391 |
Studies On Copper Complexes Showing DNA Cleavage ActivityThomas, Anitha M 01 1900 (has links) (PDF)
No description available.
|
392 |
Mountain and farmland, a Hakka-style suite by Taiwanese composer Tai-Hsiang LiChen, Chun-Ming 01 May 2015 (has links)
When the Taiwanese composer, Tai-Hsiang Li received the National Cultural Award in 2013, he said, “My blood is full of music. If you take out the music from my life, I am nothing!” Tai-Hsiang Li brought contemporary music to Taiwan, combining folk music with the modern orchestra, and raising the quality of Taiwanese popular music. He almost single-handedly infused Taiwanese culture into classical, modern, popular, film, and television advertising music. His arrangements of folk music have shown the Taiwanese the beauty of their own music and inspired countless younger musicians. The music critic Chung-Heng Yang declared, “Without Tai-Hsiang Li, the music history of Taiwan will not be complete.”
After the composer’s death in 2014, his life story was made public by various media, but many of the information disseminated were not accurate. Musicians have difficulties performing his works because of his constant revisions to his scores. For this thesis, I have personally interviewed the composer’s family and the Hakka singer Yu-Wei Hsieh. I investigated documents, collected Hakka mountain songs and three different editions of his Hakka-style suite Mountain and Farmland. I also investigated journal articles, newspaper articles, and read the books about the composer. In addition to presenting an updated biography of Tai-Hsiang Li’s life, I also prepare a critical performance edition of the Mountain and Farmland.
It is my desire that more musicians will find interest in performing Mountain and Farmland as well as scholars doing research on Hakka music and works by Tai-Hsiang Li.
|
393 |
The Impact of Nanostructured Templates and Additives on the Performance of Si Electrodes and Solid Polymer Electrolytes for Advanced Battery ApplicationsFan, Jui Chin 01 July 2018 (has links)
The primary objectives of this research are: (1) use a hierarchical structure to study electrode materials for next-generation lithium-ion batteries (LIBs) and (2) understand the fundamentals and utility of solid polymer electrolytes (SPEs) with the addition of halloysite nanotubes (HNTs) for battery applications. Understanding the fundamental principles of electrode and electrolyte materials allows for the development of high-performance LIBs. The contributions of this dissertation are described below. Encapsulated Si-VACNT Electrodes. Two hurdles prevent Si-based electrodes from mass production. First, bulk Si undergoes volume expansion up to 300%. Second, a solid-electrolyte interphase (SEI) forms between the interface of the electrolyte and electrode, which consumes battery capacity and creates more resistance at the interface. Si volume changes were overcome by depositing silicon on vertically-aligned carbon nanotubes (VACNTs). Encapsulating the entire Si-VACNT electrode surface with carbon was used to mitigate SEI formation. Although SEI formation was reduced by the encapsulation layer, capacity fade was still observed for encapsulated electrodes, indicating that SEI formation was not the primary factor affecting capacity fade. Additionally, the impact of the encapsulation layer on Li transport was examined. Two different transport directions and length scales were relevant””(1) radial transport of Li in/out of each Si-coated nanotube (~40 nm diameter) and (2) Li transport along the length of the nanotubes (~10 µm height). Experimental results indicated that the height of the Si-VACNT electrodes did not limit Li transport, even though that height was orders of magnitude greater than the diameter of the tubes. Simulation and experimental data indicated that time constant for Li diffusion into silicon was slow, even though the diffusion distance was short relative to the tube height. Other factors such as diffusion-induced stress likely had a significant impact on diffusion through the thin silicon layer. Solid Polymer Electrolytes. A thorough understanding of the relationships between physical, transport, and electrochemical properties was studied. HNT addition to polyethylene oxide (PEO) electrolytes not only improved the physical properties, such as reduction of the crystallinity of PEO, but also enhanced transport properties like the salt diffusivity. The processing steps were important for achieving enhanced properties. Moreover, HNTs were found to stabilize the interfacial properties of the SPE films during cycling. Specifically, HNT-containing SPE films were successfully cycled at room temperature, which may have important implications for SPE-based batteries.
|
394 |
Surface Modification of MXenes: A Pathway to Improve MXene Electrode Performance in Electrochemical Energy Storage DevicesAhmed, Bilal 31 December 2017 (has links)
The recent discovery of layered transition metal carbides (MXenes) is one of the most important developments in two-dimensional (2D) materials. Preliminary theoretical and experimental studies suggest a wide range of potential applications for MXenes. The MXenes are prepared by chemically etching ‘A’-layer element from layered ternary metal carbides, nitrides and carbonitrides (MAX phases) through aqueous acid treatment, which results in various surface terminations such as hydroxyl, oxygen or fluorine. It has been found that surface terminations play a critical role in defining MXene properties and affects MXene performance in different applications such as electrochemical energy storage, electromagnetic interference shielding, water purification, sensors and catalysis. Also, the electronic, thermoelectric, structural, plasmonic and optical properties of MXenes largely depend upon surface terminations. Thus, controlling the surface chemistry if MXenes can be an efficient way to improve their properties.
