• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 8
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 19
  • 13
  • 12
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Möglichkeiten zur Steuerung von Trust-Region Verfahren im Rahmen der Parameteridentifikation

Clausner, André 05 June 2013 (has links) (PDF)
Zur Simulation technischer Prozesse ist eine hinreichend genaue Beschreibung des Materialverhaltens notwendig. Die hierfür häufig verwendeten phänomenologischen Ansätze, wie im vorliegenden Fall die HILLsche Fließbedingung, enthalten materialspezifische Parameter, welche nicht direkt messbar sind. Die Identifikation dieser Materialparameter erfolgt in der Regel durch Minimierung eines Fehlerquadratfunktionals, welches Differenzen von Messwerten und zugehörigen numerisch berechneten Vergleichswerten enthält. In diesem Zusammenhang haben sich zur Lösung dieser Minimierungsaufgabe die Trust-Region Verfahren als gut geeignet herausgestellt. Die Aufgabe besteht darin, die verschiedenen Möglichkeiten zur Steuerung eines Trust-Region Verfahrens, im Hinblick auf die Eignung für das vorliegende Identifikationsproblem, zu untersuchen. Dazu werden die Quadratmittelprobleme und deren Lösungsverfahren überblicksmäßig betrachtet. Danach wird näher auf die Trust-Region Verfahren eingegangen, wobei sich im Weiteren auf Verfahren mit positiv definiten Ansätzen für die Hesse-Matrix, den Levenberg-Marquardt Verfahren, beschränkt wird. Danach wird ein solcher Levenberg-Marquardt Algorithmus in verschiedenen Ausführungen implementiert und an dem vorliegenden Identifikationsproblem getestet. Als Ergebnis stellt sich eine gute Kombination aus verschiedenen Teilalgorithmen des Levenberg-Marquardt Algorithmus mit einer hohen Konvergenzgeschwindigkeit heraus, welche für das vorliegende Problem gut geeignet ist.
32

Local Convergence of Newton-type Methods for Nonsmooth Constrained Equations and Applications

Herrich, Markus 16 January 2015 (has links) (PDF)
In this thesis we consider constrained systems of equations. The focus is on local Newton-type methods for the solution of constrained systems which converge locally quadratically under mild assumptions implying neither local uniqueness of solutions nor differentiability of the equation function at solutions. The first aim of this thesis is to improve existing local convergence results of the constrained Levenberg-Marquardt method. To this end, we describe a general Newton-type algorithm. Then we prove local quadratic convergence of this general algorithm under the same four assumptions which were recently used for the local convergence analysis of the LP-Newton method. Afterwards, we show that, besides the LP-Newton method, the constrained Levenberg-Marquardt method can be regarded as a special realization of the general Newton-type algorithm and therefore enjoys the same local convergence properties. Thus, local quadratic convergence of a nonsmooth constrained Levenberg-Marquardt method is proved without requiring conditions implying the local uniqueness of solutions. As already mentioned, we use four assumptions for the local convergence analysis of the general Newton-type algorithm. The second aim of this thesis is a detailed discussion of these convergence assumptions for the case that the equation function of the constrained system is piecewise continuously differentiable. Some of the convergence assumptions seem quite technical and difficult to check. Therefore, we look for sufficient conditions which are still mild but which seem to be more familiar. We will particularly prove that the whole set of the convergence assumptions holds if some set of local error bound conditions is satisfied and in addition the feasible set of the constrained system excludes those zeros of the selection functions which are not zeros of the equation function itself, at least in a sufficiently small neighborhood of some fixed solution. We apply our results to constrained systems arising from complementarity systems, i.e., systems of equations and inequalities which contain complementarity constraints. Our new conditions are discussed for a suitable reformulation of the complementarity system as constrained system of equations by means of the minimum function. In particular, it will turn out that the whole set of the convergence assumptions is actually implied by some set of local error bound conditions. In addition, we provide a new constant rank condition implying the whole set of the convergence assumptions. Particularly, we provide adapted formulations of our new conditions for special classes of complementarity systems. We consider Karush-Kuhn-Tucker (KKT) systems arising from optimization problems, variational inequalities, or generalized Nash equilibrium problems (GNEPs) and Fritz-John (FJ) systems arising from GNEPs. Thus, we obtain for each problem class conditions which guarantee local quadratic convergence of the general Newton-type algorithm and its special realizations to a solution of the particular problem. Moreover, we prove for FJ systems of GNEPs that generically some full row rank condition is satisfied at any solution of the FJ system of a GNEP. The latter condition implies the whole set of the convergence assumptions if the functions which characterize the GNEP are sufficiently smooth. Finally, we describe an idea for a possible globalization of our Newton-type methods, at least for the case that the constrained system arises from a certain smooth reformulation of the KKT system of a GNEP. More precisely, a hybrid method is presented whose local part is the LP-Newton method. The hybrid method turns out to be, under appropriate conditions, both globally and locally quadratically convergent.
33

