• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 25
  • 6
  • Tagged with
  • 71
  • 51
  • 46
  • 37
  • 30
  • 30
  • 30
  • 27
  • 25
  • 19
  • 19
  • 19
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Untersuchung der elektronischen und magnetischen Eigenschaften manganhaltiger Heusler Legierungen mittels Photoelektronen- und Röntgenspektroskopie / Investigations of the electronic and magnetic properties of manganese-based heusler alloys with photoelectron and X-ray spectroscopy

Plogmann, Stefan 26 September 2000 (has links)
Die hier untersuchten Heusler Legierungen sind ternäre intermetallische Verbindungen mit der chemischen Formel X2YZ. Sie wurden schon 1903 von F. Heusler entdeckt und erfreuen sich aufgrund ihrer besonderen magnetischen und elektronischen Eigenschaften eines großen Interesses. Eigenschaften sind z. B. ein großer magneto-optischer Kerr Effekt oder das HMF (Halb-Metallisch-Ferromagnetische)-Verhalten einiger Heusler Legierungen. Aufgrund der großen Anzahl möglicher Heusler Legierungen beschränkt sich diese Arbeit auf die Legierungen, die als Y-Element das Mangan besitzen. Das Interessante an diesen Legierungen ist die Bildung von lokalen magnetischen Momenten an den einzelnen Atomen, wobei das größte Moment von ca. 4 Magneton Bohr am Manganatom selbst sitzt. Diese Heusler Legierungen werden oft als ideale Modellsubstanzen für die Ausbildung und Kopplung von lokalen Momenten angesehen. Trotz großer industrieller Anwendungsmöglichkeiten und langer intensiver experimenteller und theoretischer Untersuchungen ist es bisher nicht gelungen, ein geschlossenes Bild der elektronischen und magnetischen Eigenschaften zu erreichen. So ist die Untersuchung der Heusler Legierungen durch die Röntgen-Photoelektronenspektroskopie (XPS) in dieser Arbeit ein wichtiger Aspekt. Mit dieser etablierten und bewährten Untersuchungsmethode werden die elektronischen Zustände, die für ein physikalisches Verständnis der magnetischen Eigenschaften entscheidend sind, sowohl im Valenzband- als auch im Rumpfniveau-Bereich qualitativ und quantitativ untersucht. Die durch das Heusler-Projekt ermöglichte enge Zusammenarbeit mit der Theorie läßt durch Vergleiche der experimentellen Daten mit den Rechnungen eine detaillierte Interpretation der Ergebnisse zu. Obwohl XPS ein Methode zur Untersuchung der direkten elektronischen Eigenschaften ist, steht in diesen Messungen das magnetische Verhalten der Heusler Legierungen stark im Vordergrund. Dabei werden neue Erkenntnisse zur Interpretation der magnetischen Eigenschaften in XPS Spektren angewandt, die auf einer mikroskopischen Beschreibung des Magnetismus basieren. Desweiteren stehen Röntgenemissions-Spektren zur Verfügung, die eine Bestimmung der partiellen Zustandsdichten im Valenzband möglich machen. Um die magnetischen Eigenschaften auf mikroskopischer Ebene genauer zu untersuchen, werden MCD (Magnetic Circular Dichroism) Messungen durchgeführt. Dabei kann bei den Absorptionsmessungen auf ein bewährtes theoretisches Modell, den Summenregeln von Thole und Carra, zurückgegriffen werden, das auch schon bei ähnlich komplizierten Materialien Anwendung fand. Bei den Emissionsmessungen im weichen Röntgenlichtbereich hingegen liegt eine solche Theorie nicht vor, was einerseits die Interpretation schwierig machen andererseits neue Erkenntnisse bringen kann. Durch diese Kombination von neueren und etablierten einerseits und elektronischen und magnetischen Untersuchungsmethoden andererseits ist somit ein großer, für das physikalische Verständnis wichtiger Bereich der Heusler Legierungen abgedeckt.
12

Unsupported Pt-Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes

Henning, Sebastian, Ishikawa, Hiroshi, Kühn, Laura, Herranz, Juan, Müller, Elisabeth, Eychmüller, Alexander, Schmidt, Thomas J. 27 August 2018 (has links)
Highly active and durable oxygen reduction catalysts are needed to reduce the costs and enhance the service life of polymer electrolyte fuel cells (PEFCs). This can be accomplished by alloying Pt with a transition metal (e.g. Ni) and by eliminating the corrodible, carbon based catalyst support - however, materials combining both approaches have seldom been implemented in PEFC cathodes. In this work, an unsupported Pt-Ni alloy nanochain ensemble (aerogel) demonstrates high current PEFC performance commensurate with that of a carbon supported benchmark (Pt/C) following optimization of the aerogel\'s catalyst layer (CL) structure. The latter is accomplished using a soluble filler to shift the CL\'s pore size distribution towards larger pores which improves reactant and product transport. Chiefly, the optimized PEFC aerogel cathodes display ≈ 2.5-fold larger surface-specific ORR activity than Pt/C and maintain 90% of the initial activity after an accelerated stress test (vs. 40% for Pt/C).
13

