• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 331
  • 89
  • 69
  • 60
  • 56
  • 45
  • 27
  • 23
  • 23
  • 18
  • 12
  • 10
  • 6
  • 5
  • 3
  • Tagged with
  • 836
  • 374
  • 209
  • 184
  • 121
  • 116
  • 82
  • 75
  • 73
  • 54
  • 54
  • 50
  • 47
  • 47
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Extrusion Processing Of Aluminium-Lithium Alloy 1441

Chandramohan, G 09 1900 (has links) (PDF)
No description available.
132

Li Li-San and the second left deviation

Zonia , Margaret Elizabeth January 1972 (has links)
The controversy surrounding the period 1928-1930, the period of Li Li-san's leadership of the Chinese Communist Party, is the central topic of this paper. The controversy itself is over what role the Comintern played in the formation of what is commonly referred to as the "Li Li-san line." The conclusions drawn in this paper show that, though the Comintern did play a small part in the formation of Li's policy, that, nevertheless, his line was of his own making. The disastrous attempt at urban insurrection in 1930 was of Li's own doing: he had been receiving signals for some time that his policies were contradictory to those of the Comintern. In order to give the reader a sense of how this leadership controversy and the policy differences arose, there is also a presentation of some of the background information regarding the labor movement and the CCP's role in it, and Li Li-san himself -his part in the labor movement and his own personality. / Arts, Faculty of / Political Science, Department of / Graduate
133

Vzájemné působení záporných elektrod a iontových kapalin / Interaction of Negative Electrodes and Ionic Liquids

Mahdalová, Kateřina January 2017 (has links)
This work deals with electrolytes and ionic liquids for Li-ion batteries. Following interaction of electrolytes and ionic liquids to electrodes material. In the theoretical part attention is focused on the description of battery electrolytes and ionic liquids for lithium-ion batteries.
134

Možnosti recyklace Li-Ion akumulátorů / Možnosti recyklace Li-Ion akumulátorů

Skala, Kateřina January 2018 (has links)
This diploma thesis is concerned with topic of lithium-ion batteries recycling. In this document the particular methods containing commercial used recycling processes or only laboratory used processes are discussed. Because rising amount of spent Li-ion accumulators is necessary find proper methods to recycle this type of accumulators. Also legislation question of this issue is important. In practical part is described procedure and results performed recycling method.
135

Oxide Thin Film Li-Battery Materials: Synthesis, Interface Properties and Electrochemical Performance

Jaegermann, Wolfram 07 December 2018 (has links)
We will introduce our approach to prepare and investigate thin film materials for application in all solid state batteries by using integrated UHV preparation facilities.
136

Li Diffusion in TaS2 Single Crystals – Effects of Temperature, Pressure and Crystallographic Orientation

Shabestari, Asiye, Behrens, Harald, Horn, Ingo, Schmidt, Harald, Binnewies, Michael 12 September 2018 (has links)
The present poster contribution aims at optimization of electrochemical properties of titania (N doped anatase TiO2 / N) and Li-Ti ternary oxides (Li4Ti5O12, LTO) with respect to their performance as anode materials in Li-ion battery by using mechanochemical effects.
137

Understanding the Relationships between Ion Transport, Electrode Heterogeneity, and Li-Ion Cell Degradation Through Modeling and Experiment

Pouraghajansarhamami, Fezzeh 05 June 2020 (has links)
Electrode microstructure directly affects ion and electron transport and, in turn, has a strong correlation to battery performance. Understanding the separate yet complementary effects of ionic and electronic transport in cell behavior is a challenge. This work provides through a combination of experiments and modeling a better understanding of the relationship between three aspects of the cell: ion transport within the electrode, electrode uniformity, and cell degradation. The first part of this work compares two experimental methods that determine ion transport in terms of tortuosity, a dimensionless geometric factor. The polarization-interrupt and blocking-electrolyte methods measure effective diffusivity and conductivity, respectively. The tortuosity of several commercial-quality electrodes was measured using both methods, producing reasonable agreement between the two methods in most cases. Next, the effect of cell cycling on ionic and electronic transport of electrodes was investigated. Using the blocking electrolyte method, the tortuosity of electrode films at varying extents of cycling was determined. Variations in electronic resistivity were quantified by micro-scale measurements using a previously developed micro-four-line probe. The changes in tortuosity and electronic resistivity were investigated for a graphite anode and several cathode chemistries including LiCoO2, LiNixCoyMnzO2, LiFePO4, and blends of transition metal oxides. Clear evidence of changes in tortuosity and electronic resistivity was observed during cell formation and cycling. The magnitude of the changes strongly depended on the chemistry of electrodes and cycling conditions. The results indicate that, under normal cycling conditions, electronic resistivity increases while tortuosity unexpectedly decreases. However, accelerated cycling conditions (i.e. elevated temperature) can lead to both electronic resistivity and tortuosity increase. Finally, the interplay of electrode tortuosity heterogeneity and Li-plating was investigated. The Li-plating reaction was incorporated into a Newman-type model and validated using the voltage profile and capacity-loss data from experiments. The simulation result shows that a heterogeneous anode can cause non-uniform Li plating while cathode heterogeneity did not have a significant effect. The Li-plating profile across the thickness of the anode with cell cycling showed that Li tends to plate at the high tortuosity region near the separator. Unexpectedly, Li plating tends to shift to the current collector side upon a sufficient increase in porosity close to the separator. Simulated capacity loss vs. cycling data indicates that there is a feedback mechanism with cycling: as cycling continues the rate of Li plating for the high-tortuosity region decreases at the separator side and the other two regions will eventually catch up in terms of plating.
138

FABRICATION OF STRUCTURED POLYMER AND NANOMATERIALS FOR ADVANCED ENERGY STORAGE AND CONVERSION

Liu, Kewei January 2018 (has links)
No description available.
139

Health Monitoring and Prognostics of Li-ion Battery

Zhang, Jingliang 09 August 2010 (has links)
No description available.
140

Investigation on Coupling Phenomena between Morphological Variations and Mass Transfer Rate on Lithium Metal Negative Electrode for Rechargeable Batteries with High Performance and Safety / 安全な高性能二次電池のためのリチウム金属負極における形態変化と物質移動速度の連結現象に関する研究

Nishida, Tetsuo 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第24713号 / エネ博第456号 / 新制||エネ||85(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 野平 俊之, 教授 萩原 理加, 教授 佐川 尚 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM

Page generated in 0.0182 seconds