• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • Tagged with
  • 14
  • 14
  • 14
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Stress-Constrained Topology Optimization with Application to the Design of Electrical Machines

Holley, Jonas 27 November 2023 (has links)
Zweitveröffentlichung, ursprünglich veröffentlicht: Jonas Holley: Stress-Constrained Topology Optimization with Application to the Design of Electrical Machines. München: Verlag Dr. Hut, 2023, 199 Seiten, Dissertation Humboldt-Universität Berlin (2023). ISBN 978-3-8439-5378-8 / Während des Designprozesses physischer Gegenstände stellt die mechanische Stabilität in nahezu jedem Anwendungsbereich eine essentielle Anforderung dar. Stabilität kann mittels geeigneter Kriterien, die auf dem mechanischen Spannungstensor basieren, mathematisch quantifiziert werden. Dies dient dem Ziel der Vermeidung von Schädigung in jedem Punkt innerhalb des Gegenstands. Die vorliegende Arbeit behandelt die Entwicklung einer Methode zur Lösung von Designoptimierungsproblemen mit punktweisen Spannungsrestriktionen. Zunächst wird eine Regularisierung des Optimierungsproblems eingeführt, die einen zentralen Baustein für den Erfolg einer Lösungsmethode darstellt. Nach der Analyse des Problems hinsichtlich der Existenz von Lösungen wird ein Gradientenabstiegsverfahren basierend auf einer impliziten Designdarstellung und dem Konzept des topologischen Gradienten entwickelt. Da der entwickelte Ansatz eine Methode im Funktionenraum darstellt, ist die numerische Realisierung ein entscheidender Schritt in Richtung der praktischen Anwendung. Die Diskretisierung der Zustandsgleichung und der adjungierten Gleichung bildet die Basis für eine endlich-dimensionale Version des Optimierungsverfahrens. Im letzten Teil der Arbeit werden numerische Experimente durchgeführt, um die Leistungsfähigkeit des entwickelten Algorithmus zu bewerten. Zunächst wird das Problem des minimalen Volumens unter punktweisen Spannungsrestriktionen anhand der L-Balken Geometrie untersucht. Ein Schwerpunkt wird hierbei auf die Untersuchung der Regularisierung gelegt. Danach wird das multiphysikalische Design einer elektrischen Maschine adressiert. Zusätzlich zu den punktweisen Restriktionen an die mechanischen Spannungen wird die Maximierung des mittleren Drehmoments berücksichtigt, um das elektromagnetische Verhalten der Maschine zu optimieren. Der Erfolg der numerischen Tests demonstriert das Potential der entwickelten Methode in der Behandlung realistischer industrieller Problemstellungen. / In the process of designing a physical object, the mechanical stability is an essential requirement in nearly every area of application. Stability can be quantified mathematically by suitable criteria based on the stress tensor, aiming at the prevention of damage in each point within the physical object. This thesis deals with the development of a framework for the solution of optimal design problems with pointwise stress constraints. First, a regularization of the optimal design problem is introduced. This perturbation of the original problem represents a central element for the success of a solution method. After analyzing the perturbed problem with respect to the existence of solutions, a line search type gradient descent scheme is developed based on an implicit design representation via a level set function. The core of the optimization method is provided by the topological gradient, which quantifies the effect of an infinitesimal small topological perturbation of a given design on an objective functional. Since the developed approach is a method in function space, the numerical realization is a crucial step towards its practical application. The discretization of the state and adjoint equation provide the basis for developing a finite-dimensional version of the optimization scheme. In the last part of the thesis, numerical experiments are conducted in order to assess the performance of the developed algorithm. First, the stress-constrained minimum volume problem for the L-Beam geometry is addressed. An emphasis is put on examining the effect of the proposed regularization. Afterwards, the multiphysical design of an electrical machine is addressed. In addition to the pointwise constraints on the mechanical stress, the maximization of the mean torque is considered in order to improve the electromagnetic performance of the machine. The success of the numerical tests demonstrate the potential of the developed design method in dealing with real industrial problems.
12

