Spelling suggestions: "subject:"goldlegierungen"" "subject:"knetlegierungen""
31 |
Microstructure evolution of gas-atomized Fe–6.5 wt% Si dropletsLi, Kefeng, Stoica, Mihai, Song, Changjiang, Zhai, Qijie, Eckert, Jürgen 17 April 2020 (has links)
The magnetic Fe–6.5 wt% Si powder was produced by gas atomization and its microstructure was also investigated. The secondary dendritic arm spacing (SDAS) is related to the droplet size, λ = 0.29 · D⁰·⁵, and the numerical solidification model was applied to the system, giving rise to the correlation of microstructure to the solidification process of the droplet. It is found that the solid fraction at the end of recalescence is strongly dependent on the undercooling achieved before nucleation; the chances for the smaller droplets to form the grain-refined microstructures are less than the larger ones. Furthermore, the SDAS is strongly influenced by the cooling rate of post-recalescence solidification, and the relationship can be expressed as follows, λ = 74.2 · (T)⁻⁰·³⁴⁷. Then, the growth of the SDAS is driven by the solute diffusion of the interdendritic liquids, leading to a coarsening phenomenon, shown in a cubic root law of local solidification time, λ = 10.73 · (tf)⁰·²⁹⁶.
|
32 |
Einfluss der Bestrahlung mit energiereichen Teilchen auf die Härte von Fe-Cr-LegierungenHeintze, Cornelia January 2013 (has links)
Ferritisch/martensitische Cr-Stähle und deren oxiddispersionsverfestigte Varianten gehören zu den potenziellen Konstruktionswerkstoffen für Komponenten zukünftiger kerntechnischer Einrichtungen, wie z. B. Fusionsreaktoren und Spalt-reaktoren der IV. Generation, die Strahlungsfeldern mit hohem Neutronenfluss aus-gesetzt sind. Ein Hauptproblem dieser Materialgruppen ist das Auftreten des Spröd-duktil-Übergangs und dessen maßgeblich durch die Strahlenhärtung verursachte Verschiebung zu höheren Temperaturen.
In der vorliegenden Arbeit wird das Bestrahlungsverhalten von binären Fe-Cr-Modelllegierungen untersucht, die ein vereinfachtes Modell für ferritisch/martensitische Cr-Stähle darstellen. Dabei werden Bestrahlungen mit Eisenionen zur Simulation der durch Neutronen hervorgerufenen Schädigung verwendet. Die auf wenige Mikrometer begrenzte Eindringtiefe der Ionen macht es erforderlich, dass für dünne Schichten geeignete Charakterisierungsmethoden ein-gesetzt werden. Im Rahmen dieser Arbeit sind das Nano¬härte¬messungen und Transmissions¬elektronen¬mikroskopie (TEM).
Im Ergebnis liegen die bestrahlungsinduzierte Härteänderung der Schicht in Ab-hängig¬keit von Chromgehalt, Bestrahlungsfluenz und –temperatur sowie, für aus-gewählte Zustände, quantitative TEM-Analysen vor. Zusammen mit begleitenden Ergebnissen von Neutronenkleinwinkelstreuexperimenten an neutronen-bestrahlten Proben der gleichen Werkstoffe ermöglichen sie die Identifizierung von bestrahlungsinduzierten Versetzungsringen und nm-großen α’-Ausscheidungen als Quellen der Strahlenhärtung. Im Rahmen eines vereinfachten Modells, das auf Orowan zurückgeht, werden die Hindernis¬stärken dieser Gitterbaufehler für das Gleiten von Versetzungen abgeschätzt.
Darauf aufbauend erfolgt ausblickartig eine Erweiterung des Untersuchungsgegenstands auf komplexere Situationen hinsichtlich der Bestrahlungs-bedingungen und des Werkstoffs. Durch das Einbeziehen simultaner und sequentieller Bestrahlungen mit Eisen- und Heliumionen kann gezeigt werden, dass der Effekt von Helium auf die Strahlenhärtung von der Bestrahlungs-reihenfolge abhängt und dass der simultane Eintrag fusionsrelevanter Mengen von Helium zu einer Verstärkung der Strahlenhärtung führt, die auf einem synergistischen Effekt beruht. Für Cr-Stähle mit 9 % Cr und deren oxiddispersions-verfestigte Varianten wird kein grundlegend anderes Bestrahlungsverhalten beobachtet als für binäres Fe-9at%Cr. Es gibt jedoch Hinweise, dass Oxid-dispersionsverfestigung die Strahlenhärtung unter bestimmten Bedingungen reduzieren kann.
Im Ergebnis der Arbeit zeigt sich, dass Ionenbestrahlungen in Kombination mit Nanohärtemessungen zu einem vertiefenden Verständnis der Strahlenhärtung in Werkstoffen auf Fe-Cr-Basis sowie zu einer effektiven Materialvorauswahl beitragen können. Voraussetzung ist, dass der Eindruckgrößeneffekt und der Substrateffekt auf geeignete Weise in Rechnung gestellt werden.
|
33 |
Grain refinement in hypoeutectic Al-Si alloy driven by electric currentsZhang, Yunhu 19 February 2016 (has links)
The present thesis investigates the grain refinement in solidifying Al-7wt%Si hypoeutectic alloy driven by electric currents. The grain size reduction in alloys generated by electric currents during the solidification has been intensively investigated. However, since various effects of electric currents have the potential to generate the finer equiaxed grains, it is still argued which effect plays the key role in the grain refinement process. In addition, the knowledge about the grain refinement mechanism under the application of electric currents remains fragmentary and inconsistent. Hence, the research objectives of the present thesis focus on the role of electric current effects and the grain refinement mechanism under the application of electric currents.
Chapter 1 presents an introduction with respect to the subject of grain refinement in alloys driven by electric current during the solidification process in particular, including the research objectives; the research motivation; a brief review about the research history; a short introduction on the electric currents effects and a review relevant to the research status of grain refinement mechanism.
Chapter 2 gives a description of research methods. This chapter shows the employed experiment materials, experimental setup, experimental procedure, the analysis methods of solidified samples, and numerical method, respectively.
Chapter 3 focuses on the role of electric current effects in the grain refinement process. A series of solidification experiments are performed under various values of effective electric currents for both, electric current pulse and direct current. The corresponding temperature measurements and flow measurements are carried out with the increase of effective electric current intensity. Meanwhile, numerical simulations are conducted to present the details of the flow structure and the distribution of electric current density and electromagnetic force. Finally, the role of electric current effects is discussed to find the key effect in the grain refinement driven by electric currents.
Chapter 4 investigates the grain refinement mechanism driven by electric currents. This chapter mainly focuses on the origin of finer equiaxed grain for grain refinement under the application of electric current on account of the importance of the origin for understanding the grain refinement mechanism. A series of solidification experiments are carried out in Al-7wt%Si alloy and in high purity aluminum. The main origin of equiaxed grain for grain refinement is concluded based on the experiment results.
Chapter 5 presents three further investigations based on the achieved knowledge in chapter 3 and 4 about the role of electric current effects and the grain refinement mechanism. According to the insight into the key electric current effect for the grain refinement shown in chapter 3, this chapter presents a potential approach to promote the grain refinement. In addition, the solute distribution under the influence of electric current is examined based on the knowledge about the electric current effects. Moreover, the grain refinement mechanism under application of travelling magnetic field is investigated by performing a series of solidification experiments to compare with the experiments about the grain refinement mechanism driven by electric currents shown in chapter 4.