Adaptivní optimální regulátory s principy umělé inteligence v prostředí MATLAB - B&R / Adaptive optimal controllers with principles of artificial intelligence

Mrázek, Michal January 2008 (has links)
Master’s thesis describes adaptive optimal controller design which change parameters of algorithm based on the system information regard for optimal criterion. Generally, the optimal controller solves the problem of minimum states vector. Problems of desired value and steady-state error are solved by variation in optimization algorithm.
34

Adaptivní optimální regulátory s principy umělé inteligence v prostředí MATLAB - B&R / Adaptive optimal controllers with principles of artificial intelligence

Samek, Martin January 2009 (has links)
Master’s thesis describes adaptive optimal controller design and it’s settings. Identification with principles of artificial intelligence and recursive least squares identification with exponential and directional forgetting are compared separately and as part of controller. Adaptive optimal controller is tested on physical model and compared with solidly adjusted PSD controller. Possibilities of implementation of adaptive optimal controller into programmable logic controller B&R are show and tested.
35

Local Convergence of Newton-type Methods for Nonsmooth Constrained Equations and Applications

Herrich, Markus 15 December 2014 (has links)
In this thesis we consider constrained systems of equations. The focus is on local Newton-type methods for the solution of constrained systems which converge locally quadratically under mild assumptions implying neither local uniqueness of solutions nor differentiability of the equation function at solutions. The first aim of this thesis is to improve existing local convergence results of the constrained Levenberg-Marquardt method. To this end, we describe a general Newton-type algorithm. Then we prove local quadratic convergence of this general algorithm under the same four assumptions which were recently used for the local convergence analysis of the LP-Newton method. Afterwards, we show that, besides the LP-Newton method, the constrained Levenberg-Marquardt method can be regarded as a special realization of the general Newton-type algorithm and therefore enjoys the same local convergence properties. Thus, local quadratic convergence of a nonsmooth constrained Levenberg-Marquardt method is proved without requiring conditions implying the local uniqueness of solutions. As already mentioned, we use four assumptions for the local convergence analysis of the general Newton-type algorithm. The second aim of this thesis is a detailed discussion of these convergence assumptions for the case that the equation function of the constrained system is piecewise continuously differentiable. Some of the convergence assumptions seem quite technical and difficult to check. Therefore, we look for sufficient conditions which are still mild but which seem to be more familiar. We will particularly prove that the whole set of the convergence assumptions holds if some set of local error bound conditions is satisfied and in addition the feasible set of the constrained system excludes those zeros of the selection functions which are not zeros of the equation function itself, at least in a sufficiently small neighborhood of some fixed solution. We apply our results to constrained systems arising from complementarity systems, i.e., systems of equations and inequalities which contain complementarity constraints. Our new conditions are discussed for a suitable reformulation of the complementarity system as constrained system of equations by means of the minimum function. In particular, it will turn out that the whole set of the convergence assumptions is actually implied by some set of local error bound conditions. In addition, we provide a new constant rank condition implying the whole set of the convergence assumptions. Particularly, we provide adapted formulations of our new conditions for special classes of complementarity systems. We consider Karush-Kuhn-Tucker (KKT) systems arising from optimization problems, variational inequalities, or generalized Nash equilibrium problems (GNEPs) and Fritz-John (FJ) systems arising from GNEPs. Thus, we obtain for each problem class conditions which guarantee local quadratic convergence of the general Newton-type algorithm and its special realizations to a solution of the particular problem. Moreover, we prove for FJ systems of GNEPs that generically some full row rank condition is satisfied at any solution of the FJ system of a GNEP. The latter condition implies the whole set of the convergence assumptions if the functions which characterize the GNEP are sufficiently smooth. Finally, we describe an idea for a possible globalization of our Newton-type methods, at least for the case that the constrained system arises from a certain smooth reformulation of the KKT system of a GNEP. More precisely, a hybrid method is presented whose local part is the LP-Newton method. The hybrid method turns out to be, under appropriate conditions, both globally and locally quadratically convergent.
36