Selective laser melting of glass-forming alloys

Deng, Liang 28 August 2020 (has links)
Bulk metallic glasses (BMGs) are known to have various advantageous chemical and physical properties. However, the condition of producing BMGs is critical. From a melt to congealing into a glass, the nucleation and growth of crystals has to be suppressed, which requires a fast removal of the heat. Such high cooling rates inevitably confine the casting dimensions (so-called critical casting thickness). To overcome this shortcoming, additive manufacturing proves to be an interesting method for fabricating metastable alloys, such as bulk metallic glasses. Selective laser melting (SLM), one widely used additive manufacturing technique, is based on locally melting powder deposited on the powder bed layer by layer. During the SLM process, the interaction between laser beam and alloys is completed with a high energy density (105 - 107 W/cm2) in very short duration (10-3 - 10-2 s), which results in a high cooling rate (103 - 108 K/s). Such high cooling rates favour vitrification and to date, various glass-forming alloys have been prepared. The approach to prepare bulk metallic glasses (BMGs) by SLM bears the indisputable advantage that the size of the additively manufactured glassy components can exceed the typical dimensions of cast bulk metallic glasses. Simultaneously, also delicate and complex geometries can be obtained, which are otherwise inaccessible to conventional melt quenching techniques. By using such advantages of SLM, Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 (at.%) and Zr52.5Cu17.9Ni14.6Al10Ti5 (at.%) BMGs have been successfully fabricated via SLM in the current work. The SLM process yields material with very few and small defects (pores or cracks) while the conditions still have to render possible vitrification of the molten pool. This confines the processing window of the fully amorphous SLM samples. By additively manufacturing different BMG systems, it is revealed that the non-linear interrelation is differently pronounced for varied compositions. The only way to obtain glassy and dense products is optimizing all the process parameters. However, it is difficult to obtain fully dense sample (100%). The relative density of the additively manufactured BMGs can reach 98.5% (Archimedean method) in current work. The residual porosity acts as structural heterogeneities in the additively manufactured BMGs. The structures of BMGs are sensitive to the thermal history, i.e. to the cooling rate and to the thermal treatment. During SLM process, the laser beam not only melts the topmost powder, but also the adjacent already solidified parts. Such complicated thermal history may lead to locally more/less relaxed structure of the additively manufactured BMGs. Thus, systematic and extensive calorimetric measurements and nanoindentation tests were carried out to detect these structural heterogeneities. The relaxation enthalpies, which can reveal the free volume content and average atomic packing density in the additively manufactured BMGs are much higher than that in the as-cast samples, indicating an insufficient duration for structural relaxation. The nanoindentation tests indicate that the structure of additively manufactured BMG is more heterogeneous than that of as-cast sample. Nevertheless, no obvious heat-affected zone which corresponds to the more/less relaxed structure is visible in the hardness map. In order to reveal the origin of such heterogeneity, the thermal field of the additively manufactured BMGs was simulated via finite volume method (FVM). Owing to the different process parameters and varied thermophysical properties of Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 and Zr52.5Cu17.9Ni14.6Al10Ti5 BMGs, the heat-affected zone (HAZ) is differently pronounced, resulting in the varied heterogeneities of both additively manufactured BMGs. Afterwards, the physical and chemical properties of the additively manufactured BMGs were systematically studied. The additively manufactured BMGs tend to fail in a premature manner. The heterogeneities (defects, crystalline phases and relaxed/rejuvenated regions) can determine the mechanical and chemical properties of the BMGs. In the current work, the additively manufactured BMGs are fully amorphous. Thus, the effects of crystalline phases can be ruled out. The effect of residual porosity and more/less relaxed state on the deformation of additively manufactured and as-cast BMGs has been studied. The analysis of the observed serrations during compressive loading implies that the shear-band dynamics in the additively manufactured samples distinctly differ from those of the as-cast glass. This phenomenon appears to originate from the presence of uniformly dispersed spherical pores as well as from the more pronounced heterogeneity of the glass itself as revealed by instrumented indentation. Despite these heterogeneities, the shear bands are straight and form in the plane of maximum shear stress. Additive manufacturing, hence, might not only allow for producing large BMG samples with complex geometries but also to manipulate their deformation behaviour through tailoring porosity and microstructural heterogeneity. Different from the compressive tests, the heterogeneities of additively manufactured BMGs have no significant effect on the tribological and corrosion properties. The similar specific wear rate and the worn surfaces demonstrate that similar wear mechanisms are active in the additively manufactured and the as-cast samples. The same holds