Chapter 6 summarizes the main conclusions from the presented work.:Abstract VII
Contents IX
List of figures XI
List of tables XVII
1. Introduction 1
1.1 Research objectives 1
1.2 Research motivation 2
1.3 Research history 5
1.4 Electric currents effects 9
1.4.1 Some fundamentals 10
1.4.2 Role of electric currents effects in grain refinement 12
1.5 Grain refinement mechanism 13
1.5.1 Nucleation theory 13
1.5.2 Equiaxed grain formation without the application of external fields 18
1.5.3 Grain refinement mechanism under the application of electric currents 23
1.5.4 Grain refinement mechanism under the application of magnetic field 29
2. Research methods 31
2.1 Introduction 31
2.2 Experimental materials 31
2.2.1 Solidification 31
2.2.2 Similarity of GaInSn liquid metal and Al-Si melt 32
2.3 Experimental setup 33
2.3.1 Solidification 33
2.3.2 Flow measurements 35
2.3.3 External energy fields 36
2.4 Experimental procedure 38
2.4.1 Solidification 38
2.4.2 Flow measurements 39
2.5 Metallography 39
2.6 Numerical method 41
2.6.1 Numerical model 41
2.6.2 Numerical domain and boundary conditions 42
3. Role of electric currents effects in the grain refinement 45
3.1 Introduction 45
3.2 Experimental parameter 45
3.3 Results 46
3.3.1 Solidified structure 46
3.3.2 Forced melt flow 50
3.3.3 Temperature distribution 58
3.4 Discussion 61
3.5 Conclusions 67
4. Grain refinement mechanism driven by electric currents 69
4.1 Introduction 69
4.2 Experimental parameter 69
4.3 Results 73
4.3.1 Solidified structure of Al-Si alloy 73
4.3.2 Cooling curves of Al-Si alloy 77
4.3.3 Solidified structure of high purity aluminum 78
4.4 Discussion 80
4.5 Conclusions 83
5. Supplemental investigations 85
5.1 A potential approach to improve the grain refinement 85
5.1.1 Introduction 85
5.1.2 Experimental parameter 86
5.1.3 Results and discussion 87
5.2 Macrosegregation formation 90
5.2.1 Introduction 90
5.2.2 Experimental parameter 91
5.2.3 Results and discussion 92
5.3 Grain refinement driven by TMF 97
5.3.1 Introduction 97
5.3.2 Experimental parameter 97
5.3.3 Results and discussion 98
5.4 Conclusions 102
6. Summary 103
Bibliography 105
|
34 |
Structural and magnetic characterization of Nd-based Nd-Fe and Nd-Fe-Co-Al metastable alloysKumar, Golden 27 May 2005 (has links)
The aim of the present work is to characterize a metastable hard magnetic phase referred to as "A1" in Nd-Fe alloys, which forms as a part of the fine eutectic depending on the composition and cooling rate. In order to define the range of composition for the formation of A1, Nd100-xFex (x = 20, 25, 40) alloys are cooled at about 150 K/s. The results indicate that for a cooling rate of 150 K/s, the hypereutectic Nd100-xFex (x = 20) alloys solidify into hard magnetic A1 whilst the hypoeutectic alloys (x = 40) show the formation of Nd2Fe17 crystallites. However, no sample cooled at 150 K/s shows the peaks of Nd5Fe17 as expected from the equilibrium Nd-Fe phase diagram. The effect of cooling rate on the formation of hard magnetic A1 is studied by investigating the Nd80Fe20 alloys cooled at different rates. The microstructure of hard magnetic Nd80Fe20 alloys displays a fine eutectic-like matrix consisting of Nd-richer and Fe-richer regions. The Nd-richer regions are identified as dhcp Nd and fcc Nd-Fe solid solution. However, the Fe-richer regions also referred to as A1, are diffuse and give an average composition of Nd56Fe44. These regions yield complex electron diffraction patterns, which do not match with any known Nd-Fe phase. HRTEM images of the Fe-richer regions reveal the presence of 5-10 nm crystallites embedded in an amorphous phase. Thus the Fe-richer regions of the hard magnetic Nd80Fe20 specimens are not a single homogeneous phase rather they are mixture of finely dispersed nanocrystallites in an amorphous phase. The demagnetization curves the hard magnetic Nd80Fe20 measured at temperatures above 30 K are typical of a hard magnetic material. The coercivity increases from 0.48 to 4.4 T with the temperature decreasing from 300 to 55 K. The demagnetization curves change from single to two-phase type when the temperature approaches 29 K, ordering temperature of fcc Nd-Fe solid solution. The measurements of initial magnetization, field dependence of coercivity, and temperature dependence of coercivity suggest the Stoner-Wohlfarth type magnetization reversal process for the hard magnetic A1. The values of anisotropy constant are estimated by fitting the magnetization data to the law-of-approach to saturation. The temperature dependence of anisotropy constant and the coercivity indicate that the origin of coercivity is magnetic anisotropy. A cluster model with sperimagnetic arrangement of Nd and Fe spins is used to explain the hard magnetic behavior of the mold-cast Nd80Fe20. Structural and magnetic properties of multicomponent Nd60Co30-xFexAl10 (0 < x < 30) alloys are compared with the binary Nd-Fe alloys. Magnetic measurements of the multicomponent alloys show that the magnetic properties are controlled by the fraction of the Fe content. The coercivity of the Nd60Co30-xFexAl10 mold-cast rods does not vary much with the Fe-content for more than 10 at.% Fe but the remanence and the maximum magnetization increase linearly with the Fe content. The temperature dependence of coercivity, effective anisotropy constant, and anisotropy field are identical to those for the binary Nd80Fe20 mold-cast rod. These results clearly suggest that the binary Nd80Fe20 and the multicomponent Nd60Co30-xFexAl10 (x > 5) mold-cast rods are magnetically identical.
|
35 |
Electrocrystallisation of CoFe Alloys Under the Influence of External Homogeneous Magnetic fieldsKoza, Jakub 24 June 2010 (has links)
The iron-group metals and alloys are of interest because of their excellent soft magnetic properties. They have found a wide application field in the storage technology, especially for reading/writing elements in the hard drive head, and in microelectromechanical systems (MEMS). Especially the CoFe system, which possesses the highest, among others, saturation magnetisation of 2.45 T and a relatively low coercivity of about 2×10^-5 T, is of interest. These properties are crucial for the further development in the storage technology.
Electrodeposition is a very promising alternative to the physical vapour deposition techniques (PVD) to produce soft magnetic layers and microstructures. The advantage of electrodeposition in comparison to PVD processes is the fact that it is an inexpensive method. Moreover, electrodeposition is the most appropriate process for the writing head fabrication since it allows to deposit high aspect ratio layers with a thickness ranging from a few monolayers up to more than 1 um onto a complex geometry substrate.
A superposition of an external magnetic field during the electrodeposition can affect the deposit properties. Mainly the morphology of the deposited layers is influenced. This is mostly caused by the Lorentz force driven convection, i.e. the magnetohydrodynamic (MHD) effect. Whilst the knowledge of uniform external magnetic field effects on the electrodeposition of single metals has been greatly improved during the past decade, an alloy deposition is still a challenging task. Due to a lack of understanding of mechanisms of a magnetic field impact on the deposition of CoFe alloys and their technological importance a detailed investigation is of demand.
The aim of this work is to analyse in detail the effects induced by a homogeneous magnetic field with different strength and relative to the electrode surface orientation on the electrodeposition of thin CoFe alloy films of different composition. This study is divided into three major parts: an analysis of the electrochemical behaviour (1), nucleation and growth processes (2) and the determination of the morphology and the physical properties of the deposited layers (3).
1. A detailed analysis of the electrochemical processes is performed. The influence of the magnetic field with respect to its flux density and relative to the electrode surface orientation on the reactions rates has been investigated. A special attention has been given to the side reactions accompanying the metal reduction, i.e. the hydrogen evolution reaction (HER). Which has a significant impact on the layer’s properties. It has been shown that the electrochemical reaction rates are improved in the parallel to the electrode magnetic field due to the classical MHD effect. On the contrary, in the perpendicular to the electrode magnetic field nearly no effect on the metal reduction is observed, whilst the HER rate is significantly increased. The reason of that is seen in the improved desorption of hydrogen bubbles from the electrode surface due to a localized convection in a bubble vicinity, the so called micro- MHD effect. Moreover, the additional convection introduced by a magnetic field, regardless of its relative to the electrode surface orientations, leads to a reduced interface pH value. This, in turn, results in an improved layer quality, i.e. the hydroxides precipitation is inhibited.
2. The nucleation and the very beginning of the layer growth are of particular importance for thin film deposition. Since the deposit properties are determined by these processes an extensive study of the very initial stages of electrocrystallisation is presented. This was performed by an analysis of the current density vs. time transients. It was found that the nucleation behaviour can be altered by a magnetic field. The changes in the nucleation behaviour have been studied on the basis of theoretical models by an current density-time transients analysis. Regardless of the electrolyte chemistry, the magnetic field strength, and its relative to the electrode orientation, similar features in the current density-time transients have been observed.
The nucleation and growth are characterised by a layer-by-layer mode. The first nucleation and growth step at the very beginning of the potential step has been attributed to the 2D (most probably epitaxial) layer formation (up to a few monolayers), which was found unaffected by a magnetic field superposition. The 2D step is then followed by the next nucleation and growth step indicated by the occurrence of a maximum in the current density-time transients. This is attributed to the nucleation and 3D diffusion controlled growth and is altered by a magnetic field applied in the parallel-to-electrode configuration. The experimental dependencies have been examined by known theoretical models. This analysis revealed that the superposition of the parallel magnetic field leads to a retardation of the steady state nucleation rate (AN0) due to the MHD effect acting in the electrolyte. A qualitative model was proposed in order to explain this phenomenon.
In contrast, the perpendicular to the electrode magnetic field does not change the nucleation behaviour. However, the growth mode of the layer is remarkably changed, i.e. a columnar growth is observed.
3. The magnetic field impact on the electrochemical reaction rates, on the desorption of hydrogen from the electrode surface, and on the nucleation behaviour has strong consequences for the resulting layer characteristics. This can be summarized as follows:
• The most pronounced effect is noticed for the morphology of the layers. The quality of the layers deposited in a magnetic field, irrespective of its relative to the electrode orientation, is strongly improved. The reason of this is an enhanced desorption of hydrogen from the electrode surface. As a result large holes left by hydrogen bubbles observed for the layers deposited without a field disappear for the layers deposited under the influence of a magnetic field.