Motion Planning for the Two-Phase Stefan Problem in Level Set Formulation

Bernauer, Martin 21 December 2010 (has links) (PDF)
This thesis is concerned with motion planning for the classical two-phase Stefan problem in level set formulation. The interface separating the fluid phases from the solid phases is represented as the zero level set of a continuous function whose evolution is described by the level set equation. Heat conduction in the two phases is modeled by the heat equation. A quadratic tracking-type cost functional that incorporates temperature tracking terms and a control cost term that expresses the desire to have the interface follow a prescribed trajectory by adjusting the heat flux through part of the boundary of the computational domain. The formal Lagrange approach is used to establish a first-order optimality system by applying shape calculus tools. For the numerical solution, the level set equation and its adjoint are discretized in space by discontinuous Galerkin methods that are combined with suitable explicit Runge-Kutta time stepping schemes, while the temperature and its adjoint are approximated in space by the extended finite element method (which accounts for the weak discontinuity of the temperature by a dynamic local modification of the underlying finite element spaces) combined with the implicit Euler method for the temporal discretization. The curvature of the interface which arises in the adjoint system is discretized by a finite element method as well. The projected gradient method, and, in the absence of control constraints, the limited memory BFGS method are used to solve the arising optimization problems. Several numerical examples highlight the potential of the proposed optimal control approach. In particular, they show that it inherits the geometric flexibility of the level set method. Thus, in addition to unidirectional solidification, closed interfaces and changes of topology can be tracked. Finally, the Moreau-Yosida regularization is applied to transform a state constraint on the position of the interface into a penalty term that is added to the cost functional. The optimality conditions for this penalized optimal control problem and its numerical solution are discussed. An example confirms the efficacy of the state constraint. / Die vorliegende Arbeit beschäftigt sich mit einem Optimalsteuerungsproblem für das klassische Stefan-Problem in zwei Phasen. Die Phasengrenze wird als Niveaulinie einer stetigen Funktion modelliert, was die Lösung der so genannten Level-Set-Gleichung erfordert. Durch Anpassen des Wärmeflusses am Rand des betrachteten Gebiets soll ein gewünschter Verlauf der Phasengrenze angesteuert werden. Zusammen mit dem Wunsch, ein vorgegebenes Temperaturprofil zu approximieren, wird dieses Ziel in einem quadratischen Zielfunktional formuliert. Die notwendigen Optimalitätsbedingungen erster Ordnung werden formal mit Hilfe der entsprechenden Lagrange-Funktion und unter Benutzung von Techniken aus der Formoptimierung hergeleitet. Für die numerische Lösung müssen die auftretenden partiellen Differentialgleichungen diskretisiert werden. Dies geschieht im Falle der Level-Set-Gleichung und ihrer Adjungierten auf Basis von unstetigen Galerkin-Verfahren und expliziten Runge-Kutta-Methoden. Die Wärmeleitungsgleichung und die entsprechende Gleichung im adjungierten System werden mit einer erweiterten Finite-Elemente-Methode im Ort sowie dem impliziten Euler-Verfahren in der Zeit diskretisiert. Dieser Zugang umgeht die aufwändige Adaption des Gitters, die normalerweise bei der FE-Diskretisierung von Phasenübergangsproblemen unvermeidbar ist. Auch die Krümmung der Phasengrenze wird numerisch mit Hilfe der Methode der finiten Elemente angenähert. Zur Lösung der auftretenden Optimierungsprobleme werden ein Gradienten-Projektionsverfahren und, im Fall dass keine Kontrollschranken vorliegen, die BFGS-Methode mit beschränktem Speicherbedarf eingesetzt. Numerische Beispiele beleuchten die Stärken des vorgeschlagenen Zugangs. Es stellt sich insbesondere heraus, dass sich die geometrische Flexibilität der Level-Set-Methode auf den vorgeschlagenen Zugang zur optimalen Steuerung vererbt. Zusätzlich zur gerichteten Bewegung einer flachen Phasengrenze können somit auch geschlossene Phasengrenzen sowie topologische Veränderungen angesteuert werden. Exemplarisch, und zwar an Hand einer Beschränkung an die Lage der Phasengrenze, wird auch noch die Behandlung von Zustandsbeschränkungen mittels der Moreau-Yosida-Regularisierung diskutiert. Ein numerisches Beispiel demonstriert die Wirkung der Zustandsbeschränkung.
13

