• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 25
  • 6
  • Tagged with
  • 71
  • 51
  • 46
  • 37
  • 30
  • 30
  • 30
  • 27
  • 25
  • 19
  • 19
  • 19
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Novel Low-Modulus β-Type Ga-/Cu-Bearing Ti–Nb Alloys for Antibacterial Bone Implant Applications

Alberta, Ludovico Andrea 04 December 2023 (has links)
Commercially available titanium (Ti) alloys, such as Ti–6Al–4V and c.p. Ti, even though established in clinical use as load-bearing bone implant materials in orthopedics and dentistry, possess significant drawbacks that may lead to implant failure: i) presence of alloying elements with harmful health effects, ii) high Young’s modulus (E > 100 GPa) compared to human cortical bone (Ebone = 10 – 30 GPa), and iii) lack of antibacterial activity against multidrug-resistant bacteria, which may lead to implant-associated infections. To overcome the first two drawbacks, a new generation of biocompatible metastable β-type Ti alloys has been developed, in particular β-type Ti–Nb alloys, which are versatile candidates due to their low Young’s modulus, high strength-to-weight ratio and improved corrosion resistance. The present work aims to tackle all three aforementioned issues by developing novel β-type Ti–45Nb-based alloys with potential intrinsic antibacterial activity by adding antibacterial gallium (Ga) and copper (Cu) in minor amounts (up to 8 wt.%) via metallurgical route. Nine alloys with the following chemical compositions: (100-x)(Ti–45Nb)–xGa, (100-x)(Ti–45Nb)–xCu (where x = 2, 4, 6, 8 wt.%), and 96(Ti–45Nb)–2Ga–2Cu, based on alloy design approaches, were produced by controlled casting and homogenization treatment. The effect of antibacterial alloying additions on phase constitution, mechanical characteristics, corrosion, and tribocorrosion response in a simulated physiological environment has been investigated. All nine alloys in the homogenized state display a single-phase β (BCC) phase microstructure, whose lattice parameter is proved to be sensitive to Ga and Cu content, with an almost linear contraction. The mechanical characteristics are strongly influenced by Ga and Cu addition, with a general strengthening effect mainly attributed to substitutional solid solution strengthening, and to grain boundary strengthening in case of Ga. Deformation behavior indicates high mechanical stability of the β phase, suggesting dislocation slip as dominant deformation mechanism. The results demonstrate that strategic alloy design is an effective method to significantly increase strength without adversely affecting the Young’s modulus, which remains in the range of good biomechanical compatibility (E = 64 – 104 GPa). Evaluation of the corrosion response and metal ion release in simulated physiological environment demonstrates the high corrosion resistance of the nine alloys, whereas tribocorrosion wear resistance increases upon Ga addition. Further thermal (aging) treatments, carried out on a specific Cu-containing alloy, proved the feasibility of tailoring enhanced mechanical, chemical and potentially antibacterial properties by thermally-induced precipitation of Ti₂Cu intermetallic compound. These novel developed alloys are considered to be promising candidates for biomedical bone implant applications.
2

Untersuchungen zur Korngrenzensegregation in nanokristallinen Al-Cu- und Co-P-Legierungen mittels 3d-Atomsondentomographie / Investigations of grain boundary segregation in nanocrystalline Al-Cu- and Co-P alloys by means of 3d-atom probe tomography