Möglichkeiten zur Steuerung von Trust-Region Verfahren im Rahmen der Parameteridentifikation

Clausner, André 10 May 2006 (has links)
Zur Simulation technischer Prozesse ist eine hinreichend genaue Beschreibung des Materialverhaltens notwendig. Die hierfür häufig verwendeten phänomenologischen Ansätze, wie im vorliegenden Fall die HILLsche Fließbedingung, enthalten materialspezifische Parameter, welche nicht direkt messbar sind. Die Identifikation dieser Materialparameter erfolgt in der Regel durch Minimierung eines Fehlerquadratfunktionals, welches Differenzen von Messwerten und zugehörigen numerisch berechneten Vergleichswerten enthält. In diesem Zusammenhang haben sich zur Lösung dieser Minimierungsaufgabe die Trust-Region Verfahren als gut geeignet herausgestellt. Die Aufgabe besteht darin, die verschiedenen Möglichkeiten zur Steuerung eines Trust-Region Verfahrens, im Hinblick auf die Eignung für das vorliegende Identifikationsproblem, zu untersuchen. Dazu werden die Quadratmittelprobleme und deren Lösungsverfahren überblicksmäßig betrachtet. Danach wird näher auf die Trust-Region Verfahren eingegangen, wobei sich im Weiteren auf Verfahren mit positiv definiten Ansätzen für die Hesse-Matrix, den Levenberg-Marquardt Verfahren, beschränkt wird. Danach wird ein solcher Levenberg-Marquardt Algorithmus in verschiedenen Ausführungen implementiert und an dem vorliegenden Identifikationsproblem getestet. Als Ergebnis stellt sich eine gute Kombination aus verschiedenen Teilalgorithmen des Levenberg-Marquardt Algorithmus mit einer hohen Konvergenzgeschwindigkeit heraus, welche für das vorliegende Problem gut geeignet ist.:1 Einleitung 8 2 Nichtlineare Quadratmittelprobleme 9 2.1 Herkunft der Residuen: Das Prinzip der kleinsten Fehlerquadrate 10 2.2 Auftretende Differentialmatrizen 11 2.2.1 Lipschitzbedingung für die Unterscheidung der Aufgabenklasse im Hinblick auf die Residuen 12 2.3 Aufgabenklassen 13 2.3.1 Kleine und Null-Residuen 13 2.3.2 Große Residuen 13 2.3.3 Große Probleme 14 2.4 Modellstufen für f(x) um eine lokale Konstellation xk 15 2.5 Eigenschaften der Gauß-Newton Approximation der Hesse-Matrix 16 3 Identifikation der Materialparameter der HILLschen Fließbedingung für die plastische Verformung anisotroper Werkstoffe 17 4 ¨Ubersicht über monoton fallende Optimierungsverfahren für nichtlineare Funktionen 19 4.1 Die Idee der Line-Search Verfahren 19 4.2 Die Idee der Trust-Region Verfahren 20 4.3 Übersichtstabelle Über die Verfahren zur unrestringierten Optimierung 21 4.4 Ermittlungsmethoden fÜr die Suchrichtung sk bei Line-Search Methoden 22 4.4.1 Gradientenverfahren 22 4.4.2 Das Newton Verfahren 22 4.4.3 Quasi-Newton Verfahren 23 4.4.4 Gauß-Newton Verfahren 24 4.4.5 Methode der konjugierten Gradienten 25 4.4.6 Koordinatenabstiegsmethode nach Ahlers,Schwartz,Waldmann [1] 25 4.5 Modelle für die Trust-Region Verfahren 26 4.5.1 Der Cauchy Punkt 26 4.5.2 Das Newton Trust-Region Verfahren 27 4.5.3 Quasi-Newton Trust-Region Verfahren 27 4.5.4 Gauß-Newton Trust-Region: Levenberg-Marquardt Verfahren 27 4.6 Vergleich der Hauptstrategien 27 5 Die Trust-Region Verfahren 29 5.1 Die Konvergenz des Trust-Region Algorithmus zu stationären Punkten 34 5.2 Die Berechnung des Trust-Region Schrittes 35 5.3 Der Cauchy Punkt 37 5.4 Die Lösungsverfahren 38 5.5 Nahezu exakte Lösung des Trust-Region Problems, Regularisierung . 