Motion Planning for the Two-Phase Stefan Problem in Level Set Formulation

Bernauer, Martin 17 December 2010 (has links)
This thesis is concerned with motion planning for the classical two-phase Stefan problem in level set formulation. The interface separating the fluid phases from the solid phases is represented as the zero level set of a continuous function whose evolution is described by the level set equation. Heat conduction in the two phases is modeled by the heat equation. A quadratic tracking-type cost functional that incorporates temperature tracking terms and a control cost term that expresses the desire to have the interface follow a prescribed trajectory by adjusting the heat flux through part of the boundary of the computational domain. The formal Lagrange approach is used to establish a first-order optimality system by applying shape calculus tools. For the numerical solution, the level set equation and its adjoint are discretized in space by discontinuous Galerkin methods that are combined with suitable explicit Runge-Kutta time stepping schemes, while the temperature and its adjoint are approximated in space by the extended finite element method (which accounts for the weak discontinuity of the temperature by a dynamic local modification of the underlying finite element spaces) combined with the implicit Euler method for the temporal discretization. The curvature of the interface which arises in the adjoint system is discretized by a finite element method as well. The projected gradient method, and, in the absence of control constraints, the limited memory BFGS method are used to solve the arising optimization problems. Several numerical examples highlight the potential of the proposed optimal control approach. In particular, they show that it inherits the geometric flexibility of the level set method. Thus, in addition to unidirectional solidification, closed interfaces and changes of topology can be tracked. Finally, the Moreau-Yosida regularization is applied to transform a state constraint on the position of the interface into a penalty term that is added to the cost functional. The optimality conditions for this penalized optimal control problem and its numerical solution are discussed. An example confirms the efficacy of the state constraint. / Die vorliegende Arbeit beschäftigt sich mit einem Optimalsteuerungsproblem für das klassische Stefan-Problem in zwei Phasen. Die Phasengrenze wird als Niveaulinie einer stetigen Funktion modelliert, was die Lösung der so genannten Level-Set-Gleichung erfordert. Durch Anpassen des Wärmeflusses am Rand des betrachteten Gebiets soll ein gewünschter Verlauf der Phasengrenze angesteuert werden. Zusammen mit dem Wunsch, ein vorgegebenes Temperaturprofil zu approximieren, wird dieses Ziel in einem quadratischen Zielfunktional formuliert. Die notwendigen Optimalitätsbedingungen erster Ordnung werden formal mit Hilfe der entsprechenden Lagrange-Funktion und unter Benutzung von Techniken aus der Formoptimierung hergeleitet. Für die numerische Lösung müssen die auftretenden partiellen Differentialgleichungen diskretisiert werden. Dies geschieht im Falle der Level-Set-Gleichung und ihrer Adjungierten auf Basis von unstetigen Galerkin-Verfahren und expliziten Runge-Kutta-Methoden. Die Wärmeleitungsgleichung und die entsprechende Gleichung im adjungierten System werden mit einer erweiterten Finite-Elemente-Methode im Ort sowie dem impliziten Euler-Verfahren in der Zeit diskretisiert. Dieser Zugang umgeht die aufwändige Adaption des Gitters, die normalerweise bei der FE-Diskretisierung von Phasenübergangsproblemen unvermeidbar ist. Auch die Krümmung der Phasengrenze wird numerisch mit Hilfe der Methode der finiten Elemente angenähert. Zur Lösung der auftretenden Optimierungsprobleme werden ein Gradienten-Projektionsverfahren und, im Fall dass keine Kontrollschranken vorliegen, die BFGS-Methode mit beschränktem Speicherbedarf eingesetzt. Numerische Beispiele beleuchten die Stärken des vorgeschlagenen Zugangs. Es stellt sich insbesondere heraus, dass sich die geometrische Flexibilität der Level-Set-Methode auf den vorgeschlagenen Zugang zur optimalen Steuerung vererbt. Zusätzlich zur gerichteten Bewegung einer flachen Phasengrenze können somit auch geschlossene Phasengrenzen sowie topologische Veränderungen angesteuert werden. Exemplarisch, und zwar an Hand einer Beschränkung an die Lage der Phasengrenze, wird auch noch die Behandlung von Zustandsbeschränkungen mittels der Moreau-Yosida-Regularisierung diskutiert. Ein numerisches Beispiel demonstriert die Wirkung der Zustandsbeschränkung.
14