for the corrosion tests. The anodic polarization curves of SLM samples and as-cast samples illustrate a similar corrosion behaviour. However, the SLM samples have a slightly reduced susceptibility to pitting corrosion and reveal an improved surface healing ability, which might be attributed to an improved chemical homogeneity of the additively manufactured BMGs. In order to improve plasticity, bulk metallic glasses composites (BMGCs) have been developed, in which crystals precipitate in a glassy matrix. The crystalline phases can alter the local stress state under loading, thereby, impacting the initiation and propagation of the shear bands. However, it is difficult to control the crystalline volume fraction as well as the size and spacing between the crystals by using the traditional melt-quenching method. One approach is to mix glass-forming powder with conventional alloy powder. In this way, a large degree of freedom for designing the microstructure can be gained. Thus, SLM was chosen to prepare such “ideal” BMGCs in the present work. The β-phase stabilizer Nb powder was mixed with Zr52.5Cu17.9Ni14.6Al10Ti5 powder. After SLM processing, the irregular-shaped Nb particles are distributed uniformly within the glassy matrix and bond well to it. At the higher Nb content, diffusion of Nb during processing locally deteriorates the glass-forming ability of the matrix and results in the formation of several brittle intermetallic phases around the Nb particles. The size of these precipitates covers a wide range from nanometres to micrometres. Despite the fact that the soft Nb particles increase the heterogeneity of the glassy matrix, none of the samples deforms plastically. This is attributed to the network-like distribution of the intermetallic phases, which strongly affects the fracture process. Besides the ex-situ method of mixing powders, designing in-situ ductile phases and controlling the fraction of the crystalline phases by altering process parameters can also prepare optimized BMGCs. Cu46Zr46Al8 (at.%) was processed via SLM to produce in-situ BMGCs. It is revealed that the microstructure of the nearly fully dense additively manufactured BMGs is strongly affected by the energy input. By increasing the energy input, the amount of the crystalline phases was raised. By optimizing the energy input, the B2 CuZr phase was particularly deliberately introduced. Due to the residual porosity and brittle phases, no plasticity is visible in the additively manufactured samples. Generally, selective laser melting opens a gateway to design the microstructure of the BMG matrix composites.:Abstract I Kurzfassung IV Symbols and abbreviations VIII Aims and objectives VIII CHAPTER 1 Metallic glasses and selective laser melting 1 1.1 Formation of metallic glasses from the melt 1 1.2 Mechanical properties of BMGs and their composites 4 1.2.1 Shear banding in metallic glasses 4 1.2.2 Effect of structural heterogeneities on plastic deformation 7 1.2.2.1 Nanoscale heterogeneities 8 1.2.2.2 Microscale heterogeneities 11 1.2.3 Shear band dynamics 13 1.2.4 Tribological properties of BMGs 15 1.3 Corrosion behaviour of bulk metallic glasses 16 1.4 Selective laser melting (SLM) 20 1.4.1 The SLM process 20 1.4.1.1 Powder properties 21 1.4.1.2 Process parameters 22 1.4.2 Solidification and thermal history 25 1.5 Selectively laser-melted glass formers 28 1.5.1 Selective laser melting of a single alloy powder 28 1.5.2 Heterogeneities and mechanical properties of additively manufactured BMGs 32 CHAPTER 2 Experimental 36 2.1 Sample preparation 36 2.1.1 Arc melting 36 2.1.2 Suction casting 36 2.1.3 Gas atomization 37 2.1.4 Powder mixtures 37 2.1.5 Selective laser melting (SLM) 38 2.1.5 Heat treatment 39 2.2 Sample characterization methods 39 2.2.1 Composition analysis 40 2.2.2 X-ray diffraction 40 2.2.3 Calorimetry 40 2.2.4 Density measurements (Archimedean method) 41 2.2.5 µ-CT 41 2.2.6 Scanning electron microscopy (SEM) 41 2.2.7 Transmission electron microscopy (TEM) 42 2.2.8 Hardness measurements 42 2.2.9 Compression tests 43 2.2.10 Sliding wear tests 43 2.2.11 Corrosion tests 44 2.2.12 Finite volume method modelling 45 CHAPTER 3 Selective laser melting of glass-forming alloys 46 3.1 Selective laser melting of a Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 BMG 46 3.1.1 Powder analysis 47 3.1.2 Parameter optimization and microstructural characterization 48 3.1.3 Mechanical properties 55 3.1.3.1 Compression tests 55 3.1.3.2 Microhardness and structural relaxation 57 3.1.3.3 Nanoindentation 59 3.1.4 Corrosion properties 61 3.2 Selective laser melting of a Zr52.5Cu17.9Ni14.6Al10Ti5 BMG 62 3.2.1 Powder analysis 62 3.2.2 Microstructural characterization 63 3.2.3 Mechanical properties 66 3.2.3.1 Compression tests 66 3.2.3.2 Microhardness and structural relaxation 68 3.2.3.3 Nanoindentation 71 3.2.4 Shear band dynamics and shear band propagation 74 3.2.5 Tribological and corrosion properties 80 3.3 Structural heterogeneities of BMGs produced by SLM 87 CHAPTER 4 Selective laser melting of ex-situ Zr-based BMG matrix composites 97 4.1 Phase formation 97 4.2 Microstructures 101 4.3 Mechanical properties 110 CHAPTER 5 Selective laser melting of in-situ CuZr-based BMG matrix composites 115 5.1 Powder analysis 115 5.2 Parameter optimization 116 5.3 Microstructure 120 5.4 Mechanical properties 124 5.4.1 Compression tests 124 5.4.2 Microhardness and structural relaxation 127 5.4.3 Nanoindentation 129 CHAPTER 6 Summary 132 CHAPTER 7 Outlook 132 Acknowledgements 137 Bibliography 139 Publications 163 Eidesstattliche Erklärung 164
14