Choi, Pyuck-Pa 30 October 2003 (has links)
No description available.
3

High strength Al-Gd-Ni-Co alloys from amorphous precursors

Wang, Zhi 19 August 2014 (has links) (PDF)
Amorphous and nanostructured Al-based alloys have attracted significant interest owing to their promising properties, including high strength combined with low density. Unfortunately, the production of these advanced materials is limited to powders or ribbons with thickness of less than 100 micrometers due to the reduced glass forming ability of the Al-based alloys. Powder metallurgy through pressure-assisted sintering is a good solution to overcome the size limitation of these materials. In this thesis, Al84Gd6Ni7Co3 glassy powders were consolidated into high-strength bulk materials by hot pressing. The sintering behavior and the microstructural evolution during hot pressing were analyzed as a function of temperature. The results reveal that, through the careful control of the sintering temperature, the combined devitrification and consolidation of the amorphous Al84Gd6Ni7Co3 powders can be achieved, leading to bulk samples with the desired hybrid microstructure and with excellent room temperature mechanical properties. Beside the sintering temperature, the microstructural state of the starting material is critical in order to obtain bulk samples with the desired microstructure and related properties. Consequently, the variation of the initial structural state of the powders as well as of their thermal stability and phase evolution during heating may be used for further tuning the mechanical performance of the hot pressed Al84Gd6Ni7Co3 samples. In order to analyze this aspect, ball milling was used to vary the crystallization behavior of the gas-atomized Al84Gd6Ni7Co3 glassy powder. The influence of milling on microstructure and thermal stability was investigated as a function of the milling time. The results show that the traces of crystalline phases present in the as-atomized powder decrease gradually with increasing the milling time. The thermal stability of the fcc-Al primary phase increases while the thermal stability of the intermetallic phases decreases with increasing milling. Moreover, significant improvement in hardness occurs after milling, which is attributed to the amorphization of the residual crystalline phases present in the as-atomized powder. These finding demonstrate that milling is an effective way to change the initial structural state of the powders and to control the thermal stability of the material. The effect of the microstructural state of the starting material on the mechanical properties of the consolidated samples was investigated in detail. For this, the milled Al84Gd6Ni7Co3 glassy powders were consolidated into bulk specimens by hot pressing. These materials exhibit superior mechanical properties than the samples produced from the as-atomized powder: record high yield strength of 1.7 GPa and fracture strength exceeding 1.8 GPa. This is combined with a plastic strain of about 4 %, Young’s modulus of 120 GPa and density of 3.75 g/cm3. A bimodal microstructure consisting of coarse grained and fine grained regions was achieved in the hot pressed samples by properly controlling the milling process. The exceptionally high strength is attributed to the increased volume fraction of the fine regions, whereas the plastic deformation is favored by the coarse regions, which are able to hinder crack propagation during loading. In addition, the fracture toughness is also improved by the existence of the coarse regions. The tribological properties of the Al84Gd6Ni7Co3 bulk samples were also evaluated. The wear resistance of the bulk samples produced from the milled powder is enhanced with respect to the specimens fabricated from the as-atomized powder, and both alloys exhibit improved wear properties compared to pure aluminum and Al88Si12. Abrasive wear is the main mechanism for these alloys. Finally, the corrosion resistance of these alloys was studied. The results indicate that the Al84Gd6Ni7Co3 bulk material produced from the as-atomized powder has better corrosion resistance than the samples obtained from the milled powder. The main corrosion behavior for these alloys is pit corrosion, intermetallic particle etchout and the corrosion of the Al-rich inter-particle areas. These results clearly demonstrate that, by the proper selection of the sintering temperature and through the appropriate choice of the initial structural state of the powders, the combined devitrification and consolidation of amorphous precursors can be successfully used to produce bulk amorphous/nanostructured Al-based materials with tunable physical and mechanical properties. This expands the known boundaries of Al alloys and offers a new route for the development of novel and innovative high-performance Al-based materials capable to meet specific requirements.
4