The layers deposited under an influence of the parallel to the electrode magnetic field appear denser and more homogeneous than the ones obtained without a magnetic field. On the contrary, the layers deposited in the perpendicular to the electrode magnetic field appeared more diverse.
The most remarkable effect has been observed for the layers deposited from the Fe and the CoFe(A) electrolyte in a perpendicular magnetic field where the grains tend to grow as separated columns in the direction of the magnetic field.
A scaling analysis has revealed a smoothing effect of a parallel magnetic field manifested in a reduced value of the roughness exponent in comparison to the layers deposited without a magnetic field. On the contrary, the roughness exponent has increased for the layers obtained in the perpendicular to the electrode magnetic field, i.e. a roughening effect of the perpendicular magnetic field is observed.
• No magnetic field effects neither on the crystal structure nor on the texture of the deposits have been observed. All layers irrespective of the deposition parameters develop a fibre texture. Nevertheless, the internal stress state of the deposited layers is affected by a magnetic field. A magnetic field applied during the deposition of alloy layers from buffered electrolytes, irrespective of its relative to the electrode orientation, reduces the internal stress of the layer. This effect is attributed to an improved desorption of hydrogen from the electrode surface, which is observed under the influence of a magnetic field.
• The chemical composition of the deposited alloy layers, irrespective of the deposition parameters, is unchanged by magnetic fields.
• The magnetic properties of the deposits are found to be affected by a magnetic field applied during the deposition. These effects are caused by microstructural changes induced by the magnetic field, i.e. the roughness of the layer, the internal stress state, and the chemical composition of the deposit. A good correlation between the coercivity and the roughness is found. Moreover, an in-plane magnetic anisotropy is observed in the alloy layers deposited under the influence of the parallel to the electrode magnetic field, where, according to the XRD investigations, isotropic properties were expected. The origin of this phenomenon is seen in a preferential same atom couples formation in the magnetic field direction. / Metalle und Legierungen der Eisengruppe sind von großem Interesse insbesondere wegen ihrer exzellenten weichmagnetischen Eigenschaften. Ein breites Anwendungsgebiet liegt in der Speichertechnologie, sie finden vorrangig Einsatz in Lese- und Schreibköpfen und in mikroelektromechanischen Systemen (MEMS). Besonders das CoFe-System, das u.a. die höchste Sättigungsmagnetisierung von 2,45 T bei einer relativ niedrigen Koerzitivfeldstärke von ca. 2×10^-5 T aufweist, ist interessant für zukünftige Entwicklungen in der Speichertechnologie.
Im Vergleich zu physikalischen Abscheideverfahren, wie PVD (physical vapor deposition) ist die Elektrokristallisation eine einfache und preiswerte Alternative zur Herstellung von weichmagnetischen Schichten und Strukturen, die sich im Herstellungsprozess von Schreib-und Leseköpfen durchgesetzt hat. Es ist möglich Schichten und komplexe geometrische Strukturen mit einer Stärke von einigen Monolagen bis zu mehr als 1µm und in hohen Aspektverhältnissen abzuscheiden.
Durch Überlagerung von externen Magnetfeldern während der Elektrodeposition können die Eigenschaften und insbesondere die Morphologie der Schichten signifikant beeinflusst werden. Die Ursache dafür besteht im Wesentlichen in der durch Lorentzkräfte angetriebenen Konvektion, die als magnetohydrodynamische Konvektion (MHD) bezeichnet wird.
Während im letzten Jahrzehnt durch grundlegende Untersuchungen der Kenntnisstand bezüglich der elektrochemischen Abscheidung einzelner Metalle in überlagerten Magnetfeldern vertieft wurde, ist das Verständnis zum Mechanismus der Legierungsabscheidung wenig erforscht und eine Herausforderung. Es besteht kaum Kenntnis zum Mechanismus der CoFe Abscheidung unter dem Einfluss externer Magnetfelder und deren Bedeutung für technologische Prozesse.
Das Ziel dieser Arbeit ist es, den Einfluss homogener Magnetfelder unterschiedlicher Stärke und Orientierung bezüglich der Elektrodenoberfläche während der Elektrokristallisation von CoFe Legierungen unterschiedlicher Zusammensetzung zu untersuchen und die magnetfeldinduzierten Effekte detailliert und grundlegend zu analysieren.
Die Arbeit ist in drei wesentliche Abschnitte gegliedert, (1) die Analyse des elektrochemischen Verhaltens, (2) die Untersuchung von Keimbildungs- und Wachstumsprozessen, (3) die Charakterisierung der Morphologie und der physikalischen Eigenschaften der Schichten.
1. Die elektrochemischen Prozesse und Abscheideraten wurden in Abhängigkeit von der magnetischen Flussdichte und Orientierung bezüglich der Elektrodenanordnung detailliert analysiert. Besondere Berücksichtigung fand die die Metallabscheidung begleitende Nebenreaktion, die Wasserstoffreduktion (HER), die signifikant die Eigenschaften der Schichten beeinflusst. Es konnte gezeigt werden, dass die Rate der Metallabscheidung in einem Magnetfeld, welches parallel zur Elektrode ausgerichtet ist, erhöht wird, was auf den klassischen MHD-Effekt zurückzuführen ist, der im Elektrolyten eine Strömung generiert. Im Gegensatz dazu wurde in einem homogenen Magnetfeld das senkrecht auf die Probe gerichtet ist, nahezu kein Einfluss auf die Reduktion der Metallionen gefunden, während die HER-Reaktion signifikant erhöht wird. Die Ursache ist in einer beschleunigten Desorption der Wasserstoffblasen von der Elektrodenoberfläche zu sehen, die durch lokale Konvektion in Blasennähe hervorgerufen und als mikro-MHD Effekt bezeichnet wird. Darüber hinaus bewirkt die magnetfeldinduzierte Konvektion unabhängig von der Magnetfeldorientierung einen geringeren Anstieg des oberflächennahen pH-Wertes. Das wiederum führt zu einer verbesserten Schichtqualität, da die spontane Bildung von Hydroxiden inhibiert wird.
2. Die Keimbildung und der Beginn des Schichtwachstums sind von besonderer Bedeutung für die Elektrokristallisation dünner Schichten, da die Schichteigenschaften wesentlich durch diese Prozesse bestimmt werden. Die Initialschritte der Elektrokristallisation wurden im Detail untersucht und dargestellt. Die Analyse erfolgt auf der Grundlage von Stromdichte-Zeit-Transienten. Es konnte gezeigt werden, dass das Keimbildungsverhalten durch ein überlagertes Magnetfeld beeinflusst wird. Unabhängig von der Zusammensetzung des Elektrolyten, der magnetischen Flussdichte und der Orientierung zur Elektrodenoberfläche wurden vergleichbare Stromdichte-Zeit-Verläufe beobachtet. Keimbildung und Wachstum können durch einen Layer-by-Layer Modus charakterisiert werden. Der erste Keimbildungs- und Wachstumsschritt, der unmittelbar nach dem Anlegen des Abscheidepotentials stattfindet, ist durch eine 2D Schichtbildung (wahrscheinlich epitaktisch) gekennzeichnet, die zur Ausbildung von einigen Monolagen führt. Dieser Schritt wird durch ein äußeres Magnetfeld nicht beeinflusst. Dem 2D-Schritt folgen weitere Keimbildungs- und Wachstumsschritte, die durch ein Maximum im Stromdichte-Zeit-Transienten gekennzeichnet sind. Das Verhalten ist auf Keimbildung und 3D diffusionskontrollierte Wachstumsprozesse zurückzuführen und wird durch ein Magnetfeld parallel zur Elektrodenoberfläche beeinflusst. Die experimentellen Ergebnisse wurden mit Hilfe bekannter theoretischer Modelle analysiert. Es wurde gezeigt, dass die Überlagerung eines parallel zur Oberfläche angeordneten Magnetdfeldes zu einer Verringerung der stationären Keimbildungsrate (AN0) führt, was ebenfalls auf die Wirkung des MHD-Effektes zurückzuführen ist. In der Arbeit wird ein qualitatives Modell für die Legierungsabscheidung in einem überlagerten homogenen Magnetfeld vorgeschlagen, das die beobachteten Phänomene erklärt. Im Gegensatz dazu wurde in einem senkrecht zur Elektrodenoberfläche ausgerichteten Magnetfeld kein Einfluss auf den Keimbildungs- und Wachstumsmechanismus anhand der Stromdichte-Zeit-Transienten festgestellt. Trotzdem wird eine stark veränderte Schichtmorphologie, die ein kolumnares Kornwachstum zeigt, beobachtet.