Charakterisierung und Optimierung von Diffusionsbarrieren auf der Basis metallischer Oxidschichten / Characterization and optimization of diffusion barriers based on metallic oxide films

Pinnow, Cay-Uwe 11 December 2001 (has links)
No description available.
15

Thermische Stabilität und Reaktion metallischer Multilagen / Thermal stability and reaction of metallic multilayers

Ene, Constantin Buzau 19 December 2007 (has links)
No description available.
16

Grain refinement in hypoeutectic Al-Si alloy driven by electric currents

Zhang, Yunhu 26 February 2016 (has links) (PDF)
The present thesis investigates the grain refinement in solidifying Al-7wt%Si hypoeutectic alloy driven by electric currents. The grain size reduction in alloys generated by electric currents during the solidification has been intensively investigated. However, since various effects of electric currents have the potential to generate the finer equiaxed grains, it is still argued which effect plays the key role in the grain refinement process. In addition, the knowledge about the grain refinement mechanism under the application of electric currents remains fragmentary and inconsistent. Hence, the research objectives of the present thesis focus on the role of electric current effects and the grain refinement mechanism under the application of electric currents. Chapter 1 presents an introduction with respect to the subject of grain refinement in alloys driven by electric current during the solidification process in particular, including the research objectives; the research motivation; a brief review about the research history; a short introduction on the electric currents effects and a review relevant to the research status of grain refinement mechanism. Chapter 2 gives a description of research methods. This chapter shows the employed experiment materials, experimental setup, experimental procedure, the analysis methods of solidified samples, and numerical method, respectively. Chapter 3 focuses on the role of electric current effects in the grain refinement process. A series of solidification experiments are performed under various values of effective electric currents for both, electric current pulse and direct current. The corresponding temperature measurements and flow measurements are carried out with the increase of effective electric current intensity. Meanwhile, numerical simulations are conducted to present the details of the flow structure and the distribution of electric current density and electromagnetic force. Finally, the role of electric current effects is discussed to find the key effect in the grain refinement driven by electric currents. Chapter 4 investigates the grain refinement mechanism driven by electric currents. This chapter mainly focuses on the origin of finer equiaxed grain for grain refinement under the application of electric current on account of the importance of the origin for understanding the grain refinement mechanism. A series of solidification experiments are carried out in Al-7wt%Si alloy and in high purity aluminum. The main origin of equiaxed grain for grain refinement is concluded based on the experiment results. Chapter 5 presents three further investigations based on the achieved knowledge in chapter 3 and 4 about the role of electric current effects and the grain refinement mechanism. According to the insight into the key electric current effect for the grain refinement shown in chapter 3, this chapter presents a potential approach to promote the grain refinement. In addition, the solute distribution under the influence of electric current is examined based on the knowledge about the electric current effects. Moreover, the grain refinement mechanism under application of travelling magnetic field is investigated by performing a series of solidification experiments to compare with the experiments about the grain refinement mechanism driven by electric currents shown in chapter 4. Chapter 6 summarizes the main conclusions from the presented work.
17

