• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amorphe, Al-basierte Anodenmaterialien für Li-Ionen-Batterien

Thoss, Franziska 30 July 2013 (has links) (PDF)
Hochleistungsfähige Lithium-Ionen-Batterien sind insbesondere von der hohen spezifischen Kapazität ihrer Elektrodenmaterialien abhängig. Intermetallische Phasen sind vielversprechende Kandidaten für alternative Anodenmaterialien mit verbesserten spezifischen Kapazitäten (LiAl: 993 Ah/kg; Li22Si5: 4191 Ah/kg) gegenüber den derzeit vielfach verwendeten Kohlenstoff-Materialien (LiC6: 372 Ah/kg). Nachteilig ist jedoch, dass die kristallinen Phasenumwandlungen während der Lade-Entlade-Prozesse Volumenänderungen von 100-300% verursachen. Durch die Sprödigkeit der intermetallischen Phasen führt dies zum Zerbrechen des Elektrodenmaterials und damit zum Kontaktverlust. Um Lithiierungs- und Delithiierunsprozesse ohne kristalline Phasenumwandlungen zu realisieren und somit große Volumenänderungen zu vermeiden, wurden amorphe Al-Legierungen untersucht. In amorphe, mittels Schmelzspinnen hergestellte Legierungen (Al86Ni8La6 und Al86Ni8Y6) kann beim galvanostatischen Zyklieren nur sehr wenig Li eingelagert werden. Da kristalline Phasenumwandlungen im amorphen Zustand nicht möglich sind, wird für die Diffusion und Einlagerung von Li-Ionen ein ausreichendes freies Volumen im amorphen Atomgerüst benötigt. Die Dichtemessung der Legierungen zeigt, dass dieses freie Volumen für eine signifikante Lithiierung nicht ausreichend ist. Wird Li bereits in die amorphe Ausgangslegierung integriert, können Li-Ionen auf elektrochemischem Wege aus ihr entfernt und auch wieder eingebaut werden. Die neuartige Legierung Al43Li43Ni8Y6, die Li bereits im Ausgangszustand enthält, konnte mittels Hochenergiemahlung als amorphes Pulver hergestellt werden. Verglichen mit den Li-freien amorphen Legierungen Al86Ni8La6 bzw. Al86Ni8Y6 und ihren kristallisierten Pendants zeigt diese neu entwickelte, amorphe Legierung eine signifikant höhere Lithiierungsfähigkeit und erreicht damit eine spezifische Kapazität von ca. 800 Ah/kg bezogen auf den Al-Anteil. Durch den Abrieb des Stahlmahlbechers enthält das Pulver Al43Li43Ni8Y6 einen Fe-Anteil von ca. 15 Masse%. Dieses mit Fe verunreinigte Material zeigt besonders bei niedrigen Laderaten eine bessere Zyklenstabilität als ein im abriebfesten Siliziumnitrid-Becher gemahlenes Pulver der gleichen Zusammensetzung. Mittels Mössbauerspektroskopie wurde nachgewiesen, dass das Pulver z.T. oxidisches Fe enthält. Dieses kann über Konversionsmechanismen einen Beitrag zur spezifischen Kapazität leisten. / High-energy Li-ion batteries exceedingly depend on the high specific capacity of electrode materials. Intermetallic alloys are promising candidates to be alternative anode materials with enhanced specific capacities (LiAl: 993 Ah/kg; Li22Si5: 4191 Ah/kg) in contrast to state-of-the-art techniques, dominated by carbon materials (LiC6: 372 Ah/kg). Disadvantageously the phase transitions during the charge-discharge processes, induced by the lithiation process, cause volume changes of 100-300 %. Due to the brittleness of intermetallic phases, the fracturing of the electrode material leads to the loss of the electrical contact. In order to overcome the huge volume changes amorphous Al-based alloys were investigated with the intension to realize the lithiation process without a phase transformation. Amorphous powders (Al86Ni8La6 and Al86Ni8Y6) produced via melt spinning and subsequent ball milling only show a minor lithiation during the electrochemical cycling process. This is mainly caused by the insufficient free volume, which is necessary to transfer and store Li-ions, since phase transitions are impossible in the amorphous state. If Li is already integrated into the amorphous alloy, Li-ions can easily be removed and inserted electrochemically. The new alloy Al43Li43Ni8Y6 contains Li already in its initial state and could be prepared by high energy milling as an amorphous powder. Compared with the Li-free amorphous alloys Al86Ni8La6 or Al86Ni8Y6 and their crystalline counterparts, this newly developed amorphous alloy achieves a significantly higher lithiation and therefore reaches a specific capacity of 800 Ah/kg, based on the Al-content. By the abrasion of the steel milling vials the powder contains a wear debris of 15 mass% Fe. This contaminated material shows a better cycling stability than a powder of the same composition, milled in a non-abrasive silicon nitride vial. By means of Mössbauer spectroscopy has been shown that the wear debris contains Fe oxides. This may contribute to the enhancement of the specific capacity about conversion mechanisms.
2