3. Der Einfluss eines äußeren Magnetfeldes auf die elektrochemischen Abscheideraten, auf die Desorption von Wasserstoff von der Elektrodenoberfläche und auf das Keimbildungsverhalten hat Konsequenzen auf die Schichteigenschaften. Diese können wie folgt zusammengefasst werden:
• Der Einfluss eines äußeren Magnetfeldes auf die Schichtmorphologie ist auffallend. Die Qualität der Schichten, die in einem Magnetfeld abgeschieden wurden, wird unabhängig von der Orientierung des Magnetfeldes zur Elektrodenoberfläche deutlich verbessert. Als Ursache ist die beschleunigte Desorption der Wassersoffblasen von der Elektrodenoberfläche anzusehen. Ohne äußeres Magnetfeld verbleiben große Defekte in Form von Löchern auf der Oberfläche, die durch anhaftende Wasserstoffblasen verursacht werden, die in einem überlagerten Magnetfeld nicht beobachtet werden. Schichten, die in einem Magnetfeld parallel zur Elektrodenoberfläche erhalten werden, sind dichter und homogener. Im Gegensatz dazu haben Schichten in einem senkrecht zur Oberfläche abgeschiedenen Magnetfeld eine mannigfaltige Morphologie. Schichten aus Fe und CoFe Legierungen mit einem hohen Eisenanteil wachsen in Form von separaten Körnern und Säulen in Richtung des senkrecht ausgerichteten Magnetfeldes.
Mittels Scaling-Analyse wurden Rauhigkeitsexponeten ermittelt, die den glättenden Effekt eines parallel zur Elektrode ausgerichteten Magnetfeldes auf die Schichtmorphologie bestätigen im Vergleich zu Schichten, die ohne Magnetfeld abgeschieden wurden. Die Rauhigkeitsexponenten für Schichten, die in einem senkrecht ausgerichteten Magnetfeld abgeschieden wurden, sind hingegen deutlich erhöht.
• Weder auf die kristallographische Struktur noch auf die Textur der Schichten konnte ein Einfluss des überlagerten Magnetfeldes nachgewiesen werden. Alle Schichten unabhängig von den Abscheidebedingungen weisen eine Fasertextur auf. Trotzdem konnte ein signifikanter Einfluss des Magnetfeldes auf die innere Spannung der Schichten bestätigt werden. Insbesondere vermindert sich die innere Spannung von Schichten unabhängig von der Orientierung des angelegten Magnetfeldes, die aus einem gepufferten Elektrolyten abgeschieden wurden. Die Ursache ist auch hier auf die verbesserte Desorption von Wasserstoff zurückzuführen.
• Die chemische Zusammensetzung der Schicht wird für die untersuchten Systeme durch ein Magnetfeld nicht verändert.
• Die magnetischen Eigenschaften der Schichten werden beeinflußt, wenn während der Elektrokristallisation ein Magnetfeld überlagert wird. Diese Effekte werden durch die mikrostrukturellen Veränderungen, die durch ein überlagertes Magnetfeld induziert werden verursacht, d.h. durch die Rauhigkeit der Schicht, die innere Schichtspannung und die chemische Zusammensetzung. Es wird eine gute Korrelation zwischen der Koerzitivfeldstärke und Rauhigkeit der Schichten gefunden. Darüber hinaus wurde eine in-plane Anisotropie beobachtet, wenn während der Elektrokristallisation ein Magnetfeld parallel zur Elektrodenoberfläche angelegt wurde, obwohl aus röntgenographischen Untersuchungen isotrope Eigenschaften erwartet wurden. Als Ursache für dieses Phänomen wird eine bevorzugten Ausbildung und Ausrichtung von gleichatomigen Paaren im Magnetfeld angenommen.
|
36 |
Phase formation and mechanical properties of metastable Cu-Zr-based alloysPauly, Simon 30 June 2010 (has links)
In the course of this PhD thesis metastable Cu50Zr50-xTix (0≤ x ≤ 10) and (Cu0.5Zr0.5)100-xAlx (5 ≤ x ≤ 8) alloys were prepared and characterised in terms of phase formation, thermal behaviour, crystallisation kinetics and most importantly in terms of mechanical properties.
The addition of Al clearly enhances the glass-forming ability although it does not affect the phase formation. This means that the Cu-Zr-Al system follows the characteristics of the binary Cu-Zr phase diagram, at least for Al additions up to 8 at.%. Conversely, the presence of at least 6 at.% Ti changes the crystallisation sequence of Cu50Zr50-xTix metallic glasses and a metastable C15 CuZrTi Laves phase (Fd-3m) precipitates prior to the equilibrium phases, Cu10Zr7 and CuZr2. A structurally related phase, i.e. the “big cube” phase (Cu4(Zr,Ti)2O, Fd-3m), crystallises in a first step when a significant amount of oxygen, on the order of several thousands of mass-ppm (parts per million), is added. Both phases, the C15 Laves as well as the big cube phase, contain pronounced icosahedral coordination and their formation might be related to an icosahedral-like short-range order of the as-cast glass. However, when the metallic glasses obey the phase formation as established in the binary Cu-Zr phase diagram, the short-range order seems to more closely resemble the coordination of the high-temperature equilibrium phase, B2 CuZr.
During the tensile deformation of (Cu0.5Zr0.5)100-xAlx bulk metallic glasses where B2 CuZr nanocrystals precipitate polymorphically in the bulk and some of them undergo twinning, which is due to the shape memory effect inherent in B2 CuZr. Qualitatively, this unique deformation process can be understood in the framework of the potential energy landscape (PEL) model. The shear stress, applied by mechanically loading the material, softens the shear modulus, thus biasing structural rearrangements towards the more stable, crystalline state. One major prerequisite in this process is believed to be a B2-like short-range order of the glass in the as-cast state, which could account for the polymorphic precipitation of the B2 nanocrystals at a comparatively small amount of shear. Diffraction experiments using high-energy X-rays suggest that there might be a correlation between the B2 phase and the glass structure on a length-scale less than 4 Å. Additional corroboration for this finding comes from the fact that the interatomic distances of a Cu50Zr47.5Ti2.5 metallic glass are reduced by cold-rolling. Instead of experiencing shear-induced dilation, the atoms become more closely packed, indicating that the metallic glass is driven towards the more densely packed state associated with the more stable, crystalline state.
It is noteworthy, that two Cu-Zr intermetallic compounds were identified to be plastically deformable. Cubic B2 CuZr undergoes a deformation-induced martensitic phase transformation to monoclinic B19’and B33 structures, resulting in transformation-induced plasticity (TRIP effect). On the other hand, tetragonal CuZr2 can also be deformed in compression up to a strain of 15%, yet, exhibiting a dislocation-borne deformation mechanism.
The shear-induced nanocrystallisation and twinning seem to be competitive phenomena regarding shear band generation and propagation, which is why very few shear offsets, due to shear banding, can be observed at the surface of the bulk metallic glasses tested in quasistatic tension. The average distance between the crystalline precipitates is on the order of the typical shear band thickness (10 - 50 nm) meaning that an efficient interaction between nanocrystals and shear bands becomes feasible. Macroscopically, these microscopic processes reflect as an appreciable plastic strain combined with work hardening.
When the same CuZr-based BMGs are tested in tension at room temperature and at high strain rate (10-2 s-1) there seems to be a “strain rate sensitivity”, which could be related to a crossover of the experimental time-scale and the time-scale of the intrinsic deformation processes (nanocrystallisation, twinning, shear band generation and propagation). However, further work is required to investigate the reasons for the varying slope in the elastic regime.
As B2 CuZr is the phase, that competes with vitrification, it precipitates in a glassy matrix if the cooling rate is not sufficient to freeze the structure of the liquid completely. The pronounced work hardening and the plasticity of the B2 phase, which are a result of the deformation-induced martensitic transformation, leave their footprints in the stress-strain curves of these bulk metallic glass matrix composites. The behaviour of the yield strength as a function of the crystalline volume fraction can be captured by the rule of mixtures at low crystalline volume fractions and by the load bearing model at high crystalline volume fractions. In between both of these regions there is a transition caused by percolation (impingement) of the B2 crystals. Furthermore, the fracture strain can be modelled as a function of the crystalline volume fraction by a three-microstructural-element body and the results imply that the interface between B2 crystals and glassy matrix determines the plastic strain of the composites. The combination of shape memory crystals and a glassy matrix leads to a material with a markedly high yield strength and an enhanced plastic strain.