38 5.6 Struktur und Lösung der nahezu exakten Methode für den Normalfall 42 5.6.1 Ermitteln des Minimums s( lambda) des aktuellen Modells 46 5.6.1.1 Lösung mittels Cholesky Faktorisierung 47 5.6.1.2 Lösung mittels QR-Faktorisierung 47 5.6.1.3 Lösung mittels Singulärwertzerlegung 47 5.6.2 Das Ermitteln des Regularisierungsparameters 48 5.6.3 Ermitteln der Ableitung 0i( ) 51 5.6.4 Abbruch der -Iteration 52 5.6.5 Absichern der -Iteration 52 5.6.6 Ermitteln des Verhältnisses k 52 5.6.7 Auffrischen der Schrittnebenbedingung k 53 5.6.8 Startwerte für den Trust-Region Algorithmus 56 5.6.8.1 Startwerte 0 für den Trust-Region Radius 56 5.6.8.2 Startwerte für den Regularisierungsparameter 0 56 5.6.9 Konvergenz von Algorithmen, basierend auf nahezu exakten Lösungen 57 5.7 Approximation des Trust-Region Problems 57 5.7.1 Die Dogleg Methode 58 5.7.2 Die zweidimensionale Unterraumminimierung 60 5.7.3 Das Steihaug Vorgehen 61 5.7.4 Konvergenz der Approximationsverfahren 62 6 Trust-Region Verfahren mit positiv definiter Approximation der Hesse-Matrix: Das Levenberg-Marquardt Verfahren 63 6.1 Vorhandene Matrizen und durchführbare Methoden 64 6.2 Lösen des Levenberg-Marquardt Problems 66 6.2.1 Ermitteln von s( ) 68 6.2.1.1 Cholesky Faktorisierung 68 6.2.1.2 QR-Faktorisierung 68 6.2.1.3 Singulärwertzerlegung 68 6.2.2 Ermittlung des Regularisierungsparameter 69 6.2.3 Absichern der -Iteration 71 6.2.3.1 Absichern für die Strategie von Hebden 71 6.2.3.2 Absichern für die Newtonmethode 72 6.2.4 Weitere Teilalgorithmen 73 6.3 Ein prinzipieller Levenberg-Marquardt Algorithmus 73 7 Skalierung der Zielparameter 74 8 Abbruchkriterien für die Optimierungsalgorithmen 76 8.1 Abbruchkriterien bei Erreichen eines lokalen Minimums 76 8.2 Abbruchkriterien bei Erreichen der Maschinengenauigkeit für Trust-Region Verfahren 77 9 Test der Implementation des Levenberg-Marquardt Verfahrens 78 9.1 Test der Leistung für einzelne Parameter 79 9.2 Test der Leistung für Optimierungen mit mehreren Parametern 80 9.3 Test des Moduls 1 80 9.4 Test Modul 2 und Modul 3 81 9.5 Test des Moduls 4 81 9.6 Test des Moduls 5 81 9.7 Test des Modul 6 82 9.8 Test des Modul 7 83 9.9 Test des Modul 8 84 9.10 Modul 9 und Modul 10 84 9.11 Test mit verschiedenen Verfahrensparametern 85 9.12 Optimale Konfiguration 86 10 Zusammenfassung 87 11 Ausblick 88 11.1 Weiterführendes zu dem bestehenden Levenberg-Marquardt Verfahren 88 11.2 Weiterführendes zu den Trust-Region Verfahren 88 11.3 Weiterführendes zu den Line-Search Verfahren 89 11.4 Weiterführendes zu den Gradientenverfahren 89 Literaturverzeichnis 93 A Implementation: Das skalierte Levenberg-Marquardt Verfahren 95 A.1 Modul 1.x: 0-Wahl 95 A.1.1 Modul 1.1 95 A.1.2 Modul 1.2 96 A.1.3 Modul 1.3 96 A.1.4 Programmtechnische Umsetzung Modul 1 96 A.2 Modul 2.x: Wahl der Skalierungsmatrix 96 A.2.1 Modul 2.1 96 A.2.2 Modul 2.2 97 A.2.3 Programmtechnische Umsetzung Modul 2 97 A.3 Modul 3.x: Wahl der oberen und unteren Schranke l0, u0 für die - Iteration 97 A.3.1 Modul 3.1 97 A.3.2 Modul 3.2 97 A.3.3 Programmtechnische Umsetzung Modul 3 98 A.4 Modul 4.x: Wahl des Startwertes für den Regularisierungsparameter 0 98 A.4.1 Modul 4.1 98 A.4.2 Modul 4.2 99 A.4.3 Modul 4.3 99 A.4.4 Modul 4.4 99 