Phase formation, martensitic transformation and mechanical properties of Cu-Zr-based alloys

Asgharzadeh Javid, Fatemeh 08 November 2016 (has links) (PDF)
Die Motivation zur Untersuchung ternärer und quaternären CuZr-Legierungen bestand in der Annahme, dass die Zugabe von Kobalt den Stabilitätsbereich von B2 CuZr bis zur Raumtemperatur erweitert und Aluminium einen signifikanten Effekt auf die Glasbildungsfähigkeit des CuZr-Systems hat. Die vorliegende Dissertation befasst sich mit der Herstellung und Charakterisierung von Cu50-xCoxZr50 (0 ≤ x ≤ 20) und Cu50-xCoxZr45Al5- (x = 2, 5, 10 und 20) Legierungen. Hierbei wurden die Phasenbildung, die thermische Stabilität, die Mikrostruktur, die Martensitbildung und die mechanischen Eigenschaften der Legierungen untersucht. Die Abhängigkeit der Phasenbildung von der Erstarrungsrate und der thermodynamischen Stabilität von Cu-Co-Zr-Legierungen zeigte, dass die Zugabe von Kobalt die Glasbildungsfähigkeit von Cu-Co-Zr-Legierungen absenkt und die stabilen kristallinen Produkte des Systems von Cu10Zr7 + CuZr2 zu (Cu,Co)Zr Phase mit einer B2 Struktur verändert. Die Ergebnisse weisen darauf hin, dass bei den schmelzgesponnene Bänder mit wenigstens 5 Atom-% Co das Glas direkt in B2 (Cu,Co)Zr kristallisiert, während Massivproben mit Co-Gehalten zwischen 0 ≤ x < 5 die monokline (Cu,Co)Zr Phase und Cu10Zr7 sowie CuZr2 beinhalten, wobei für x ≥ 10 die B2 (Cu,Co)Zr Phase bei Raumtemperatur im Gleichgewicht ist. Des Weiteren werden mit steigendem Co-Gehalt die Martensitumwandlungstemperaturen zu niedrigeren Werten verschoben. Die Phasenbildung im ternären System wird im pseudo-binären (Cu,Co)Zr-Phasendiagramm zusammengefasst, welches die Entwicklung neuer Formgedächtnislegierungen sowie metallischer Glas-Komposite bei Zugabe des Glasbildungselementes Aluminium vereinfacht. In den Vierstofflegierungen erhöht Al die Glasübergangs- und Kristallisationstemperaturen und verbessert dadurch die Glasbildungsfähigkeit des Systems. Die röntgenographische Analyse zeigte, dass die Kristallisationsprodukte der schmelzgesponnenen Bänder variieren: von Cu10Zr7 + CuZr2 + AlCu2Zr zu (Cu,Co)Zr + AlCu2Zr, wenn Co ≤ 5 und Co ≥ 10. Die Herstellung von Massivproben mit unterschiedlichen Durchmessern führte zu einem vollständig amorphen Gefüge, einem metallischen Glas-Komposit oder einem vollständig kristallinen Gefüge. Für Co ≤ 5 tritt neben (Cu,Co)Zr und AlCu2Zr ebenfalls Cu10Zr7 auf. Mittels Rasterelektronen (REM)- und Transmissionselektronenmikroskopie (TEM) erfolgte die Analyse des Einflusses von Al- und Co-Zugaben auf die Mikrostruktur von CuZr-Legierungen. Für die Cu-Co-Zr-Al-Legierungen sowie Cu30Co20Zr45Al5 (ø = 4 mm) und Cu45Co5Zr45Al5 (ø = 2 mm) wurden mikrostrukturelle Untersuchungen mittels TEM durchgeführt. Nachfolgend wurde die Heterogenität der Mikrostruktur in der Cu40Co10Zr45Al5 (ø = 2 mm) untersucht. Der Einfluss von Co auf die mechanischen Eigenschaften von rascherstarrten Cu50-xCoxZr50 (x = 2, 5, 10 und 20 Atom-%) Legierungen zeigt, dass das Verformungsverhalten der Stäbe unter Druckbeanspruchung stark von der Mikrostruktur der (Cu,Co)Zr Phase und somit von der Legierungszusammensetzung abhängt. Kobalt beeinflusst die Bruchfestigkeit der Gussproben. Weiterhin zeigen Proben mit martensitischem Gefüge eine Kaltverfestigung. Neben der Kaltverfestigung zeigen die Legierungen mit hohem Co-Gehalt eine verformungsinduzierte Martensitumwandlung und weisen zwei Streckgrenzen auf. Für die Vierstofflegierungen wurde der Einfluss der Kühlrate und der chemischen Zusammensetzung auf die mechanischen Eigenschaften untersucht. Für Cu48Co2Zr45Al5 (ø = 1.5, 2, 3 und 4 mm) und Cu45Co5Zr45Al5 (ø = 3 mm) wurde der Einfluss der Kühlrate und der Heterogenität diskutiert. Die Ergebnisse zeigen, dass die mechanischen Eigenschaften der Cu50-xCoxZr45Al5-Legierungen stark von der Makrostruktur und dem Volumenanteil der amorphen und kristallinen Phase abhängen. Die verformungsinduzierte Martensitumwandlung in Cu40Co10Zr50- und Cu40Co10Zr45Al5-Gussstäben wurde mittels hochenergetischer Röntgenstrahlung durchgeführt. Die In-situ- Druckversuche erfolgten weg- und kraftkontrolliert. Das makroskopische und mikroskopische Spannung-Dehnungs-Verhalten sowie die Phasenumwandlungskinetik wurden dabei betrachtet. Die relativen Veränderungen der vollständig integrierten Intensität der ausgewählten B2- und Martensitreflexe, die auf die