In the CuZr-based metastable alloys investigated, there is an intimate relationship between the microstructure and the mechanical properties. The insights gained here should prove useful regarding the optimisation of the mechanical properties of bulk metallic glasses and bulk metallic glass composites.:Abstract/Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . vii
Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . xiii
1 Metallic glasses and bulk metallic glasses . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Structure of metallic glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Glass formation and transformation kinetics . . . . . . . . . . . . . . . . . . 4
1.2.1 Crystallisation kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Glass-forming ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Fragility concept of metallic glasses . . . . . . . . . . . . . . . . . . . 10
1.3 Mechanical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 The potential energy landscape concept . . . . . . . . . . . . . . . . . 16
1.3.2 Role of the shear modulus upon flow of a glass . . . . . . . . . . . . . 20
1.3.3 Factors affecting plastic deformation of BMGs . . . . . . . . . . . . . 25
1.4 Metastable Cu-Zr-based alloys . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.1 Binary Cu-Zr glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4.2 Minor additions of Al and Ti to glassy Cu-Zr . . . . . . . . . . . . . . 33
2 Synthesis and characterisation methods . . . . . . . . . . 35
2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.1 Melt spinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.2 Cu-mould suction casting . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 X-ray diffraction/in-situ experiments . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Optical microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Scanning electron microscopy . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.3 Transmission electron microscopy . . . . . . . . . . . . . . . . . . . . 39
2.4 Calorimetry/ Dilatometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Ultrasound velocity measurements . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Mechanical testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3 Effect of oxygen on Cu-Zr-(Ti) alloys . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1 Influence of casting parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Phase formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4 Effect of Ti and Al on Cu-Zr glasses . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Phase formation and thermal stability . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Crystallisation kinetics and fragility . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 Isothermal calorimetric measurements . . . . . . . . . . . . . . . . . . 64
4.2.2 Isochronal calorimetric measurements . . . . . . . . . . . . . . . . . . 67
4.3 Structure of Cu-Zr-(Al/Ti) glasses . . . . . . . . . . . . . . . . . . . . . . . . 71
5 Glassy Cu-Zr-(Al/Ti) alloys . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1 Deformation behaviour of glassy ribbons . . . . . . . . . . . . . . . . . . . . 79
5.2 Deformation behaviour of bulk metallic glasses . . . . . . . . . . . . . . . . . 83
5.2.1 Compression tests of Cu50Zr50 . . . . . . . . . . . . . . . . . . . . . . 83
5.2.2 Tensile tests of (Cu0.5Zr0.5)100-xAlx . . . . . . . . . . . . . . . . . . . . 85
5.2.3 Fractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.4 High-strain rate tensile tests . . . . . . . . . . . . . . . . . . . . . . . . 104
6 Cu-Zr intermetallic compounds . . . . . . . . . . . . . . . . . . . . . . . . 111
6.1 Deformation behaviour of Cu10Zr7 and CuZr2 . . . . . . . .. . . . . . . . 111
6.2 Deformation behaviour of B2 CuZr . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 Relation between intermetallics and BMGs . . . . . . . . . . . . . . . . . . . 119
7 Cu-Zr-(Al/Ti) BMG matrix composites . . . . . . . . . . . . . . . . . . . . . . . . 123
7.1 Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Deformation behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 137
9 Outlook . . . . . . . . . . . . . . . . . . . . . . . . 139
10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . 143
10.1 Isochronal transformation kinetics (Kissinger) . . . . . . . . . . . . . . . . 143
10.2 Isothermal crystallisation kinetics (Johnson-Mehl-Avrami) . . . . . . . 144
10.3 The fragility concept of metallic glasses . . . . . . . . . . . . . . . . . . . . . 144
10.4 Flow of liquids in the PEL picture . . . . . . . . . . . . . . . . . . . . . . . . . 146
10.5 The interstitialcy theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 149
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . 151
|
37 |
Magnetic Properties Studied by Density Functional Calculations Including Orbital Polarisation CorrectionsNeise, Carsten 08 June 2011 (has links)
Mit Hilfe der Dichtefunktionaltheorie wurden magnetische Eigenschaften an 3d Elementen und Legierungen und 5f Verbindungen untersucht. Dabei wurde auf die Wichtigkeit von Orbitalpolarisationskorrekturen eingegangen und diese näher erörtert. Im ersten Anwendungsteil wurden magnetische Momente und die Magnetokristalline Anisotropie Energie an 3d Elementen untersucht. Des Weiteren wurden FeCo Legierungen als mögliche Bestandteile in der Festplattenindustrie diskutiert. Im letzten Abschnitt wurden Uranverbindungen in Hinsicht auf Ihre Orbitalpolarisation untersucht.:1 Introduction 1
2 Theoretical Considerations 5
2.1 Quantum Mechanics Applied to Solids . . . . . . . . . . . . . . . 6
2.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 non-Relativistic DFT . . . . . . . . . . . . . . . . . . . . 7
2.2.1.1 Hohenberg and Kohn . . . . . . . . . . . . . . . 7
2.2.1.2 Kohn-Sham Equations . . . . . . . . . . . . . . 10
2.2.1.3 Local Density Approximation and More . . . . 12
2.2.2 Relativistic DFT . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 FPLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Magneto-Crystalline Anisotropy Energy . . . . . . . . . . . . . . 18
2.5 Disorder within DFT . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Orbital Polarisation in DFT 23
3.1 Hund’s Rules in DFT . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 An Introduction to OPC and DFT . . . . . . . . . . . . . . . . . 25
3.2.1 OPC Brooks . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 OPC Eschrig . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Transition Metals 39
4.1 Fe, Co, and Ni . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.1 Calculational Details . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Fe1−xCox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Fixed Spin Moment Calculations . . . . . . . . . . . . . . 50
4.2.3 Epitaxial Bain Path . . . . . . . . . . . . . . . . . . . . . 51
4.2.4 Calculational Details . . . . . . . . . . . . . . . . . . . . 54
4.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.6 LSDA vs. GGA . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5 Uranium Compounds 75
5.1 UX, with X = (N, P, As, Sb, O, S, Se, and Te) . . . . . . . . 77
5.1.1 UN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1.2 UX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 UM2, with M = (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) 90
5.2.1 Calculational Details . . . . . . . . . . . . . . . . . . . . 90
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 UAsSe, USb2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.1 Calculational Details . . . . . . . . . . . . . . . . . . . . 97
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6 Summary and Outlook 101
A Definitions i
A.1 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . i
A.2 Other Definitions Used in Text . . . . . . . . . . . . . . . . . . . ii
B Input Parameters for the Racah Parameter iii
B.1 d-Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
B.2 f-Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Biblography vi
Acknowledgement xxiv
Versicherung xxvii
|
38 |
Microstructure, lattice strain and mechanical properties of single phase multi-component alloysThirathipviwat, Pramote 05 July 2019 (has links)
The high entropy alloys (HEAs) have been developed based on the concept of entropic stabilization associated with a large number of constituent elements. The high configurational entropy in HEAs is expected to cause promising characteristic properties, i.e. high microstructural stability and high mechanical properties. In this study, the equiatomic fcc-structured FeNiCoCrMn and the bcc-structured TiNbHfTaZr single phase high entropy alloys (HEAs) were investigated regarding the effect of multiple atom species on microstructure, intrinsic lattice strain and mechanical properties. In a comparison with the HEAs, the sub-alloys having less chemical complexity were studied. The selected sub-alloys of the FeNiCoCrMn HEA were FeNiCoCr, FeNiCo, FeNi alloys and pure Ni, while equiatomic TiNbHfTa, TiNbHf, TiNb alloys and pure Nb were studied to compare with the TiNbHfTaZr HEA.
The samples in this study were prepared by arc-melting, cold-crucible casting and thermomechanical treatment. The thermal phase stability of the FeNiCoCrMn HEA, TiNbHfTaZr HEA and their sub-alloys were observed and no second phase was formed between 300 - 1500 K. In high entropy alloys, the random arrangement of multiple atom species is assumed to cause large atomic displacements at lattice sites, which give rise to a severe lattice distortion. The evidences of lattice distortion in HEAs have been limitedly reported due to a difficulty of experimental investigation. In this work, the pair distribution function (PDF) method was used to assess local strain with analysis of diffuse intensities on total synchrotron X-ray scattering data. The current study found that the level of local lattice strain associated with atomic displacement was a function of atomic size misfit. The local lattice strain of the FeNiCoCrMn HEA was small and comparable to that of the sub-alloys which obtain similar values of the atomic size misfit. In contrast to the FeNiCoCrMn system, the magnitude of the local lattice strain increased with the value of atomic size misfit from the unary Nb sample to the quinary TiNbHfTaZr HEA. The lattice distortion was evident in the TiNbHfTaZr HEA due to large local lattice strain, but the local lattice strain of the FeNiCoCrMn HEA was not anomalously large. The level of lattice strain determines the solid solution hardening as a consequence of the elastic interaction between dislocations and atoms. The comparable level of the lattice strain in the FeNiCoCrMn HEA, its sub-alloys and Ni sample led to narrow range of hardness (64 – 132 HV) and tensile yield strength (60 – 192 MPa). For the bcc-structured samples, the hardness and the yield strength significantly varied depending on the level of local lattice strain, between 80 – 327 HV of hardness and 207 – 985 MPa of tensile yield strength. It is clear from the result that the atomic size misfit influences the level of the local lattice strain and the solid solution hardening.