A.4.5 Programmtechnische Umsetzung Modul 4 100 A.5 Modul 5.x: Die abgesicherte -Iteration 100 A.5.1 Modul 5.1 Die Iteration nach dem Schema von Hebden für 1 101 A.5.2 Modul 5.2 Die abgesicherte Iteration mit dem Newtonverfahren für 2 101 A.5.3 Die abgesicherte Iteration mit dem Newtonverfahren für 2 mittels Cholesky Zerlegung 102 A.5.4 Programmtechnische Umsetzung Modul 5 102 A.6 Modul 6.x: Die Ermittlung des Verhältnisses k 103 A.6.1 Modul 6.1: Herkömmliche Ermittlung 103 A.6.2 Modul 6.2: Numerisch stabile Ermittlung 104 A.6.3 Programmtechnische Umsetzung Modul 6 104 A.7 Modul 7.x: Auffrischen der Schrittnebenbedingung 105 A.7.1 Modul 7.1: Einfache Wahl 105 A.7.2 Modul 7.2: Wahl mit Berücksichtigung von Werten k < 0 105 A.7.3 Modul 7.3: Wahl mit Approximation von ffl 105 A.7.4 Programmtechnische Umsetzung Modul 7 106 A.8 Modul 8.x: Entscheidung über Akzeptanz des nächsten Schrittes sk . 107 A.8.1 Modul 8.1: Eine Akzeptanzbedingung 107 A.8.2 Modul 8.2: Zwei Akzeptanzbedingungen 107 A.8.3 Programmtechnische Umsetzung Modul 8 107 A.9 Modul 9.x: Abbruchbedingungen für den gesamten Algorithmus 107 A.9.1 Programmtechnische Umsetzung Modul 9 108 A.10 Modul 10.x: Berechnung des Schrittes s( ) 108 A.10.1 Modul 10.1 108 A.10.2 Modul 10.2 108 A.10.3 Programmtechnische Umsetzung Modul 10 108 A.11 Benötigte Prozeduren 109 A.11.1 Vektormultiplikation 109 A.11.2 Matrixmultiplikation 109 A.11.3 Matrixaddition 109 A.11.4 Cholesky Faktorisierung 110 A.11.5 Transponieren einer Matrix 111 A.11.6 Invertieren einer Matrix 111 A.11.6.1 Determinante einer Matrix 111 A.11.7 Normen 112 A.11.7.1 Euklidische Vektornorm 112 A.11.7.2 Euklidische Matrixnorm 112 A.11.8 Ermittlung von 1 112 A.11.9 Ermittlung von 2 112 A.11.10Ermittlung von 01 112 A.11.11Ermittlung von 02 .112 A.11.12Ermittlung von mk(s) 113 A.12 Programmablauf 113 A.13 Fehlercodes 114 B Weiterführendes: Allgemeines 116 B.1 Total Least Squares, Orthogonal distance regression 116 B.2 Lipschitz Konstante und Lipschitz Stetigkeit in nichtlinearen Quadratmittelproblemen 116 B.3 Beweis für das Prinzip der kleinsten Fehlerquadrate als beste Möglichkeit der Anpassung von Modellgleichungen an Messwerte 117 B.4 Konvergenzraten 119 B.5 Betrachtung der Normalengleichung als äquivalente Extremalbedingung 119 B.6 Der Cauchy Punkt 120 B.7 Minimumbedingungen 122 C Weiterführendes: Matrizen 123 C.1 Reguläre und singuläre Matrizen 123 C.2 Rang einer Matrix 123 C.3 Definitheit von quadratischen Matrizen 124 C.4 Kondition einer Matrix 125 C.5 Spaltenorthonormale und orthogonale Matrizen 125 C.6 Singulärwertzerlegung einer Matrix, SVD 126 C.7 Der Lanczos Algorithmus 127 C.8 Die QR Zerlegung einer Matrix 127 C.8.1 Gram Schmidt Orthogonalisierung 127 C.8.2 Householder Orthogonalisierung 127 C.9 Die Cholesky Faktorisierung 130 C.10 Die LINPACK Technik 131 D Daten und Bilder zum Levenberg-Marquardt Verfahren 132 D.1 Wichtige Funktionsverläufe des LM-Verfahrens 134 D.2 Einzelne Parameteroptimierungen 136 D.3 Kombinierte Parameteroptimierungen, P1,P2,P3 139 D.4 Vergleich Ableitungsgüte, Konvergenzproblem 142 D.5 Test des Modul 1 145 D.6 Test Modul 4 und 5 146 D.7 Test des Modul 6 147 D.8 Test des Modul 7 148 D.9 Test des Modul 8 151 D.10 Test verschiedener Algorithmusparameter 152 D.11 Standartalgorithmus und Verbesserter 155
37