Veränderungen der Volumenanteile der entsprechenden Phasen unter Verformung hinweisen, wurden als Phasenumwandlungsvolumen M/M+B2 beschrieben. / The fact that the presence of Co extends the stability range of B2 CuZr to room temperature, together with the significant effect of Al on improving the glass forming ability of the CuZr system was the motivation to investigate the ternary and quaternary CuZr alloys with the aim of synthesizing BMG composites containing B2 (Cu,Co)Zr crystals. This PhD thesis deals with preparation and characterization of Cu50-xCoxZr50 (0 ≤ x ≤ 20) and Cu50-xCoxZr45Al5 (x = 2, 5, 10 and 20) alloys. The phase formation, thermal stability, microstructure, martensitic transformation and mechanical properties of these alloys were investigated. The dependence of phase formation on solidification rate and the thermodynamically stability of Cu-Co-Zr alloys reveals that the addition of Co decreases the glass forming ability (GFA) of the Cu-Co-Zr alloys and changes the stable crystalline products of the system from Cu10Zr7 + CuZr2 to (Cu,Co)Zr phase with a B2 structure. The results indicate that for the melt-spun ribbons with at least 5 % Co, the glass crystallizes directly into B2 (Cu,Co)Zr, while in the case of bulk specimens, compositions with 0 ≤ x < 5 of Co contain the monoclinic (Cu,Co)Zr phase and Cu10Zr7 and CuZr2, whereas, for x ≥ 10, the B2 (Cu,Co)Zr phase is the equilibrium phase at room temperature. Furthermore, increasing the cobalt content decreases the martensitic transformation temperatures to lower temperatures. The phase formation in the ternary system is summarized in a pseudo-binary (Cu,Co)Zr phase diagram, that helps for designing new shape memory alloys, as well as bulk metallic glass composites with the addition of glass former elements. In the quaternary alloys, Al increases the glass transition and crystallization temperatures and hence improves the GFA of the system. The X-ray analysis illustrates that for the melt-spun ribbons, the crystallization products vary from Cu10Zr7 + CuZr2 + AlCu2Zr to (Cu,Co)Zr + AlCu2Zr when Co ≤ 5 and Co ≥ 10, respectively. Depending on the cooling rates, the bulk samples represent a fully amorphous structure or BMG composites or a fully crystalline structure. For Co ≤ 5, beside (Cu,Co)Zr and AlCu2Zr, Cu10Zr7 exists as well. Scanning (SEM) and transmission (TEM) electron microscopy investigations were done to investigate the effect of Al and Co addition to the microstructure of CuZr alloys. In the case of Cu-Co-Zr-Al alloys, Cu30Co20Zr45Al5 (ɸ = 4 mm) and Cu45Co5Zr45Al5 (ɸ = 2 mm) compositions were selected for the microstructure verification using TEM. Later, the heterogeneity of the microstructure in Cu40Co10Zr45Al5 (ɸ = 2 mm) alloy was considered. The effect of Co on the mechanical properties of rapidly solidified Cu50-xCoxZr50 (x = 2, 5, 10 and 20 at.%) alloys depict that the deformation behavior of the rods under compressive loading strongly depends on the microstructure, and as a results, on the alloy composition. Cobalt affects the fracture strength of the as-cast samples; and deformation is accompanied with two yield stresses for high Co-content alloys, which undergo deformation-induced martensitic transformation. Instead samples with a martensitic structure show a work-hardening behavior. For quaternary alloys, the effects of cooling rate and chemical composition on mechanical properties of the alloys were investigated. Cu48Co2Zr45Al5 (ɸ= 1.5, 2, 3 and 4 mm) and Cu45Co5Zr45Al5 (ɸ = 3 mm) compositions were selected to discuss the effect of cooling rate and heterogeneity, respectively. The results depict that the mechanical properties of Cu50-xCoxZr45Al5 alloys strongly depend on the microstructure and the volume fraction of the amorphous and crystalline phases. The deformation-induced martensitic transformation of Cu40Co10Zr50 and Cu40Co10Zr45Al5 as-cast rods, was studied by means of high-energy X-rays. The in situ compression measurements were performed in track control and load control modes. The macroscopic and microscopic stress-strain behavior, as well as the phase transformation kinetics were considered. The relative changes in the fully integrated intensity of the selected B2 and martensite peaks, which indicate the changes in volume fraction of the corresponding phases under deformation, was described as phase transformation volume, M/M+B2.
18

