• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 184
  • 105
  • 24
  • 14
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • Tagged with
  • 450
  • 67
  • 55
  • 51
  • 45
  • 39
  • 34
  • 32
  • 32
  • 31
  • 30
  • 29
  • 29
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Gamma phenoxybutyric compounds and other herbicides on legumes /

Dowler, Clyde C. January 1958 (has links)
No description available.
92

Nutrient and biomass allocation strategies in an invasive Australian Acacia and a co-occurring native Acacia in South Africa.

Tye, Donovan R.C. 05 March 2014 (has links)
No description available.
93

Functional and nutritional characteristics of Bambara groundnut milk powder as an ingredient in yoghurt

Hardy, Zolelwa January 2016 (has links)
Thesis (MTech (Food Technology))--Cape Peninsula University of Technology, 2016. / The aim of this study was to evaluate Bambara groundnut (BGN) milk subjected to spray drying with a view to establish functional, nutritional and physical properties as an ingredient in BGN yoghurt production. BGN milk powder (BGNMP) was successfully produced employing the spray drying technology. Maltodextrin was used as the drying carrier to elevate total solids of BGNM prior to spray drying. There were three levels of maltodextrin (5, 10 and 15%) employed and 10% was ideal. The optimum spray drying parameters were estimated to be the following; inlet temperature (150oC), outlet temperature (74oC), air pressure (3 bars), flow rate (10% or 16mL/min), and air flow (42.9 m3/h). The functional properties evaluated revealed high water solubility capabilities, making BGNMP readily soluble in water, which is one of the most crucial aspects of milk powders. The water solubility index of BGNMP at all maltodextrin levels ranged from 85.15 to 90.25%. There was a significant (p < 0.05) difference amongst BGNMP (5, 10, and 15%) in colour parameters (lightness, yellowness, redness, chroma and hue angle). BGNMP indicated to have a red and yellow colour, but yellow was more dominant. The particle size and particle size distribution of BGNMP ranged from 86.13 to 162.35 μm and 84.04 to 157.0 μm, respectively and did not differ significantly (p > 0.05).
94

Biochemical composition, protein quality and hypocholesterolemic effect of mature seeds of a pigmented Vigna sinensis cultivar.

January 1999 (has links)
by Foo Wai Ting, Rita. / Thesis submitted in: August 1998. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 89-100). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Proximate Composition --- p.4 / Chapter 1.2 --- Amino Acid Composition --- p.6 / Chapter 1.3 --- Antinutrients --- p.11 / Chapter 1.3.1 --- Trypsin Inhibitors --- p.12 / Chapter 1.3.2 --- Phytate --- p.13 / Chapter 1.3.3 --- Tannins --- p.14 / Chapter 1.3.4 --- Lectins --- p.15 / Chapter 1.4 --- Two Dimensional Polyacrylamide Gel Electrophoresis --- p.17 / Chapter 1.5 --- Protein Digestibility --- p.19 / Chapter 1.6 --- Protein Quality --- p.22 / Chapter 1.7 --- Hypocholesterolemic Effects --- p.24 / Chapter 2 --- Materials and Methods --- p.36 / Chapter 2.1 --- Plant Material --- p.36 / Chapter 2.2 --- Sample preparation --- p.36 / Chapter 2.3 --- Proximate composition --- p.38 / Chapter 2.3.1 --- Protein --- p.38 / Chapter 2.3.2 --- Fat --- p.38 / Chapter 2.3.3 --- Carbohydrate --- p.38 / Chapter 2.3.4 --- Fiber --- p.38 / Chapter 2.3.5 --- Mineral --- p.39 / Chapter 2.3.6 --- Moisture --- p.39 / Chapter 2.4 --- Amino acid composition --- p.40 / Chapter 2.5 --- Antinutrients --- p.41 / Chapter 2.5.1 --- Trypsin inhibitors --- p.41 / Chapter 2.5.2 --- Tannins --- p.42 / Chapter 2.5.3 --- Phytate --- p.43 / Chapter 2.5.4 --- Lectins --- p.43 / Chapter 2.6 --- Two dimensional polyacrylamide gel electrophoresis --- p.45 / Chapter 2.6.1 --- Protein extraction --- p.45 / Chapter 2.6.2 --- IEF gel --- p.45 / Chapter 2.6.3 --- SDS gel --- p.46 / Chapter 2.7 --- Protein digestibility --- p.48 / Chapter 2.7.1 --- In vitro Protein digestibility --- p.48 / Chapter 2.7.2 --- True Protein digestibility --- p.49 / Chapter 2.8 --- Protein quality --- p.51 / Chapter 2.9 --- Hypocholesterolemic effects --- p.52 / Chapter 2.10 --- Statistical analysis --- p.55 / Chapter 3 --- Results --- p.56 / Chapter 3.1 --- Proximate composition --- p.56 / Chapter 3.2 --- Amino acid composition --- p.56 / Chapter 3.3 --- Antinutrients --- p.56 / Chapter 3.4 --- Two dimensional polyacrylamide gel electrophoresis --- p.60 / Chapter 3.5 --- Protein digestibility --- p.60 / Chapter 3.6 --- Protein quality --- p.60 / Chapter 3.7 --- Hypocholesterolemic effects --- p.62 / Chapter 3.7.1 --- Growth rate against day --- p.62 / Chapter 3.7.2 --- Health indexes --- p.64 / Chapter 3.7.3 --- Cholesterol content --- p.64 / Chapter 4 --- Discussion --- p.67 / Chapter 4.1 --- Proximate composition --- p.67 / Chapter 4.2 --- Amino acid composition --- p.70 / Chapter 4.3 --- Antinutrients --- p.74 / Chapter 4.4 --- Two dimensional polyacrylamide gel electrophoresis --- p.77 / Chapter 4.5 --- Protein digestibility --- p.79 / Chapter 4.6 --- Protein quality --- p.81 / Chapter 4.7 --- Hypocholesterolemic effects --- p.82 / Chapter 5 --- Conclusion --- p.88 / References --- p.89
95

