• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The study of reproduction and temperature tolerance of Pomacea canaliculata and P. scalaris

Wu, Yu-ting 13 September 2006 (has links)
The distribution of apple snail Pomacea canaliculata are island-wide but Pomacea scalaris is only found in southern Taiwan. In order to gain more information on the not well-known alien invasive species, comparative studies on the reproduction and thermal tolerance of P. canaliculata and P. scalaris were conducted. Sexual dimorphism in shell morphology has been found in both species, with wider operculum in males. Positive correlation between shell length and penis sheath length or penis length has been observed in male P. canaliculata and P. scalaris, based on the samples collected during the period of December 2004 and March 2006, The width of penis sheath in P. canaliculata was greater than in P. scalaris. Positive correlation between shell length and the height and width of vestigial penis in female P. canaliculata and P. scalaris was also found. The width of vestigial penis in P. scalaris was greater than in P. canaliculata. Gonadosomatic index (GSI) in male P. canaliculata and P. scalaris was 68 and 60% and 31 and 33% in females. Their reproductive cycle was annual without seasonal peaks. Significant difference in thermopreferrenda was found between P. canaliculata and P. scalaris. The 24, 48 and 72-h lethal thermal minima temperatures in P. canaliculata and P. scalaris were similar, i.e. 9.8¡V11.8¢J. And, the 24, 48 and 72-h lethal thermal maxima temperatures were 33.1¡V35.9¢J. Based on the results, it is known that P. canaliculata and P. scalaris reproduce year-round and temperature is not a major factor in shaping the species distribution pattern in Taiwan.
2

Lichen thermal sensitivities, moisture interception and elemental accumulation in an arid South African ecosystem

Maphangwa, Khumbudzo Walter January 2010 (has links)
<p>Elevated temperatures accompanying climate warming are expected to have adverse effects on sensitive lichen species. This premise was examined by measuring the sensitivity of different lichen species to elevated temperatures in the laboratory and in the field. Laboratory studies involved the exposure of nine hydrated lichen species (Xanthoparmelia austro-africana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina hottentotta, Teloschistes capensis, Ramalina sp., Flavopuntelia caperata, Lasallia papulosa, Parmotrema austrosinensis) collected from sites of different aridity and mean annual temperature for 2 hourly intervals to temperatures ranging from 24&ordm / C to 48&ordm / C in a forced daft oven and measuring their respiration rates and maximum quantum yield of PSII. Field studies involved simultaneous hourly measurements of ground surface air temperatures and Lichen effective quantum yield of PSII of hydrated lichen species populations under ambient and artificially modified environmental conditions.</p>
3

Lichen thermal sensitivities, moisture interception and elemental accumulation in an arid South African ecosystem

Maphangwa, Khumbudzo Walter January 2010 (has links)
<p>Elevated temperatures accompanying climate warming are expected to have adverse effects on sensitive lichen species. This premise was examined by measuring the sensitivity of different lichen species to elevated temperatures in the laboratory and in the field. Laboratory studies involved the exposure of nine hydrated lichen species (Xanthoparmelia austro-africana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina hottentotta, Teloschistes capensis, Ramalina sp., Flavopuntelia caperata, Lasallia papulosa, Parmotrema austrosinensis) collected from sites of different aridity and mean annual temperature for 2 hourly intervals to temperatures ranging from 24&ordm / C to 48&ordm / C in a forced daft oven and measuring their respiration rates and maximum quantum yield of PSII. Field studies involved simultaneous hourly measurements of ground surface air temperatures and Lichen effective quantum yield of PSII of hydrated lichen species populations under ambient and artificially modified environmental conditions.</p>
4

Lichen thermal sensitivities, moisture interception and elemental accumulation in an arid South African ecosystem

Maphangwa, Khumbudzo Walter January 2010 (has links)
Magister Scientiae (Biodiversity and Conservation Biology) / Elevated temperatures accompanying climate warming are expected to have adverse effects on sensitive lichen species. This premise was examined by measuring the sensitivity of different lichen species to elevated temperatures in the laboratory and in the field. Laboratory studies involved the exposure of nine hydrated lichen species (Xanthoparmelia austro-africana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina hottentotta, Teloschistes capensis, Ramalina sp., Flavopuntelia caperata, Lasallia papulosa, Parmotrema austrosinensis) collected from sites of different aridity and mean annual temperature for 2 hourly intervals to temperatures ranging from 24ºC to 48ºC in a forced daft oven and measuring their respiration rates and maximum quantum yield of PSII. Field studies involved simultaneous hourly measurements of ground surface air temperatures and Lichen effective quantum yield of PSII of hydrated lichen species populations under ambient and artificially modified environmental conditions. / South Africa
5

Biogéographie du microclimat foliaire : mécanismes et conséquences sur les relations plantes-insectes / Biogeography of the leaf microclimate : mechanisms and consequences on insect-plant interactions

Caillon, Robin 29 January 2016 (has links)
Les performances du végétal et des arthropodes dont il constitue le microhabitat dépendent des températures de surface foliaire. Celles-ci peuvent dévier fortement de la température de l’air et présenter des niveaux d’hétérogénéité différents selon l'échelle spatiale considérée. La feuille atténue les températures extrêmes en rapprochant son amplitude de variation journalière de celle de la température de l’air. Cependant, cette réponse diminue l’hétérogénéité des températures de surface foliaire et les capacités de thermorégulation comportementale des arthropodes à l'échelle de la feuille. Les températures moyennes de surface foliaire atténuent peu le réchauffement, et déterminent localement la performance photosynthétique du végétal. De l’échelle de la feuille à celle de la canopée, les plantes montrent des réponses différentes au réchauffement. Ce type de changement d'échelle est primordial pour améliorer notre compréhension de l'impact des changements climatiques. / Plant performance and leaf-dwelling arthropods are impacted by leaf surface temperatures. Leaf surface temperatures can show important deviation from air temperature and present different levels of heterogeneity depending on the spatial scale. The leaf buffers temperature extremes by getting closer in amplitude to air temperature. However, this physiological response decreases the heterogeneity of temperatures at the leaf surface and the opportunities for arthropods to behavioraly thermoregulate in this microclimate. Mean temperatures at the leaf surface show low buffering abilities in response to warming and locally determine photosynthetic performance. From the leaf to the canopy scale, plants show different responses to warming and scaling is crucial to increase our understanding of the impact of global warming.

Page generated in 0.0584 seconds