Einfluss der Bestrahlung mit energiereichen Teilchen auf die Härte von Fe-Cr-Legierungen

Heintze, Cornelia 19 August 2013 (has links) (PDF)
Ferritisch/martensitische Cr-Stähle und deren oxiddispersionsverfestigte Varianten gehören zu den potenziellen Konstruktionswerkstoffen für Komponenten zukünftiger kerntechnischer Einrichtungen, wie z. B. Fusionsreaktoren und Spaltreaktoren der IV. Generation, die Strahlungsfeldern mit hohem Neutronenfluss ausgesetzt sind. Ein Hauptproblem dieser Materialgruppen ist das Auftreten des Spröd-duktil-Übergangs und dessen maßgeblich durch die Strahlenhärtung verursachte Verschiebung zu höheren Temperaturen. In der vorliegenden Arbeit wird das Bestrahlungsverhalten von binären Fe-Cr-Modelllegierungen untersucht, die ein vereinfachtes Modell für ferritisch/martensitische Cr-Stähle darstellen. Dabei werden Bestrahlungen mit Eisenionen zur Simulation der durch Neutronen hervorgerufenen Schädigung verwendet. Die auf wenige Mikrometer begrenzte Eindringtiefe der Ionen macht es erforderlich, dass für dünne Schichten geeignete Charakterisierungsmethoden eingesetzt werden. Im Rahmen dieser Arbeit sind das Nanohärtemessungen und Transmissionselektronenmikroskopie (TEM). Im Ergebnis liegen die bestrahlungsinduzierte Härteänderung der Schicht in Abhängigkeit von Chromgehalt, Bestrahlungsfluenz und –temperatur sowie, für ausgewählte Zustände, quantitative TEM-Analysen vor. Zusammen mit begleitenden Ergebnissen von Neutronenkleinwinkelstreuexperimenten an neutronenbestrahlten Proben der gleichen Werkstoffe ermöglichen sie die Identifizierung von bestrahlungsinduzierten Versetzungsringen und nm-großen α’-Ausscheidungen als Quellen der Strahlenhärtung. Im Rahmen eines vereinfachten Modells, das auf Orowan zurückgeht, werden die Hindernisstärken dieser Gitterbaufehler für das Gleiten von Versetzungen abgeschätzt. Darauf aufbauend erfolgt ausblickartig eine Erweiterung des Untersuchungsgegenstands auf komplexere Situationen hinsichtlich der Bestrahlungsbedingungen und des Werkstoffs. Durch das Einbeziehen simultaner und sequentieller Bestrahlungen mit Eisen- und Heliumionen kann gezeigt werden, dass der Effekt von Helium auf die Strahlenhärtung von der Bestrahlungsreihenfolge abhängt und dass der simultane Eintrag fusionsrelevanter Mengen von Helium zu einer Verstärkung der Strahlenhärtung führt, die auf einem synergistischen Effekt beruht. Für Cr-Stähle mit 9 % Cr und deren oxiddispersionsverfestigte Varianten wird kein grundlegend anderes Bestrahlungsverhalten beobachtet als für binäres Fe-9at%Cr. Es gibt jedoch Hinweise, dass Oxid-dispersionsverfestigung die Strahlenhärtung unter bestimmten Bedingungen reduzieren kann. Im Ergebnis der Arbeit zeigt sich, dass Ionenbestrahlungen in Kombination mit Nanohärtemessungen zu einem vertiefenden Verständnis der Strahlenhärtung in Werkstoffen auf Fe-Cr-Basis sowie zu einer effektiven Materialvorauswahl beitragen können. Voraussetzung ist, dass der Eindruckgrößeneffekt und der Substrateffekt auf geeignete Weise in Rechnung gestellt werden.
19