Comparative studies on salt tolerance related genes in soybean: a case study on GmPAP3.

January 2004 (has links)
by Wong Fuk Ling. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 100-115). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Abstract --- p.iii / Chinese abstract --- p.v / Acknowledgements --- p.vii / Abbreviations --- p.ix / Table of contents --- p.xii / List of figures --- p.xvi / List of tables --- p.xvii / Chapter 1. --- Literature review / Chapter 1.1 --- Soybeans / Chapter 1.1.1 --- Economical importance of soybean --- p.1 / Chapter 1.1.2 --- History and origin of soybean --- p.4 / Chapter 1.1.3 --- Qualitative traits of cultivated and wild soybeans --- p.5 / Chapter 1.1.4 --- Soybean resource in China --- p.6 / Chapter 1.1.5 --- Salt tolerant soybeans in China --- p.6 / Chapter 1.2 --- Salinization as a global problem --- p.7 / Chapter 1.3 --- Toxicity of salt in plants --- p.8 / Chapter 1.4 --- Salt stress signal transduction in plants --- p.10 / Chapter 1.4.1 --- Ionic and osmotic stress signaling / Chapter 1.4.1.1 --- Ca2+ signaling --- p.11 / Chapter 1.4.1.2 --- The SOS pathway --- p.12 / Chapter 1.4.1.3 --- Protein kinase pathways --- p.13 / Chapter 1.4.1.4 --- Phospholipid signaling --- p.14 / Chapter 1.4.1.5 --- ABA signaling --- p.17 / Chapter 1.4.2 --- Detoxification signaling --- p.17 / Chapter 1.4.3 --- signaling to coordinate cell division ana expansion --- p.18 / Chapter 1.5 --- Plant adaptations in plants --- p.18 / Chapter 1.5.1 --- Ion homeostasis --- p.18 / Chapter 1.5.1.1 --- Reduction of Na+ influx into the cells --- p.19 / Chapter 1.5.1.2 --- Extrusion of Na+ out of the cell --- p.19 / Chapter 1.5.1.3 --- Vacuolar compartmentation of Na+ --- p.20 / Chapter 1.5.2 --- Osmotic adjustment --- p.20 / Chapter 1.5.3 --- Antioxidant protection --- p.21 / Chapter 1.5.4 --- Morphological and structural modification --- p.21 / Chapter 1.6 --- The relationship of salt stress and phosphorus deficiency --- p.22 / Chapter 1.7 --- The importance of phosphorus in plants --- p.25 / Chapter 1.8 --- The role of purple acid phosphatase (PAP) in plants --- p.25 / Chapter 1.9 --- PAPs in soybean --- p.27 / Chapter 1.10 --- Hypothesis and significance of this project --- p.27 / Chapter 2. --- Materials and methods / Chapter 2.1 --- Materials / Chapter 2.1.1 --- Plant materials --- p.29 / Chapter 2.1.2 --- The clones used in this work --- p.30 / Chapter 2.1.3 --- Growth media for soybeans --- p.31 / Chapter 2.1.4 --- Equipment and facilities --- p.31 / Chapter 2.1.5 --- Primers --- p.31 / Chapter 2.1.6 --- Chemicals and reagents --- p.31 / Chapter 2.1.7 --- Solutions --- p.32 / Chapter 2.1.8 --- Commercial kits --- p.32 / Chapter 2.1.9 --- Software --- p.32 / Chapter 2.2. --- Methods / Chapter 2.2.1 --- Growth and salt treatment condition / Chapter 2.2.1.1 --- Establishment a collection of typical salt tolerant and sensitive soybean varieties --- p.33 / Chapter 2.2.1.2 --- Samples for northern analysis of salt inducible genes --- p.33 / Chapter 2.2.1.3 --- Samples for characteristics of GmPAP3 