Cold rotary swaging was used to study the work hardening in the HEAs because it can delay fracture by large hydrostatic stresses. The large plastic deformability was observed in the FeNiCoCrMn and TiNbHfTaZr HEAs. The TiNbHfTaZr HEA was cold-swaged by 90% reduction of the cross-sectional area without intermediate annealing. The FeNiCoCrMn HEA was swaged until 85% reduction of the cross-sectional area; however, it was observed that it could be further deformed. The dislocation densities of the HEAs and its sub-alloys after the cold deformation were calculated as in the range between 1014 - 1015 m-2, in a good agreement with reported values of conventional metals after severe plastic deformation. This finding suggested that the level of dislocation density storage was correlated with the number of the constituent elements, the level of lattice distortion associated with atomic size misfit and the intrinsic properties (i.e. the stacking fault energy and the melting point). Whereas the intrinsic lattice strains of the FeNiCoCrMn HEA and its sub-alloys were comparable, the levels of dislocation storage were different possibly due to a difference of stacking fault energy. For the bcc-structured samples, the dislocation densities of the TiNbHfTaZr HEA, TiNbHfTa and TiNbHf alloys were large due to the large atomic size misfits. The high dislocation density leads to strong interactions between dislocations, which results in high resistance to dislocation motions. The high mechanical properties (hardness and yield strength) in the as-deformed FeNiCoCrMn and TiNbHfTaZr HEA were presented with the evidence of high dislocation densities. Moreover, the hardness and yield strength of the FeNiCoCrMn HEA significantly increased by the deformation, while those of the TiNbHfTaZr HEA after the deformation were slightly changed from the undeformed HEA. The large work hardenability of the FeNiCoCrMn HEA is possibly caused by small solid solution hardening and ease of twin formation.
The research results suggest a further step towards designing an alloy composition for a development of microstructure and mechanical properties of high entropy alloys. It is evidently clear from the findings that the large number of constituent elements (in a term of high configurational entropy) is not only a factor in the determination of lattice distortion, microstructure and mechanical properties, but the type and the combination of constituent elements including the atomic interactions (i.e. atomic size misfit) have also an effect.:Abstract v
Zusammenfassung ix
Contents xiii
1. Motivation and objectives 1
2. Fundamentals 5
2.1 Concept of high entropy alloys 5
2.1.1 Phase formation and thermodynamic 5
2.1.2 Four core effects 10
2.2 Alloy classification of high entropy alloys 13
2.3 Mechanical properties of high entropy alloys 14
3. Experiments 19
3.1 Alloy preparation 19
3.1.1 Alloy selection 19
3.1.2 Melting and casting 21
3.1.3 Thermomechanical treatment 23
3.2 Sample characterization 27
3.2.1 Chemical analyses 27
3.2.2 Differential scanning calorimetry (DSC) 27
3.2.3 Scanning electron microscopy and microstructural analyses 28
3.2.4 X-ray diffraction (XRD) 29
3.2.5 High energy synchrotron X-ray diffraction 29
3.2.6 Mechanical Properties 33
4. Thermal phase stability of single phase high entropy alloys 35
5. An assessment of lattice strain in single phase high entropy alloys 49
5.1 Analysis of micro lattice strain on fcc- and bcc-structured high entropy alloys 50
5.2 Analysis of local lattice strain on fcc- and bcc-structured high entropy alloys 56
6. Solid solution hardening in single phase high entropy alloys 65
6.1 Hardness of fcc- and bcc-structured high entropy alloys 65
6.2 Tensile strength of fcc- and bcc-structured high entropy alloys 70
6.3 Correlation between atomic size misfit and solid solution hardening in Ti-Nb-Hf-Ta-Zr system 82
7. Work hardening in single phase high entropy alloys 91
7.1 Work hardenability of fcc- and bcc-structured high entropy alloys 91
7.2 Dislocation density of fcc- and bcc-structured high entropy alloys after cold swaging 93
8. Summary and outlook 109
8.1 Summary 109
8.2 Outlook 112
References 113
Acknowledgements 131
Erklärung 133 / Die Hochentropielegierungen (HELen) wurden auf der Grundlage des Konzepts der entropischen Stabilisierung entwickelt, was eine große Anzahl von Legierungselementen beinhaltet. Es wird erwartet, dass die hohe Konfigurationsentropie in HELen vielversprechende charakteristische Eigenschaften hervorruft, d.h. hohe mikrostrukturelle Stabilität und hohe mechanische Eigenschaften. In dieser Studie wurden die äquiatomare kfz-strukturierte FeNiCoCrMn und die krz-strukturierte TiNbHfTaZr Einphasen-Hochentropielegierung hinsichtlich der Wirkung mehrerer Atomarten auf das Gefüge, die intrinsische Gitterdehnung und die mechanischen Eigenschaften untersucht. Im Vergleich zu den HELen wurden die Sublegierungen mit geringerer chemischer Komplexität untersucht. Die ausgewählten Sublegierungen der FeNiCoCrMn HEL waren FeNiCoCr, FeNiCo, FeNi-Legierungen und reines Ni, während äquiatomare TiNbHfTa, TiNbHf, TiNbHf, TiNb-Legierungen und reines Nb im Vergleich zur TiNbHfTaZr HEL untersucht wurden.
Die Proben in dieser Studie wurden durch Lichtbogenschmelzen, Kalttiegelguss und thermomechanische Behandlung hergestellt. Die thermische Phasenstabilität der FeNiCoCrMn HEL, der TiNbHfTaZr HEL und ihrer Sublegierungen wurde untersucht und es wurde keine zweite Phase zwischen 300 - 1500 K gebildet. Bei Hochentropielegierungen wird angenommen, dass die zufällige Anordnung mehrerer Atomarten zu großen Atomverschiebungen an den Gitterplätzen führt, die eine starke Gitterverzerrung hervorrufen. Aufgrund der Schwierigkeit der experimentellen Untersuchung wurden Beweise für Gitterverzerrungen bei HELen nur begrenzt berichtet. In dieser Studie wurde die Methode der Paarverteilungsfunktion (PDF) verwendet, um die lokale Dehnung mit Analyse der diffusen Intensitäten der gesamten Synchrotron-Röntgenstreuungsdaten zu beurteilen. Die aktuelle Studie ergab, dass die Höhe der lokalen Gitterdehnung, die mit der atomaren Verschiebung einhergeht, eine Funktion der Differenz der Atomgröße ist. Die lokale Gitterdehnung der FeNiCoCrMn HEL war klein und vergleichbar mit der der Sublegierungen, für die ähnliche Werte für die Atomgrößen-Unterschiede ermittelt wurden. Im Gegensatz zum FeNiCoCrMn-System stieg die Größe der lokalen Gitterdehnung mit dem Wert der Atomgrößendifferenz von der unären Nb-Probe bis zur quinären TiNbHfTaZr HEL. Die Gitterverzerrung war in der TiNbHfTaZr HEL aufgrund der großen lokalen Gitterdehnung offensichtlich, wohingegen die lokale Gitterdehnung der FeNiCoCrMn HEL nicht ungewöhnlich groß war. Die Höhe der Gitterdehnung bestimmt die Mischkristallverfestigung als Folge der elastischen Wechselwirkung zwischen Versetzungen und Atomen. Der vergleichbare Wert der Gitterdehnung in der FeNiCoCrMn HEL, seinen Sublegierungen und den Ni-Proben führte zu einem engen Härte- (64 - 132 HV) und Streckgrenzenbereich (60 - 192 MPa). Für die krz-strukturierten Proben variierten die Härte und die Streckgrenze dagegen je nach Höhe der lokalen Gitterdehnung signifikant, d.h zwischen 80 - 327 HV hinsichtlich der Härte und zwischen 207 - 985 MPa hinsichtlich der Streckgrenze. Aus dem Ergebnis ist ersichtlich, dass die Differenz der Atomgröße einen Einfluss auf die Höhe der lokalen Gitterdehnung und die Mischkristallverfestigung hat.
