid digestion minus the amount originally in the sample. BEL released potassium rather than fixed it while CHE tended to release potassium in the unaltered form and fix potassium in the reduced form. Structural iron reduction significantly impacted the amounts of potassium fixed by VTx-1 and NAu-2, which had the highest total iron contents of all the clays evaluated. NAu-2 and VTx-1 both on average fixed less than 1 mg K g clay[superscript]-1 in the unaltered form and an average of 6 and 11 mg K g clay[superscript]-1, respectively, in the reduced form. Regardless of being in the unaltered or reduced form, KGa-1b fixed essentially no potassium and IMt-1 and STx-1b fixed intermediate amounts of potassium—2 to 4 mg K g clay[superscript]-1 on average. The effects of clay mineralogy and structural iron oxidation state on potassium fixation can largely be explained through an understanding of layer type, layer charge, and charge distribution. In order for potassium fixation to occur, interlayer sites need to be accessible and available. Generally, the greater the negative layer charge the greater the amounts of fixation, with tetrahedral layer charge favoring fixation more than octahedral layer charge, and layer charge being a function of structural iron oxidation state.
5

Estudo teórico da interação de ânions tereftalato na estrutura de compostos tipohidrotalcita modificados

Nangoi, Inna Martha 30 July 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-01-04T14:10:18Z No. of bitstreams: 1 innamarthanangoi.pdf: 4605252 bytes, checksum: 945db0de8851ec1b0dc51a32f4ee760e (MD5) / Rejected by Adriana Oliveira (adriana.oliveira@ufjf.edu.br), reason: Renata, o nome (Júnior) deste membro da banca realmente ñ tem acento: Borges Junior, Itamar? Verifique na autorização e no Lattes, por favor. on 2016-01-25T15:57:49Z (GMT) / Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-01-25T16:34:18Z No. of bitstreams: 1 innamarthanangoi.pdf: 4605252 bytes, checksum: 945db0de8851ec1b0dc51a32f4ee760e (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-01-25T19:37:36Z (GMT) No. of bitstreams: 1 innamarthanangoi.pdf: 4605252 bytes, checksum: 945db0de8851ec1b0dc51a32f4ee760e (MD5) / Made available in DSpace on 2016-01-25T19:37:36Z (GMT). No. of bitstreams: 1 innamarthanangoi.pdf: 4605252 bytes, checksum: 945db0de8851ec1b0dc51a32f4ee760e (MD5) Previous issue date: 2015-07-30 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Cálculos de primeiros princípios baseados na Teoria do Funcional da Densidade (DFT) foram utilizados para investigar propriedades estruturais e eletrônicas de Hidróxidos Duplos Lamelares (HDL) de composição Mg-Al-Tereftalato e Mg-Al-CO3 nas razões molares, x, de 0,25, 0,33 e 0,50. Foi feita uma análise estrutural, baseada na energia total com mapeamento angular do tereftalato (TA) e cálculos de RMN de carbono 13C, que demonstrou a existência de orientações preferenciais na região interlamelar. As diferenças de densidade de carga demonstraram maior transferência de carga das moléculas de água do que do ânion com as lamelas, sendo mais pronunciada em Mg-Al-TA com x = 0,50. O cálculo de ΔG de formação demonstrou que a síntese de Mg-Al-CO3 com x = 0,50 não é espontânea à temperatura ambiente, ao contrário do Mg-Al-TA. Apesar da relação entre as áreas ocupadas pelos ânion e moléculas de água por carga da lamela permitirem a acomodação na estrutura lamelar verificou-se que existe uma competição pelos sítios das lamelas. O resultado da otimização de geometria mostrou a preferência das moléculas de água formarem ligações de hidrogênio com as hidroxilas da lamela, que deslocam o carbonato no Mg-Al-CO3. Este íon passa então a adotar uma posição inclinada em relação à lamela, demonstrado pelos cálculos da energia de formação como sendo desfavorável. Foi simulada a desidratação do Mg-Al-TA e o acordo encontrado para a temperatura de desidratação reportada experimentalmente foi excelente. Foi observada uma modificação mensurável no deslocamento químico do 13C de um dos núcleos de carbono na nova orientação do TA na estrutura desidratada. A influência do cátion divalente nos HDL estudados foi verificada pela substituição do Mg2+ por Zn2+ ou Ni2+. Foram observadas diferenças nos parâmetros geométricos relacionadas à diferenças nos raios iônicos. A análise de carga de acordo com os critérios de Bader indicaram que as cargas dos átomos de oxigênio do TA e das moléculas de água não são alterados de forma significativa pelo tipo da cátion divalentes escolhido. / First principles calculations based on Density Functional Theory (DFT) were used to investigate the structural and electronic properties of Layered Double Hydroxides (LDH) of Mg-Al-terephthalate and Mg-Al-CO3 composition with molar ratios, x, of 0.25, 0.33 and 0.50. The structural analysis was based on total energy angular mapping of terephthalate (TA) and NMR calculations of carbon 13C, which demonstrated the existence of preferred orientations in the interlayer region. The charge density differences demonstrated greater load transfer of water molecules than the anion with the layer being more pronounced in Mg-Al-TA with x = 0.50. The calculated ΔG of formation demonstrated that the synthesis of Mg-Al-CO3 with x = 0.50 is not spontaneous at room temperature, unlike the Mg-Al-TA. Although the ratio between the areas occupied by the anion and water molecules per positive charge area permit the accommodation in the layer structure, it was found that there is a competition for the layer sites. The lower energy geometry optimization showed the preference of the water molecules to form hydrogen bonds with the hydroxyl groups of the layer, displacing the carbonate of Mg-Al-CO3. This ion then will adopt an inclined position regarding to the layer, shown by the Gibbs free energy formation to be unfavorable. The Mg-Al-TA dehydration reaction simulated found an excellent agreement with experimental values. A measurable change in the 13C chemical shift of the carbon nuclei was verified in the new position of the TA in the dehydrated structure. The influence of divalent cation was verified by substitution of Mg2+ by Zn2+ or Ni2+. Differences were observed in geometric parameters related to differences in the ionic radii. Charge analysis based on Bader criteria indicated no significant variation in oxygen atoms of TA and water molecules by the type of divalent cation chosen.
6