gene --- p.35 / Chapter 2.2.1.4 --- Samples for oxidative stress test --- p.36 / Chapter 2.2.2 --- Total RNA extraction --- p.36 / Chapter 2.2.3 --- Denaturing gel electrophoresis of RNA --- p.38 / Chapter 2.2.4 --- Expression pattern analysis / Chapter 2.2.4.1 --- Preparation of single-stranded DIG-labeled PCR probes --- p.39 / Chapter 2.2.4.2 --- Testing the concentration of DIG-labeled probes --- p.40 / Chapter 2.2.4.3 --- Northern blot --- p.41 / Chapter 2.2.5 --- Soluble ions analysis --- p.42 / Chapter 2.2.6 --- Acid phosphatase activity assays --- p.42 / Chapter 2.2.7 --- Phylogenetic analysis and subcellular localization prediction of GmPAP3 --- p.43 / Chapter 3. --- Results / Chapter 3.1 --- Establishing a collection of typical salt tolerant and sensitive soybean varieties --- p.44 / Chapter 3.2 --- Characterization of salt inducible genes --- p.48 / Chapter 3.3 --- Characterization of GMPAP3 gene --- p.63 / Chapter 3.3.1 --- Phylogenetic studies of the GmPAP3 --- p.64 / Chapter 3.3.2 --- The salt-inducible GmPAP3 gene in soybean encodes a putative mitochondria-located PAP --- p.64 / Chapter 3.3.3 --- Expression of GmPAP3 was induced by NaCl stress but not P deficiency --- p.71 / Chapter 3.3.4 --- Expression of GmPAP3 was induced by oxidative stress --- p.80 / Chapter 4. --- Discussion --- p.82 / Chapter 4.1 --- A collection of typical salt tolerant and sensitive soybean varieties --- p.83 / Chapter 4.2 --- Inducibility of identified salt-inducible gene in different varieties --- p.85 / Chapter 4.2.1 --- The possible roles of identified salt-inducible genes --- p.85 / Chapter 4.2.2 --- Expression profiles of identified salt-inducible genes --- p.89 / Chapter 4.3 --- The novel gene GmPAP3 --- p.92 / Chapter 5. --- Conclusion and perspectives --- p.98 / References --- p.100 / Appendix I: Expression profiles of the salt inducible genes in root tissue of selected varieties --- p.116 / Appendix II: Major equipment and facilities used in this research --- p.124 / Appendix III: Major chemicals and reagents used in this research --- p.125 / Appendix IV: Major common solutions used in this research --- p.127
96

Antinutritional factors in legumes of the Sonoran Desert

Thorn, Kevin Arthur January 1981 (has links)
No description available.
97

Grass-legume interactions : experiments and models : analysis and interpretations

Di Tella, Luciano N. F. January 1982 (has links)
No description available.
98

Structure-function study of vicilins from two indigenous Chinese legumes, Dolichos lablab and Phaseolus calcaratus

Law, Ho-ying., 羅浩盈. January 2003 (has links)
published_or_final_version / Botany / Doctoral / Doctor of Philosophy
99

Symbiotic nitrogen fixation by native woody legumes (leguminosae) in Hong Kong, China

Ng, Ying-sim., 吳英嬋. January 2009 (has links)
published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
100

EFFECT OF COOKING TIME AND TEMPERATURE ON HARDNESS AND ANTI-NUTRITIONAL FACTORS OF TEPARY BEAN.

Kabbara, Salam. January 1985 (has links)
No description available.

Page generated in 0.0237 seconds