Etude d'une solution d'évaluation des constantes diélectriques du béton d'ouvrages à risque par une approche problème inverse en électromagnétisme / Evaluation of the concrete electromagnetic properties by using radar measurements in a context of building sustainability, by inverse problem

Albrand, Marius 18 December 2017 (has links)
Les travaux de cette thèse concernent l'étude d'une méthode d'évaluation des constantes diélectriques du béton d'ouvrage à risque par une approche problème inverse. Pour cela des mesures radar de type GPR et un modèle électromagnétique de ces mêmes mesures seront utilisés. Les deux premiers chapitres de la thèse présentent les concepts clés, le contexte et un historique des travaux déjà réalisés dans le domaine. Le chapitre 2 propose en outre une adaptation des travaux déjà réalisés à la recherche de gradients de propriétés diélectriques dans le béton en profondeur. Cette recherche préliminaire nous a permis de redéfinir le processus de mesures pour le rendre plus adapté à nos besoins. Ainsi le chapitre 3 présente une campagne de mesure réalisée à l'aide d'un nouveau dispositif radar sur des corps d'épreuve conditionnés de telle sorte que la répartition de la teneur en eau soit maîtrisée. Dans ce chapitre, nous détaillons également un nouveau modèle numérique 3D du dispositif qui nous permet de simuler nos mesures de façon réaliste Ces simulations sont nécessaires à l'expression du problème inverse. à partir de ces mesures, dans le quatrième chapitre, nous définissons tout d'abord le problème inverse, puis en utilisant des mesures sur les corps d'épreuves saturés, pouvant être considérés comme homogènes d'un point de vue diélectrique, nous résolvons ce problème inverse par un algorithme d'optimisation basé sur celui de Levenberg-Marquardt. Les résultats obtenus par notre processus d'inversion sont cohérents avec les valeurs physiques que l'on pouvait attendre et sont indépendants des valeurs données à nos inconnues lors de l'initialisation. Ces résultats correspondent effectivement à un minimum de la fonction coût qui mesure la distance entre mesures et simulations. Nous avons ensuite étudié des stratégies pour diminuer le temps de calcul de notre processus d'inversion. Une première approche consiste à utiliser un modèle simplifié en 2D du dispositif, qui permet d'initialiser l'inversion 3D avec un point plus proche de la solution. Une autre idée consiste à utiliser au mieux les performances d'une machine multiprocesseurs en parallélisant le code 3D. Dans le chapitre 5 nous nous intéressons à des mesures sur des corps d'épreuve en béton dont la teneur en eau est une fonction affine de la profondeur. Dans ces conditions nous avons fait l'hypothèse, en première approche, que les constantes diélectriques suivent aussi ce type de loi. Après avoir redéfini les inconnues de notre problème inverse et adapté l'algorithme, nous montrons que le processus d'inversion fourni des résultats cohérents en ce qui concerne la permittivité diélectrique, mais insatisfaisant pour la conductivité. Après analyse de ces résultats nous avons proposé diverses pistes pour améliorer et valider la méthode d'inversion. Finalement en comparant l'ensemble des résultats, il apparaît que notre méthode d'inversion permet de caractériser des gradients de permittivité, mais pas de conductivité. Cela représente néanmoins une avancée significative pour la mesure de la teneur en eau dans les bétons, facteur principal influençant la constante diélectrique de ce matériau, dans le contexte du contrôle non destructif des ouvrages du génie civil. / That thesis aims to propose an assessment method of the concrete electromagnetic properties by using radar measurements in a context of building sustainability, by inverse problem. For that purpose Ground Penetrating Radar (GPR) measurements are used as well as a numerical model of the radar device. The first two chapters of the thesis present the key concepts, the context of the study, as well as the history of the research on that topic in particular in our laboratory. Chapter 2 also expands those early works on the search of electromagnetic properties of concrete in depth. That preliminary work helped us to develop a measurement device that is more fitted to our needs. Chapter 3 presents a measurement campaign that was carried out by using a new measurement device on specially made reinforced concrete slabs whose water content is monitored. In that chapter a 3D model of the device is also described. That model allows us to simulate the measurements very precisely. Those simulations are a critical link on the inverse process. Chapter 4 details the formulation of the inverse problem for the case of concrete slabs saturated with water, which can be therefore considered to have homogeneous electromagnetic properties. The problem is solved by using an optimization algorithm based on Levenberg-Marquardt method. The values obtained by the inverse process are physically acceptable and independent of the values given to the unknowns when initializing the algorithm. Those values are the minimum of the cost function that computes the distance between measured and simulated electromagnetic fields. We then studied some strategies to reduce the computing time of the inverse process. A first approach consists in the use of a 2D simplified model of our device to initialize the 3D inversion with values closer to the searched solution. Another idea is to better take advantage of all the resources of a multiprocessor computer by implementing a parallel version of the 3D code. In chapter 5 we focus on the concrete slab with water content being an affine function of depth. We define the new parameters that represent the unknowns of our problem and we adapt the previous algorithm. Then we show that the inverse process gives satisfying results with regard to the dielectric permittivity only. We suggest some ways to improve the method. Finally we conclude that our method allows to retrieve the permittivity of the concrete, but not its conductivity. Nevertheless that result represents a significant step for the measuring of water content in reinforced concrete in particular when a gradient is present, by using radar measurements.
38