High strength Al-Gd-Ni-Co alloys from amorphous precursors

Wang, Zhi 03 July 2014 (has links)
Amorphous and nanostructured Al-based alloys have attracted significant interest owing to their promising properties, including high strength combined with low density. Unfortunately, the production of these advanced materials is limited to powders or ribbons with thickness of less than 100 micrometers due to the reduced glass forming ability of the Al-based alloys. Powder metallurgy through pressure-assisted sintering is a good solution to overcome the size limitation of these materials. In this thesis, Al84Gd6Ni7Co3 glassy powders were consolidated into high-strength bulk materials by hot pressing. The sintering behavior and the microstructural evolution during hot pressing were analyzed as a function of temperature. The results reveal that, through the careful control of the sintering temperature, the combined devitrification and consolidation of the amorphous Al84Gd6Ni7Co3 powders can be achieved, leading to bulk samples with the desired hybrid microstructure and with excellent room temperature mechanical properties. Beside the sintering temperature, the microstructural state of the starting material is critical in order to obtain bulk samples with the desired microstructure and related properties. Consequently, the variation of the initial structural state of the powders as well as of their thermal stability and phase evolution during heating may be used for further tuning the mechanical performance of the hot pressed Al84Gd6Ni7Co3 samples. In order to analyze this aspect, ball milling was used to vary the crystallization behavior of the gas-atomized Al84Gd6Ni7Co3 glassy powder. The influence of milling on microstructure and thermal stability was investigated as a function of the milling time. The results show that the traces of crystalline phases present in the as-atomized powder decrease gradually with increasing the milling time. The thermal stability of the fcc-Al primary phase increases while the thermal stability of the intermetallic phases decreases with increasing milling. Moreover, significant improvement in hardness occurs after milling, which is attributed to the amorphization of the residual crystalline phases present in the as-atomized powder. These finding demonstrate that milling is an effective way to change the initial structural state of the powders and to control the thermal stability of the material. The effect of the microstructural state of the starting material on the mechanical properties of the consolidated samples was investigated in detail. For this, the milled Al84Gd6Ni7Co3 glassy powders were consolidated into bulk specimens by hot pressing. These materials exhibit superior mechanical properties than the samples produced from the as-atomized powder: record high yield strength of 1.7 GPa and fracture strength exceeding 1.8 GPa. This is combined with a plastic strain of about 4 %, Young’s modulus of 120 GPa and density of 3.75 g/cm3. A bimodal microstructure consisting of coarse grained and fine grained regions was achieved in the hot pressed samples by properly controlling the milling process. The exceptionally high strength is attributed to the increased volume fraction of the fine regions, whereas the plastic deformation is favored by the coarse regions, which are able to hinder crack propagation during loading. In addition, the fracture toughness is also improved by the existence of the coarse regions. The tribological properties of the Al84Gd6Ni7Co3 bulk samples were also evaluated. The wear resistance of the bulk samples produced from the milled powder is enhanced with respect to the specimens fabricated from the as-atomized powder, and both alloys exhibit improved wear properties compared to pure aluminum and Al88Si12. Abrasive wear is the main mechanism for these alloys. Finally, the corrosion resistance of these alloys was studied. The results indicate that the Al84Gd6Ni7Co3 bulk material produced from the as-atomized powder has better corrosion resistance than the samples obtained from the milled powder. The main corrosion behavior for these alloys is pit corrosion, intermetallic particle etchout and the corrosion of the Al-rich inter-particle areas. These results clearly demonstrate that, by the proper selection of the sintering temperature and through the appropriate choice of the initial structural state of the powders, the combined devitrification and consolidation of amorphous precursors can be successfully used to produce bulk amorphous/nanostructured Al-based materials with tunable physical and mechanical properties. This expands the known boundaries of Al alloys and offers a new route for the development of novel and innovative high-performance Al-based materials capable to meet specific requirements.
5

Dephasing and phase-coherence in disordered mesoscopic conductors

Völker, Axel 08 July 1996 (has links)
No description available.
6

Hochfeste und hochleitfähige Cu-Ag-Leitermaterialien / Cu-Ag-alloys with high strength and high conductivity