Das Kalthämmen wurde für die Untersuchung der Kaltverfestigung in den HELen genutzt, da es den Bruch durch die großen hydrostatischen Spannungen verzögern kann. Die große plastische Verformbarkeit wurde bei den FeNiCoCrMn und TiNbHfTaZr HELen beobachtet. Die TiNbHfTaZr HEL wurde ohne Zwischenglühen um 90% der Querschnittsfläche kaltgehämmert. Die FeNiCoCrMn HEL wurde bis zu einer Verkleinerung der Querschnittsfläche von 85% gehämmert, wobei jedoch eine weitere Verformung möglich gewesen wäre. Die Versetzungsdichten der HELen und ihrer Sublegierungen wurden nach dem Verformung in einem Bereich zwischen 1014 - 1015 m-2 berechnet, was in guter Übereinstimmung mit den berichteten Werten konventioneller Metalle nach starker plastischer Verformung ist. Dieses Ergebnis deutete darauf hin, dass die Höhe der gespeicherten Versetzungsdichte mit der Anzahl der beinhaltenden Elemente, dem Grad der Gitterverzerrung im Zusammenhang mit der Differenz der Atomgröße und den intrinsischen Eigenschaften (d.h. der Stapelfehlerenergie und dem Schmelzpunkt) korreliert. Obwohl die intrinsischen Gitterdehnungen der FeNiCoCrMn HEL und seiner Sublegierungen vergleichbar waren, waren die Werte der gespeicherten Versetzungen unterschiedlich, was möglicherweise an einer Differenz der Stapelfehlerenergie lag. Für die krz-strukturierten Proben waren die Versetzungsdichten der TiNbHfTaZr HEL, der TiNbHfTa- und der TiNbHf-Legierungen aufgrund der großen Atomgrößenunterschiede hoch. Die hohe Versetzungsdichte bewirkt starke Wechselwirkungen zwischen den Versetzungen, was zu einem hohen Widerstand gegen Versetzungsbewegungen führt. Die hohen mechanischen Eigenschaften (Härte und Streckgrenze) in den verformten FeNiCoCrMn und TiNbHfTaZr HELen wurden mit dem Nachweis hoher Versetzungsdichten belegt. Darüber hinaus wurden die Härte und die Streckgrenze des FeNiCoCrMn HEL durch das Kalthämmern deutlich erhöht, während die der TiNbHfTaZr HEL nach dem Hämmerprozess nur leicht gegenüber der unverformten HEL verändert wurden. Die große Kaltverfestigung der FeNiCoCrMn HEL ist möglicherweise auf eine geringe Mischkristallhärtung und eine geringfügige Zwillingsbildung zurückzuführen.
Die Forschungsergebnisse empfehlen für die Entwicklung des Gefüges und der mechanischen Eigenschaften von Hochentropielegierungen weitere Schritte hinsichtlich eines zielführenden Legierungsdesigns durchzuführenhin. Aus den Ergebnissen geht eindeutig hervor, dass die große Anzahl an Legierungselementen ( hinsichtlich einer hochkonfigurativen Entropie) nicht die einzige Einflussgrößebei der Bestimmung von Gitterverzerrungen, dem Gefüge und der mechanischen Eigenschaften darstellt, sondern auch die Art und die Kombination der Legierungselementen einschließlich der atomaren Wechselwirkungen (d.h. Atomgrößenunterschiede) einen Effekt haben.:Abstract v
Zusammenfassung ix
Contents xiii
1. Motivation and objectives 1
2. Fundamentals 5
2.1 Concept of high entropy alloys 5
2.1.1 Phase formation and thermodynamic 5
2.1.2 Four core effects 10
2.2 Alloy classification of high entropy alloys 13
2.3 Mechanical properties of high entropy alloys 14
3. Experiments 19
3.1 Alloy preparation 19
3.1.1 Alloy selection 19
3.1.2 Melting and casting 21
3.1.3 Thermomechanical treatment 23
3.2 Sample characterization 27
3.2.1 Chemical analyses 27
3.2.2 Differential scanning calorimetry (DSC) 27
3.2.3 Scanning electron microscopy and microstructural analyses 28
3.2.4 X-ray diffraction (XRD) 29
3.2.5 High energy synchrotron X-ray diffraction 29
3.2.6 Mechanical Properties 33
4. Thermal phase stability of single phase high entropy alloys 35
5. An assessment of lattice strain in single phase high entropy alloys 49
5.1 Analysis of micro lattice strain on fcc- and bcc-structured high entropy alloys 50
5.2 Analysis of local lattice strain on fcc- and bcc-structured high entropy alloys 56
6. Solid solution hardening in single phase high entropy alloys 65
6.1 Hardness of fcc- and bcc-structured high entropy alloys 65
6.2 Tensile strength of fcc- and bcc-structured high entropy alloys 70
6.3 Correlation between atomic size misfit and solid solution hardening in Ti-Nb-Hf-Ta-Zr system 82
7. Work hardening in single phase high entropy alloys 91
7.1 Work hardenability of fcc- and bcc-structured high entropy alloys 91
7.2 Dislocation density of fcc- and bcc-structured high entropy alloys after cold swaging 93
8. Summary and outlook 109
8.1 Summary 109
8.2 Outlook 112
References 113
Acknowledgements 131
Erklärung 133
|
39 |
Non-equilibrium solidification of high-entropy alloys monitored in situ by X-ray diffraction and high-speed videoFernandes Andreoli, Angelo 07 February 2022 (has links)
High-entropy alloys (HEAs) have attracted significant interest in the materials science community over the last 15 years. At the first moment, what caught the attention was the fact that these alloys tend to form solid solutions at room temperature, despite being composed of multiple elements in equiatomic or near-equiatomic concentrations. It was initially concluded that the configurational entropy plays a key role in the stabilization of the solid solutions. Later studies revealed the importance of lattice strain enthalpies, enthalpies of mixing, structural mismatch of constituents, and kinetics in phase formation/stability.
The study presented in this thesis was branched into three major parts, all related to understanding phase formation, stability, or metastability in this class of alloys. The first part deals with developing an empirical method to predict single-phase solid solution formation in multi-principal element alloys. The second, which makes the core of this thesis, are non-equilibrium solidification studies of CrFeNi and CoCrNi medium-entropy alloys, and CoCrFeNi, Al0.3CoCrFeNi, and NbTiVZr high-entropy alloys. The last part is devoted to understanding the thermophysical properties of CrFeNi, CoCrNi, and CoCrFeNi medium- and high-entropy alloys.
An empirical approach, based on the theoretical elastic-strain energy, has been developed to predict the phase formation and its stability for complex concentrated alloys. The conclusiveness of this approach is compared with the traditional empirical rules based on the atomic-size mismatch, enthalpy of mixing, and valence-electron concentration for a database of 235 alloys. The proposed “elastic-strain energy vs. valence-electron concentration” criterion shows an improved ability to distinguish between single-phase solid solutions, mixtures of solid solutions, and intermetallic phases when compared to the available empirical rules used to date. The criterion is especially strong for alloys that precipitate the μ phase. The elastic-strain-energy parameter can be combined with other known parameters, such as those noted above, to establish new criteria which can help in designing novel complex concentrated alloys with the on-demand combination of mechanical properties.
The solidification behavior of the CoCrFeNi high-entropy alloy and the ternary CrFeNi and CoCrNi medium-entropy suballoys has been studied in situ using high-speed video-camera and synchrotron X-ray diffraction (XRD) on electromagnetically levitated samples at Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden) and German Synchrotron DESY, Hamburg. In all alloys, the formation of a primary metastable body-centered cubic bcc phase was observed if the melt was sufficiently undercooled. The delay time for the onset of the nucleation of the stable face-centered cubic fcc phase, occurring within bcc crystals, is inversely proportional to the melt undercooling. The experimental findings agree with the stable and metastable phase equilibria for the (CoCrNi)-Fe section. Crystal-growth velocities for the CrFeNi, CoCrNi, and CoCrFeNi medium- and high-entropy alloys, extracted from the high-speed video sequences in the present study, are comparable to the literature data for Fe-rich Fe-Ni and Fe-Cr-Ni alloys, evidencing the same crystallization kinetics. The effect of melt undercooling on the microstructure of solidified samples is analyzed and discussed in the thesis.
To understand the effect of Al addition on the non-equilibrium solidification behavior of the equiatomic CoCrFeNi alloy, the Al0.3CoCrFeNi HEA has been studied. While the quaternary alloy melt could be significantly undercooled, this was not possible in the five-component alloy. Therefore, the investigations on phase formation, crystal growth, and microstructural evolution were confined to the low undercooling regime. In situ XRD measurements revealed that the liquid crystallized into a fcc single-phase solid solution at this undercooling level. However, ex situ XRD revealed the precipitation of the ordered L12 phase for a sample solidified with ΔT = 30 K. Crystal growth velocities are shown to be smaller than in the CoCrFeNi, CrFeNi, and CoCrNi alloys; nonetheless, they are in the same order of magnitude. Spontaneous grain refinement, without the formation of crystal twins, is observed at low undercooling of ΔT = 70 K, which could be explained by the dendrite tip radius dependence on melt undercooling.
In situ studies of the equiatomic NbTiVZr refractory high-entropy alloys revealed the effect of processing conditions on the high-temperature phase formation. When the melt was undercooled over 80 K, it crystallized as a bcc single-phase solid solution despite solute partitioning between the dendritic and interdendritic regions. When the sample was solidified from the semisolid state, it resulted in the formation of two additional bcc phases at the interdendritic regions. The crystal growth velocity, as estimated from the high-speed videos, showed pronounced sluggish kinetics: it is 1 to 2 orders of magnitude smaller compared to literature data of other medium and high-entropy alloys.