An adaptive modeling and simulation environment for combined-cycle data reconciliation and degradation estimation.

Lin, TsungPo 26 June 2008 (has links)
Performance engineers face the major challenge in modeling and simulation for the after-market power system due to system degradation and measurement errors. Currently, the majority in power generation industries utilizes the deterministic data matching method to calibrate the model and cascade system degradation, which causes significant calibration uncertainty and also the risk of providing performance guarantees. In this research work, a maximum-likelihood based simultaneous data reconciliation and model calibration (SDRMC) is used for power system modeling and simulation. By replacing the current deterministic data matching with SDRMC one can reduce the calibration uncertainty and mitigate the error propagation to the performance simulation. A modeling and simulation environment for a complex power system with certain degradation has been developed. In this environment multiple data sets are imported when carrying out simultaneous data reconciliation and model calibration. Calibration uncertainties are estimated through error analyses and populated to performance simulation by using principle of error propagation. System degradation is then quantified by performance comparison between the calibrated model and its expected new & clean status. To mitigate smearing effects caused by gross errors, gross error detection (GED) is carried out in two stages. The first stage is a screening stage, in which serious gross errors are eliminated in advance. The GED techniques used in the screening stage are based on multivariate data analysis (MDA), including multivariate data visualization and principle component analysis (PCA). Subtle gross errors are treated at the second stage, in which the serial bias compensation or robust M-estimator is engaged. To achieve a better efficiency in the combined scheme of the least squares based data reconciliation and the GED technique based on hypotheses testing, the Levenberg-Marquardt (LM) algorithm is utilized as the optimizer. To reduce the computation time and stabilize the problem solving for a complex power system such as a combined cycle power plant, meta-modeling using the response surface equation (RSE) and system/process decomposition are incorporated with the simultaneous scheme of SDRMC. The goal of this research work is to reduce the calibration uncertainties and, thus, the risks of providing performance guarantees arisen from uncertainties in performance simulation.
39

