Spelling suggestions: "subject:"levy messprozesse"" "subject:"levy densprozesse""
1 |
Finite dimensional realizations for term structure models driven by semimartingalesTappe, Stefan 10 November 2005 (has links)
Es sei ein Heath-Jarrow-Morton Zinsstrukturmodell df(t,T) = alpha(t,T)dt + sigma(t,T)dX_t gegeben, angetrieben von einem mehrdimensionalen Semimartingal X. Das Ziel dieser Arbeit besteht darin, die Existenz endlich dimensionaler Realisierungen für solche Modelle zu untersuchen, wobei wir als treibende Prozesse die Klasse der Grigelionis Prozesse wählen, die insbesondere Levy Prozesse enthält. Zur Bearbeitung der Fragestellung werden zwei veschiedene Ansätze verfolgt. Wir dehnen die Ideen aus der Differenzialgeometrie von Björk und Svensson (2001) auf die vorliegende Situation aus und zeigen, dass das in der zitierten Arbeit bewiesene Kriterium für die Existenz endlich dimensionaler Realisierungen in unserem Fall als notwendiges Kriterium dienlich ist. Dieses Resultat wird auf konkrete Volatilitätsstrukturen angewandt. Im Kontext von sogenannten Benchmark Realisierungen, die eine natürliche Verallgemeinerung von Short Rate Realisierungen darstellen, leiten wir Integro-Differenzialgleichungen her, die für die Untersuchung der Existenz endlich dimensionaler Realisierungen hilfreich sind. Als Verallgemeinerung eines Resultats von Jeffrey (1995) beweisen wir außerdem, dass Zinsstrukturmodelle, die eine generische Benchmark Realisierung besitzen, notwendigerweise eine singuläre Hessesche Matrix haben. Beide Ansätze zeigen, dass neue Phänomene auftreten, sobald der treibende Prozess X Sprünge macht. Es gibt dann auf einmal nur noch sehr wenige Zinsstrukturmodelle, die endlich dimensionale Realisierungen zulassen, was ein beträchtlicher Unterschied zu solchen Modellen ist, die von einer Brownschen Bewegung angetrieben werden. Aus diesem Grund zeigen wir, dass für die in der Literatur oft behandelten Modelle mit deterministischer Richtungsvolatilität eine Folge von endlich dimensionalen Systemen existiert, die gegen das Zinsmodell konvergieren. / Let f(t,T) be a term structure model of Heath-Jarrow-Morton type df(t,T) = alpha(t,T)dt + sigma(t,T)dX_t, driven by a multidimensional semimartingale X. Our objective is to study the existence of finite dimensional realizations for equations of this kind. Choosing the class of Grigelionis processes (including in particular Levy processes) as driving processes, we approach this problem from two different directions. Extending the ideas from differential geometry in Björk and Svensson (2001), we show that the criterion for the existence of finite dimensional realizations, proven in the aforementioned paper, still serves as a necessary condition in our setup. This result is applied to concrete volatility structures. In the context of benchmark realizations, which are a natural generalization of short rate realizations, we derive integro-differential equations, suitable for the analysis of the realization problem. Generalizing Jeffrey (1995), we also prove a result stating that forward rate models, which generically possess a benchmark realization, must have a singular Hessian matrix. Both approaches reveal that, with regard to the results known for driving Wiener processes, new phenomena emerge, as soon as the driving process X has jumps. In particular, the occurrence of jumps severely limits the range of models that admit finite dimensional realizations. For this reason we prove, for the often considered case of deterministic direction volatility structures, the existence of finite dimensional systems converging to the forward rate model.
|
Page generated in 0.0531 seconds