Coupling between stochastic particle transport models and topographic thin film growth

Gehre, Joshua 01 April 2022 (has links)
Manufacturing of electronics devices, continuously decreasing in size, commonly requires the vapor phase deposition of materials into small structures on a wafer, often at a nanometer scale. In this thesis the goal is to simulate vapor-phase deposition processes at a scale where fully atomistic simulations using Molecular Dynamics are no longer feasible. This is achieved by combing two methods, one simulating the gas flow and deposition processes and another method simulating the changing surface. A Particle Monte Carlo method, specifically designed for free molecular flow, the typical flow regime at this length scale, is used. The simulation of growing surfaces uses the Level Set Method. Combining these two methods requires some additional coupling steps presented in this work. With the coupled model, different deposition processes are simulated within trenches to observe how well these processes perform for achieving a uniform deposition, as well as evaluating different process conditions.:Table of Contents List of Figures List of Tables List of Abbreviations List of Symbols 1 Introduction 2 Basics 2.1 Surface deposition processes 2.1.1 Chemical Vapor Deposition 2.1.2 Atomic Layer Deposition 2.1.3 Physical Vapor Deposition 2.2 Simulation approaches for surface depositions 2.2.1 Modeling chemical reactions on a surface 2.2.2 Interaction tables for PVD 2.3 Flow regimes 2.4 Molecular Dynamics 2.5 Particle Monte Carlo 2.6 Marker Particle Method 2.7 Level Set Method 2.7.1 Re-initialization of the signed distance function 2.7.2 Extension Velocities 2.7.3 Fast Marching Method 2.7.4 Upwind scheme 2.7.5 Curvature 2.8 Marching-Squares/Cubes Algorithm 3 Methods and Implementation 3.1 Software 3.1.1 External libraries 3.1.2 Geosect 3.2 Initialization of the signed distance field 3.3 Coupling between particle simulations and Level Set 3.3.1 The simulation cycle 3.3.2 Conversion from a grid to a discrete mesh 3.3.3 Extension of growth rates from a mesh to a grid 3.4 Integrating the Level Set Equation 3.4.1 Splitting the number of particles between different steps 3.4.2 Re-initializing the signed distance function 3.4.3 Handling surface coverage 3.4.4 The full update of the surface 3.5 Curvature dependent reflow 3.6 Level Set for radial symmetry 4 Verification 4.1 Testing different integration schemes 4.1.1 Growth of a circle in a linear velocity field 4.1.2 PVD in trenches 4.2 Mass preservation during curvature dependent reflow 4.3 Comparisons between 2D, radial 2D and 3D 4.3.1 Comparing 2D and 3D 4.3.2 Comparing radial 2D and 3D 5 Process Simulations 5.1 Resputter process using a PVD 5.1.1 Simulations and their parameters 5.1.2 Surfaces after the deposition step 5.1.3 Surface growth in the resputter step 5.1.4 Conditions for improved layer thickness 5.2 CVD with an effective sticking coefficient 5.3 Incomplete ALD cycles 5.4 Deposition onto a complex 3D shape 6 Conclusion Bibliography Acknowledgment Statement of authorship

Page generated in 0.0314 seconds