Méthodes numériques pour les problèmes des moindres carrés, avec application à l'assimilation de données / Numerical methods for least squares problems with application to data assimilation

Bergou, El Houcine 11 December 2014 (has links)
L'algorithme de Levenberg-Marquardt (LM) est parmi les algorithmes les plus populaires pour la résolution des problèmes des moindres carrés non linéaire. Motivés par la structure des problèmes de l'assimilation de données, nous considérons dans cette thèse l'extension de l'algorithme LM aux situations dans lesquelles le sous problème linéarisé, qui a la forme min||Ax - b ||^2, est résolu de façon approximative, et/ou les données sont bruitées et ne sont précises qu'avec une certaine probabilité. Sous des hypothèses appropriées, on montre que le nouvel algorithme converge presque sûrement vers un point stationnaire du premier ordre. Notre approche est appliquée à une instance dans l'assimilation de données variationnelles où les modèles stochastiques du gradient sont calculés par le lisseur de Kalman d'ensemble (EnKS). On montre la convergence dans L^p de l'EnKS vers le lisseur de Kalman, quand la taille de l'ensemble tend vers l'infini. On montre aussi la convergence de l'approche LM-EnKS, qui est une variante de l'algorithme de LM avec l'EnKS utilisé comme solveur linéaire, vers l'algorithme classique de LM ou le sous problème est résolu de façon exacte. La sensibilité de la méthode de décomposition en valeurs singulières tronquée est étudiée. Nous formulons une expression explicite pour le conditionnement de la solution des moindres carrés tronqués. Cette expression est donnée en termes de valeurs singulières de A et les coefficients de Fourier de b. / The Levenberg-Marquardt algorithm (LM) is one of the most popular algorithms for the solution of nonlinear least squares problems. Motivated by the problem structure in data assimilation, we consider in this thesis the extension of the LM algorithm to the scenarios where the linearized least squares subproblems, of the form min||Ax - b ||^2, are solved inexactly and/or the gradient model is noisy and accurate only within a certain probability. Under appropriate assumptions, we show that the modified algorithm converges globally and almost surely to a first order stationary point. Our approach is applied to an instance in variational data assimilation where stochastic models of the gradient are computed by the so-called ensemble Kalman smoother (EnKS). A convergence proof in L^p of EnKS in the limit for large ensembles to the Kalman smoother is given. We also show the convergence of LM-EnKS approach, which is a variant of the LM algorithm with EnKS as a linear solver, to the classical LM algorithm where the linearized subproblem is solved exactly. The sensitivity of the trucated sigular value decomposition method to solve the linearized subprobems is studied. We formulate an explicit expression for the condition number of the truncated least squares solution. This expression is given in terms of the singular values of A and the Fourier coefficients of b.
40

Umělá neuronová síť pro modelování polí uvnitř automobilu / Artificial neural network for modeling electromagnetic fields in a car

Kostka, Filip January 2014 (has links)
The project deals with artificial neural networks. After designing and debugging the test data set and the training sample set, we created a multilayer perceptron network in the Neural NetworkToolbox (NNT) of Matlab. When creating networks, we used different training algorithms and algorithms improving the generalization of the network. When creating a radial basis network, we did not use the NNT, but a specific source code in Matlab was written. Functionality of neural networks was tested on simple training and testing patterns. Realistic training data were obtained by the simulation of twelve monoconic antennas operating in the frequency range from 2 to 6 GHz. Antennas were located inside a mathematical model of Octavia II. Using CST simulations, electromagnetic fields in a car were obtained. Trained networks are described by regressive characteristics andthe mean square error of training. Algorithms improving generalization are applied on the created and trained networks. The performance of individual networks is mutually compared.

Page generated in 0.0322 seconds