Structural and magnetic characterization of Nd-based Nd-Fe and Nd-Fe-Co-Al metastable alloys

Kumar, Golden 07 May 2005 (has links) (PDF)
The aim of the present work is to characterize a metastable hard magnetic phase referred to as &amp;quot;A1&amp;quot; in Nd-Fe alloys, which forms as a part of the fine eutectic depending on the composition and cooling rate. In order to define the range of composition for the formation of A1, Nd100-xFex (x = 20, 25, 40) alloys are cooled at about 150 K/s. The results indicate that for a cooling rate of 150 K/s, the hypereutectic Nd100-xFex (x = 20) alloys solidify into hard magnetic A1 whilst the hypoeutectic alloys (x = 40) show the formation of Nd2Fe17 crystallites. However, no sample cooled at 150 K/s shows the peaks of Nd5Fe17 as expected from the equilibrium Nd-Fe phase diagram. The effect of cooling rate on the formation of hard magnetic A1 is studied by investigating the Nd80Fe20 alloys cooled at different rates. The microstructure of hard magnetic Nd80Fe20 alloys displays a fine eutectic-like matrix consisting of Nd-richer and Fe-richer regions. The Nd-richer regions are identified as dhcp Nd and fcc Nd-Fe solid solution. However, the Fe-richer regions also referred to as A1, are diffuse and give an average composition of Nd56Fe44. These regions yield complex electron diffraction patterns, which do not match with any known Nd-Fe phase. HRTEM images of the Fe-richer regions reveal the presence of 5-10 nm crystallites embedded in an amorphous phase. Thus the Fe-richer regions of the hard magnetic Nd80Fe20 specimens are not a single homogeneous phase rather they are mixture of finely dispersed nanocrystallites in an amorphous phase. The demagnetization curves the hard magnetic Nd80Fe20 measured at temperatures above 30 K are typical of a hard magnetic material. The coercivity increases from 0.48 to 4.4 T with the temperature decreasing from 300 to 55 K. The demagnetization curves change from single to two-phase type when the temperature approaches 29 K, ordering temperature of fcc Nd-Fe solid solution. The measurements of initial magnetization, field dependence of coercivity, and temperature dependence of coercivity suggest the Stoner-Wohlfarth type magnetization reversal process for the hard magnetic A1. The values of anisotropy constant are estimated by fitting the magnetization data to the law-of-approach to saturation. The temperature dependence of anisotropy constant and the coercivity indicate that the origin of coercivity is magnetic anisotropy. A cluster model with sperimagnetic arrangement of Nd and Fe spins is used to explain the hard magnetic behavior of the mold-cast Nd80Fe20. Structural and magnetic properties of multicomponent Nd60Co30-xFexAl10 (0 &amp;lt; x &amp;lt; 30) alloys are compared with the binary Nd-Fe alloys. Magnetic measurements of the multicomponent alloys show that the magnetic properties are controlled by the fraction of the Fe content. The coercivity of the Nd60Co30-xFexAl10 mold-cast rods does not vary much with the Fe-content for more than 10 at.% Fe but the remanence and the maximum magnetization increase linearly with the Fe content. The temperature dependence of coercivity, effective anisotropy constant, and anisotropy field are identical to those for the binary Nd80Fe20 mold-cast rod. These results clearly suggest that the binary Nd80Fe20 and the multicomponent Nd60Co30-xFexAl10 (x &amp;gt; 5) mold-cast rods are magnetically identical.
20

Casting and characterization of Fe-(Cr,Mo,Ga)-(P,C,B) soft magnetic bulk metallic glasses

Stoica, Mihai 09 November 2005 (has links) (PDF)
The ferromagnetic bulk metallic glasses (BMGs) started to be investigated only in the last 10 years.They are difficult to cast, but their properties are uniques. The work deals with casting, mechanical and soft magnetic properties of new Fe-based BMGs. Such alloys can be cast directly in samples with various geometries and they can be use as magnetic parts in different devices.

Page generated in 0.0465 seconds