Modelling semiconductor pixel detectors

Mathieson, Keith January 2001 (has links)
No description available.
7

Influence de la taille des particules et de la cristallochimie sur les propriétés d'échange cationique des minéraux argileux gonflants / Influence of particle size and crystal chemistry on cation-exchange properties of swelling clay minerals

Dzene, Liva 28 September 2016 (has links)
Les minéraux argileux gonflants sont omniprésents dans tous les compartiments de la surface de la Terre et notamment dans les sols. La structure lamellaire de ces minéraux et leur faible taille leur confèrent une forte réactivité notamment vis à vis des polluants et nutriments qui sont présents dans les eaux porales des sols. Dans ce cadre, cette thèse vise à contribuer à une meilleure compréhension des interactions entre des minéraux argileux gonflants et des cations nutritifs (calcium, strontium) et/ou d'intérêt environnemental (césium). Dans les sols, ces minéraux possèdent de larges distributions de taille et de cristallochimie (charge des feuillets). Par conséquent, pour mieux comprendre le rôle de chacun de ces paramètres sur la réactivité de ces particules naturelles, nous avons travaillé avec des « systèmes modèles », représentatifs des particules argileuses des sols : des particules de vermiculite triées en taille et des saponites synthétiques avec des charges de feuillets contrôlées. Les résultats d'adsorption des cations étudiés (Cs, Sr) en compétition avec les cations majeurs des eaux naturelles (Na, Ca) ont été obtenus en couplant l'analyse chimique des solutions et la modélisation des réflexions 00ℓ des diffractogrammes de rayons X afin d'obtenir la distribution de cations entre les différents sites d'adsorption (interfoliaire vs externes). Une telle approche et l'utilisation des « systèmes modèles » nous ont permis d'obtenir des paramètres quantitatifs décrivant la réactivité des minéraux argileux gonflants des sols. Ces paramètres pourront être pris en compte dans les codes de transport prédisant la migration des cations dans les sols. / The swelling clay minerals are ubiquitous in all areas of the surface of the Earth, particularly in soils. The lamellar structure of these minerals and their small size are at the origin of their high reactivity in particular with respect to pollutants and nutrients that are present in soil pore water. In this context, our work aims to contribute to a better understanding of the interactions between swelling clay minerals and cations of nutritive (calcium) and/or environmental interest (cesium, strontium). In soils, swelling clay minerals have broad size distribution and can have a varied crystal chemistry. Therefore, to better understand the role of each of these parameters on the reactivity of the natural particles, we worked with "model systems", which are yet representative of the swelling clay particles encountered in soil environment. Different particle size fractions of vermiculite and different synthetic saponites characterised by well-controlled layer charge were used as "model systems". Results concerning ion-exchange isotherms for Cs and Sr, in competition with major cations of natural waters (Na, Ca), were obtained by combining chemical analyses and 00ℓ reflection modelling of X-ray diffractograms in order to assess the cation distribution between the different adsorption sites (interlayer vs external) located on swelling clay minerals. Such approach and the use of ‘model systems’ have allowed us to obtain quantitative parameters describing the reactivity of soil swelling clay mineral particles, and should be considered in reactive transport codes devoted to predict the migration of nutritive and polluted cations in soil environments.

Page generated in 0.2464 seconds