Gaganov, Alexander 22 December 2010 (has links) (PDF)
Die Cu – Ag - Mikroverbund – Werkstoffe besitzen das Potenzial die gegensätzlichen Anforderungen an das Leitermaterial für den Einsatz in einem Hochfeldmagneten, wie hohe Festigkeit bei gleichzeitig hoher elektrischen Leitfähigkeit und ausreichender Verformbarkeit, zu erfüllen. Außerdem bieten diese Werkstoffe gegenüber den anderen, die dafür in Frage kommen können, den großen technologischen Vorteil einer konventionellen schmelzmetallurgischen Herstellung. Jedoch wurde bisher dafür eine sehr aufwändige Technologie verwendet, die die Herstellung des Leitermaterials nur im Labormaßstab ermöglicht. Die vorliegende Arbeit befasst sich mit einer Technologie der Herstellung von Leitern, die den Anforderungen für den Einsatz in einem Hochfeldmagneten genügen können und in einem großtechnischen Maßstab verfügbar sind. Der Schwerpunkt der Leiterherstellung aus Cu – Ag - Legierung lag in der Einstellung der geeigneten Mikrostruktur über metallkundliche Mechanismen vor der Drahterzeugung. Hierfür wurden während der einzelnen Prozessschritten die Gefügeentwicklung und für die Anwendung relevante Eigenschaften der Legierungen in binären Cu – Ag – Legierungen und in ternären Cu – Ag -X –Legierungen untersucht. Darüber hinaus wurde der Einfluss der Mikrostruktur und der Zusammensetzung auf die mechanischen und elektrischen Eigenschaften der Drähte ermittelt sowie eine Korrelation zwischen Mikrostruktur und elektrischen Eigenschaften aufgestellt.
7

Struktur, Wachstum und Phasenumwandlungen dünner Eisen-Palladium Schichten / Structure, growth and phase transitions of thin Iron-Palladium films

Edler, Tobias 15 June 2010 (has links)
No description available.
8

Hochfeste und hochleitfähige Cu-Ag-Leitermaterialien

Gaganov, Alexander 19 March 2010 (has links)
Die Cu – Ag - Mikroverbund – Werkstoffe besitzen das Potenzial die gegensätzlichen Anforderungen an das Leitermaterial für den Einsatz in einem Hochfeldmagneten, wie hohe Festigkeit bei gleichzeitig hoher elektrischen Leitfähigkeit und ausreichender Verformbarkeit, zu erfüllen. Außerdem bieten diese Werkstoffe gegenüber den anderen, die dafür in Frage kommen können, den großen technologischen Vorteil einer konventionellen schmelzmetallurgischen Herstellung. Jedoch wurde bisher dafür eine sehr aufwändige Technologie verwendet, die die Herstellung des Leitermaterials nur im Labormaßstab ermöglicht. Die vorliegende Arbeit befasst sich mit einer Technologie der Herstellung von Leitern, die den Anforderungen für den Einsatz in einem Hochfeldmagneten genügen können und in einem großtechnischen Maßstab verfügbar sind. Der Schwerpunkt der Leiterherstellung aus Cu – Ag - Legierung lag in der Einstellung der geeigneten Mikrostruktur über metallkundliche Mechanismen vor der Drahterzeugung. Hierfür wurden während der einzelnen Prozessschritten die Gefügeentwicklung und für die Anwendung relevante Eigenschaften der Legierungen in binären Cu – Ag – Legierungen und in ternären Cu – Ag -X –Legierungen untersucht. Darüber hinaus wurde der Einfluss der Mikrostruktur und der Zusammensetzung auf die mechanischen und elektrischen Eigenschaften der Drähte ermittelt sowie eine Korrelation zwischen Mikrostruktur und elektrischen Eigenschaften aufgestellt.
9