The study of the linear expansion coefficient α and heat capacity at constant pressure 𝐶𝑝 of the equiatomic CoCrFeNi and the medium-entropy CrFeNi and CoCrNi alloys revealed an anomalous behavior with S-shaped curves in the temperature range of 700 – 950 K. The anomalous behavior is shown to be reversible as it occurred during the first and second heating. However, a minimum is only observed on the first heating, while in the second heating a sudden increase of both the α and 𝐶𝑝 occurs at the temperature of the onset of the minima in the first heating. Magnetic moment measurements as a function of temperature showed that the observed anomaly is not associated with the Curie temperature. Consideration of the structural and microstructural evaluation discards a first-order phase transformation or recrystallization as probable causes, at least for the CoCrFeNi and CoCrNi alloys. Based on literature evidence, the anomalies in the temperature dependences of the linear expansion coefficient and heat capacity are believed to be caused by a chemical short-range order transition known as the K-state effect. However, to reveal the exact nature of this phenomenon, further experimental and theoretical studies are required, which is outside the frame of the present work.:Abstract ....................................................................................................................... I
Kurzfassung .............................................................................................................. IV
Chapter 1: Motivation and Fundamentals .................................................................. 1
1.1 Introduction .......................................................................................................... 1
1.2 The high-entropy alloy (HEA) design concept ...................................................... 4
1.3 Empirical rules of phase formation for HEAs ....................................................... 6
1.4 Calculation of phase diagrams of HEAs ............................................................. 18
1.5 The core effects of HEAs ................................................................................... 20
1.5.1 Lattice distortion .............................................................................................. 20
1.5.2 Sluggish diffusion ............................................................................................ 22
1.5.3 Cocktail effect................................................................................................... 23
1.6 Mechanical properties ........................................................................................ 24
1.6.1 Lightweight high-entropy alloys ....................................................................... 24
1.6.2 Overcoming the strength-ductility tradeoff ...................................................... 26
1.6.3 Cryogenic high-entropy alloys ......................................................................... 28
1.6.4 Refractory high-entropy alloys ........................................................................ 30
1.7 Functional properties .......................................................................................... 33
1.7.1 Soft magnetic properties ................................................................................. 33
1.7.2 Magnetocaloric properties ............................................................................... 35
1.7.3 Hydrogen storage ............................................................................................ 36
Chapter 2: Experimental .......................................................................................... 38
2.1 Sample preparation ............................................................................................ 38
2.2 Electromagnetic levitation .................................................................................. 40
2.3 In situ X-ray diffraction ........................................................................................ 43
2.4 Microstructural and structural analysis ............................................................... 44
2.5 Thermal analysis ................................................................................................ 45
2.6 Dilatometry ......................................................................................................... 45
2.7 Magnetic moment ............................................................................................... 46
2.8 Heat treatment ................................................................................................... 46
Chapter 3: In situ study of non-equilibrium solidification of CoCrFeNi high-entropy alloy and CrFeNi and CoCrNi ternary suballoys ...................................................... 47
3.1 Introduction ........................................................................................................ 47
3.2 Results ............................................................................................................... 48
3.2.1 In situ synchrotron X-ray diffraction ................................................................. 48
3.2.2 High-speed video imaging ............................................................................... 52
3.2.3 Microstructure of the solidified samples .......................................................... 62
3.3 Discussion .......................................................................................................... 64
3.3.1 bcc-fcc nucleation and growth competition ..................................................... 64
3.3.2. Crystal growth kinetics ................................................................................... 68
3.3.3. Microstructural evolution ................................................................................ 70
Chapter 4: The effect of Al addition to the CoCrFeNi alloy on the non-equilibrium solidification behaviour.............................................................................................. 72
4.1 Introduction ........................................................................................................ 72
4.2 Results and Discussion ...................................................................................... 73
Chapter 5: Non-equilibrium solidification of the NbTiVZr refractory high-entropy alloy ................................................................................................................................. 84
5.1 Introduction ........................................................................................................ 84
5.2 Results ............................................................................................................... 85
5.2.1 In situ synchrotron X-ray diffraction ................................................................. 85
5.2.2 Room temperature synchrotron X-ray diffraction ............................................ 88
5.2.3 High-speed video imaging ............................................................................... 89
5.2.4 Microstructure and structure analysis ............................................................. 91
5.3 Discussion .......................................................................................................... 94
5.3.1 Phase formation upon solidification ................................................................ 94
5.3.2 Crystal growth kinetics .................................................................................... 98
5.3.3 Structural and microstructural features............................................................ 99
Chapter 6: Solid-state thermophysical properties of CrFeNi, CoCrNi, and CoCrFeNi medium- and high-entropy alloys ........................................................................... 101
6.1 Introduction ...................................................................................................... 101
6.2 Results ............................................................................................................. 102
6.3 Discussion ........................................................................................................ 106
6.3.1 Thermophysical properties ............................................................................ 106
6.3.2 Short-range order in medium- and high-entropy alloys ................................. 109
Chapter 7: Summary ............................................................................................... 111
7.1 Empirical rule of phase formation of complex concentrated alloys ................... 111
7.2 Non-equilibrium solidification of medium- and high-entropy alloys ................... 111
7.3 Thermophysical properties of the medium- and high-entropy alloys ................ 113
Chapter 8: Outlook ................................................................................................. 115
Appendix 1 .............................................................................................................. 117
Appendix 2 ............................................................................................................. 123
Appendix 3 ............................................................................................................. 133
Appendix 4 ............................................................................................................. 134
References.............................................................................................................. 140
Acknowledgments .................................................................................................. 164
List of publications .................................................................................................. 166
Erklärung ......................................................................................................................... 167
|
40 |
Einfluss der Bestrahlung mit energiereichen Teilchen auf die Härte von Fe-Cr-LegierungenHeintze, Cornelia 14 January 2013 (has links)
Ferritisch/martensitische Cr-Stähle und deren oxiddispersionsverfestigte Varianten gehören zu den potenziellen Konstruktionswerkstoffen für Komponenten zukünftiger kerntechnischer Einrichtungen, wie z. B. Fusionsreaktoren und Spaltreaktoren der IV. Generation, die Strahlungsfeldern mit hohem Neutronenfluss ausgesetzt sind. Ein Hauptproblem dieser Materialgruppen ist das Auftreten des Spröd-duktil-Übergangs und dessen maßgeblich durch die Strahlenhärtung verursachte Verschiebung zu höheren Temperaturen.
In der vorliegenden Arbeit wird das Bestrahlungsverhalten von binären Fe-Cr-Modelllegierungen untersucht, die ein vereinfachtes Modell für ferritisch/martensitische Cr-Stähle darstellen. Dabei werden Bestrahlungen mit Eisenionen zur Simulation der durch Neutronen hervorgerufenen Schädigung verwendet. Die auf wenige Mikrometer begrenzte Eindringtiefe der Ionen macht es erforderlich, dass für dünne Schichten geeignete Charakterisierungsmethoden eingesetzt werden. Im Rahmen dieser Arbeit sind das Nanohärtemessungen und Transmissionselektronenmikroskopie (TEM).
Im Ergebnis liegen die bestrahlungsinduzierte Härteänderung der Schicht in Abhängigkeit von Chromgehalt, Bestrahlungsfluenz und –temperatur sowie, für ausgewählte Zustände, quantitative TEM-Analysen vor. Zusammen mit begleitenden Ergebnissen von Neutronenkleinwinkelstreuexperimenten an neutronenbestrahlten Proben der gleichen Werkstoffe ermöglichen sie die Identifizierung von bestrahlungsinduzierten Versetzungsringen und nm-großen α’-Ausscheidungen als Quellen der Strahlenhärtung. Im Rahmen eines vereinfachten Modells, das auf Orowan zurückgeht, werden die Hindernisstärken dieser Gitterbaufehler für das Gleiten von Versetzungen abgeschätzt.
Darauf aufbauend erfolgt ausblickartig eine Erweiterung des Untersuchungsgegenstands auf komplexere Situationen hinsichtlich der Bestrahlungsbedingungen und des Werkstoffs. Durch das Einbeziehen simultaner und sequentieller Bestrahlungen mit Eisen- und Heliumionen kann gezeigt werden, dass der Effekt von Helium auf die Strahlenhärtung von der Bestrahlungsreihenfolge abhängt und dass der simultane Eintrag fusionsrelevanter Mengen von Helium zu einer Verstärkung der Strahlenhärtung führt, die auf einem synergistischen Effekt beruht. Für Cr-Stähle mit 9 % Cr und deren oxiddispersionsverfestigte Varianten wird kein grundlegend anderes Bestrahlungsverhalten beobachtet als für binäres Fe-9at%Cr. Es gibt jedoch Hinweise, dass Oxid-dispersionsverfestigung die Strahlenhärtung unter bestimmten Bedingungen reduzieren kann.
Im Ergebnis der Arbeit zeigt sich, dass Ionenbestrahlungen in Kombination mit Nanohärtemessungen zu einem vertiefenden Verständnis der Strahlenhärtung in Werkstoffen auf Fe-Cr-Basis sowie zu einer effektiven Materialvorauswahl beitragen können. Voraussetzung ist, dass der Eindruckgrößeneffekt und der Substrateffekt auf geeignete Weise in Rechnung gestellt werden.
|
Page generated in 0.06 seconds