This research mainly aims to perform surface modifications of two commonly studied MXenes; Ti2C and Ti3C2, via chemical, thermal or physical processes to enhance electrochemical energy storage properties. The as-prepared and surface modified MXenes have been studied as electrode materials in Li-ion batteries (LIBs) and supercapacitors (SCs). In pursuit of desirable MXene surface, we have developed an in-situ room temperature oxidation process, which resulted in TiO2/MXene nanocomposite and enhanced Li-ion storage. The idea of making metal oxide and MXene nanocomposites was taken to the next level by combining a high capacity anode materials – SnO2 – and MXene. By taking advantage of already existing surface functional groups (–OH), we have developed a composite of SnO2/MXene by atomic layer deposition (ALD) which showed enhanced capacity and excellent cyclic stability.
Thermal annealing of MXene at elevated temperature under different atmospheres was carried out and detailed surface chemistry was studied to analyze the change in surface functional groups and its effect on electrochemical performance. Also, we could replace surface functional groups with desirable heteroatoms (e.g., nitrogen) by plasma processing and studied their effect on energy storage properties. This work provides an experimental baseline for surface modification of MXene and helps to understand the role of various surface functional groups in MXene electrode electrochemical performance.
|
395 |
Processing Carbon Nanotube Fibers for Wearable Electrochemical DevicesKanakaraj, Sathya Narayan January 2019 (has links)
No description available.
|
396 |
Charakterizace elektrolytů na bázi směsi iontová kapalina a aprotické rozpouštědlo / Electrolytes characterization based on mixtures of ionic liquids and aprotic solventsŠašek, Martin January 2017 (has links)
The thesis deals with liquid aprotic electrolytes based on mixtures of ionic liquid and solvent. EmimBF4, namely 1-ethyl-3-ethylimidazolium tetrafluoroborate, was used as the starting ionic liquid. A mixture of propylene carbonate, ethylene carbonate and dimethyl carbonate was used as solvents. Electrolytes were enriched with two electrolyte salts LiBF4 and NaBF4 from the resulting mixtures selected the most suitable electrolytes for Li-ion and Na-ion accumulators. Electrolytes were selected taking into account the required properties: the width of the potential window, the measured electrical conductivity and, last but not least, the safety.
|
397 |
Numerický model teplotního pole Li-Ion akumulátoru při vybíjení / Numerical model of Li-Ion battery temperature field by dischargingNovotný, Jakub January 2017 (has links)
This work is focused on lithium-ion batteries in general and their modeling capabilities in ANSYS Fluent. The various advantages and disadvantages of li-ion batteries are describes in my work. There are also described the various models and submodels offered by ANSYS Fluent. An essential part of the work is to model the real battery and compare the results between the real battery and the simulation itself. Finally, simulation of battery breakdown is performed.
|
398 |
Modelování Lithium Iontových akumulátorů pomocí ECM / Modelling of lithium ion batteries using ECMLanger, Lukáš January 2017 (has links)
The main aim of this paper are models of Li-Ion storage batteries made and simulated in ANSYS Fluent software. Various ways of simulations are discussed with main aim on ECM method and how its numerical model is computed. A process of getting information and required data from real battery to be compared with simulation results by EIS method is also discussed. These results are then compared with results from ANSYS Fluent.
|
399 |
Bateriový box pro elektromobil / Battery pack for an electric carList, Jaroslav January 2020 (has links)
Thesis deals with the design of a battery box with lithium-ion technology, for the largest possible driving range of the BUT SuperEL II electric car. Based on the analysis of the electric vehicle available space and the parameters of the electronic system, the maximum size of the entire set of 84s130p batteries was designed. 18650 cells with NMC technology were selected due to the very high gravimetric and volumetric density, which reaches 274 Wh/kg and 564 kWh/m3. The total nominal capacity of the designed battery boxes in the electric car is 138 kWh. The total gravimetric energy density of the designed box is 215.6 Wh/kg. It allows the electric car to reach the theoretical range with a consumption of 14 kWh/100 km of almost 1000 km. The individual battery modules of the battery box are controlled for optimal operating conditions by means of a BMS. The whole set is divided into 5 battery boxes. These boxes are manufactured using the technology of bent welded sheets from aluminum alloy EN AW 1050A and steel 1.4301. FEM analyzes were performed to verify the mechanical strength of the designed structure. The work also deals with the design of battery modules and their connection.
|
400 |
Srovnání různých typů komerčních lithium-iontových baterií / Comparison of different types of commercial lithium-ion batteriesŠindelářová, Anna January 2021 (has links)
The master's thesis is devoted to the comparison of different types of lithium-ion batteries. Primarily, an introduction to electrochemical power sources and their division is described. Furthermore, the thesis deals only with lithium-ion batteries. In the theoretical part, the chapters discuss the history, the principle of operation and a detailed description of the main battery parts, including used materials. A comparison of commercially available lithium-ion cells with each other as well as with other types of batteries is also included in the theoretical part. The practical part deals with the cyclinf of lithium-ion cells and subsequent evaluation of the effect of temperature on the capacitance and current characteristics of these lithium-ion batteries.
|
Page generated in 1.9168 seconds