Porous ß-type Ti-Nb alloy for biomedical applications

Zhuravleva, Ksenia 17 July 2014 (has links) (PDF)
One of the most important factors for a successful performance of a load-bearing implant for hard tissue replacement is its mechanical compatibility with human bone. That implies that the stiffness should be close to that of a bone and the strength of the implant material must be high enough to bear the load applied under physiological conditions. The Young´s modulus of most of the commonly used biomedical alloys is larger than that of a human bone (around 100 GPa for cp Ti, 112 GPa for Ti-6Al-4V versus 10-30 GPa for cortical human bone). A stiffness reduction of Ti alloys can be achieved by two approaches: (i) selecting an alloy composition with low Young´s modulus i.e. a ß-type alloy and (ii) introducing a reasonable amount of porosity. The composition of Ti-40Nb was chosen for the present work, as it allows to stabilize a single ß-type phase with low Young´s modulus at room temperature. The samples were produced by a powder metallurgical approach. The Ti-40Nb alloy powder was obtained by ball-milling of elemental Ti and Nb powders. The influence of the milling parameters on the oxygen content in the milled powder was studied. Powders with a lowest oxygen content of 0.4 wt.-% had an almost single ß-type phase after heat treatment and quenching. Porous samples were produced by loose powder sintering, hot-pressing and sintering with NaCl as a space-holder. The influence of the different processing routes and different porosities on the mechanical properties of the alloy was studied. The samples produced by loose powder sintering had mechanical properties close to those of cortical human bone (Young´s modulus 20 GPa, compression strength 150 MPa) and the samples produced by loose sintering with space-holder materials had mechanical properties close to those of human spongy bone (Young´s modulus 0.2-2 GPa, compression strength 50 MPa). Porous Ti-40Nb samples were coated with bone-like hydroxyapatite by an electrochemical deposition method in order to improve the osseointegration of the samples with bone tissue. The experiments were carried out with samples produced by different routes and a correlation between the deposition parameters and the morphology of the hydroxyapatite needles was found.
10

Theorie der spinpolarisierten Core-Level Spektroskopie für Photo- und Auger-Elektronen

Schlathölter, Thorsten 15 September 2000 (has links)
Im Rahmen dieser Arbeit wird eine Theorie der spinpolarisierten Core-Level Spektroskopie für Photo- und Auger-Elektronen entwickelt, die die Berechung von Photoemissionsspektren (XPS) und Auger-Spektren (AES) komplexer einkristalliner Festkörper ermöglicht. Die Photoemissionstheorie basiert auf dem Einstufenmodell nach Pendry, stellt jedoch eine vollrelativistische Verallgemeinerung dar, mit der z.B. auch ferromagnetische Systeme untersucht werden können. Der implementierte Formalismus wird verwendet, um unterschiedliche Systeme zu untersuchen. Zunächst wird die Möglichkeit erörtert, Photoelektronenbeugung zu simulieren. Dies geschieht am Beispiel einer Ni100-Oberfläche. Weiterhin werden die verschiedenen Arten des magnetischen Dichroismus erörtert und am Beispiel von Fe-2p und Fe-3p XPS-Spektren diskutiert. Eine letzte Anwendung beschäftigt sich mit komplexeren, ferromagnetischen Strukturen, sogenannten Heusler-Legierungen. Bei den untersuchten Systemen handelt es sich um Mn-basierte Heusler-Legierungen, die einen ferromagnetischen Grundzustand besitzen. In diesen Systemen ist die Austauschaufspaltung in den Core Niveaus so groß, daß sie experimentell aufgelöst werden kann. Die entsprechenden Rechnungen zeigen eine starke Abhängigkeit der Spektrenform von der Richtung der magnetischen Feldachse. Sämtliche Rechungen werden mit experimentellen Daten verglichen und zeigen eine sehr gute Übereinstimmung. In einem zweiten Teil der Arbeit wird ein Formalismus zur Beschreibung des Auger-Prozesses entwickelt. Erste Anwendungen auf einfache Systeme (Pd, Cd, Ag) zeigen auch hier eine gute Übereinstimmung mit experimentellen Ergebnissen.

Page generated in 0.0496 seconds