Biopolymerbasierte Materialien als Precursoren für elektrochemische Anwendungen

Fischer, Johanna 16 May 2024 (has links)
Elektrochemische Energiespeicher sind entscheidend für eine zuverlässige Energieversorgung angesichts steigender Nachfrage und knapper Ressourcen. Die fortlaufende Entwicklung möglichst umweltfreundlicher Materialien mit guter Verfügbarkeit ist essenziell für die Verbesserung von deren Leistungsfähigkeit. Ziel der Arbeit war die Nutzung cellulosebasierter Präkursoren zur Herstellung von Elektrodenmaterialien für die elektrochemischen Energiespeicher Superkondensator und Li-Ionen-Batterie. Dabei werden die Struktur-Eigenschaftsbeziehungen von Präkursormaterial und Kohlenstoff, sowie deren Einfluss auf die resultierenden elektrochemischen Leistungen untersucht. Mittels Acetatverfahren können sphärische Partikel auf Basis von Cellulose mit einer Partikelgröße < 5 µm und enger Partikelgrößenverteilung hergestellt werden. Bei der Herstellung sphärischer Partikel aus Celluloseacetat werden eine Vielzahl verschiedener Parameter im Herstellungsprozess variiert und deren Einfluss auf die Eigenschaften der sphärischen Partikel verändert. Außerdem werden die Cellulosederivate Celluloseacetat-butyrat und Celluloseacetat-phthalat als Ausgangsmaterial zur Herstellung sphärischer Partikel verwendet. Die hergestellten sphärischen Partikel werden mittels Pyrolyse zu Kohlenstoff umgewandelt, wobei zum einen der Einfluss der Eigenschaften der sphärischen Präkursoren auf die resultierenden Kohlenstoffe und zum anderen der Einfluss verschiedener Carbonisierungsbedingungen (Carbonisierungstemperatur, Haltezeit, Heizrate) anhand von sphärischen Celluloseacetatpartikeln mit einer Partikelgröße < 5 µm untersucht werden. Zur Vergrößerung der Oberfläche und zur Veränderung der Porenstruktur werden aktivierte Kohlenstoffe hergestellt. Dabei wird KOH in verschiedenen Aktivierungsgraden C : KOH verwendet sowie alternative Aktivierungsreagenzien getestet. Die (aktivierten) Kohlenstoffe dienen als Elektrodenmaterialien in Superkondensatoren, Li-Ionen-Batterien und Li-Ionen-Kondensatoren. Die hergestellten Kohlenstoffe zeigen vielversprechende Kapazitäten als Elektrodenmaterial in symmetrischen Superkondensatoren mit KOH-Elektrolytlösung, insbesondere bei Verwendung von aktiviertem Kohlenstoff aus sphärischen Celluloseacetatpartikeln. Außerdem werden verschiedene neutrale wässrige Elektrolytlösungen als Alternative zu alkalischen KOH-Lösungen getestet und der Einfluss von Konzentration und Arbeitstemperatur betrachtet. Weiterhin kann die Eignung der hergestellten nicht-aktivierten Kohlenstoffe aus Celluloseacetat-Perlen als Anodenmaterial in Lithium-Ionen-Batterien als Alternative zu Graphit gezeigt werden, insbesondere hinsichtlich Langzeitstabilität und dem Einsatz bei hohen Betriebstemperaturen. Auch ein möglicher Einsatz der aktivierten Kohlenstoffe aus Celluloseacetat-Perlen in Li-Ionen-Kondensatoren als Kathodenmaterial mit TNO-Anode wird geprüft.:ABBILDUNGSVERZEICHNIS TABELLENVERZEICHNIS ABKÜRZUNGSVERZEICHNIS SYMBOLVERZEICHNIS 1 EINLEITUNG 2 THEORETISCHE GRUNDLAGEN 2.1 Ausgangsmaterialien 2.1.1 Cellulose 2.1.2 Celluloseester (Celluloseacetat, Celluloseacetat-butyrat, Celluloseacetat-phthalat) 2.1.3 Sphärische Partikel aus Cellulose und Cellulosederivaten 2.2 Kohlenstoffe 2.2.1 Kohlenstoffe in Energiespeichern 2.2.2 Amorphe Kohlenstoffe 2.2.3 Aktivierte Kohlenstoffe 2.3 Elektrochemische Speichermethoden 2.3.1 Superkondensatoren 2.3.1.1 Speicherarten – EDLC vs. Pseudokapazität 2.3.1.2 Elektrodenmaterialien 2.3.1.3 Elektrolytsysteme 2.3.2 Lithium-Ionen-Batterien 2.3.3 Lithium-Ionen-Kondensatoren 2.4 Methoden zur strukturellen Charakterisierung 2.4.1 Laserbeugungsspektroskopie 2.4.2 Sedimentationsverhalten zur Bestimmung der Porosität 2.4.3 Stickstoffphysiosorption 2.4.4 Raman-Spektroskopie 2.4.5 Rasterelektronenmikroskopie 2.4.6 Röntgendiffraktometrie 2.4.7 Viskositätsmessungen 2.5 Elektrochemische Charakterisierung 2.5.1 Zyklische Voltammetrie 2.5.2 Galvanostatisches Zyklieren 2.5.3 Elektrochemische Impedanzspektroskopie 2.5.4 Galvanostatische intermittierende Titrationstechnik 3 EXPERIMENTELLER TEIL 3.1 Herstellung Perlcellulose 3.1.1 Herstellung der sphärischen Celluloseester / Deacetylierung 3.1.2 Variationen der Parameter 3.2 Carbonisierung / Aktivierung 3.3 Herstellung der Elektrochemischen Energiespeicher 3.3.1 Superkondensatoren 3.3.2 Lithium-Ionen-Batterien 3.3.3 Lithium-Ionen-Kondensatoren 3.4 Chemikalien 3.5 Geräte und Methoden 4 ERGEBNISSE & DISKUSSION 4.1 Ausgangsmaterialien für die Herstellung von sphärischen Celluloseestern 4.2 Sphärische Celluloseester 4.2.1 Verschiedene CA-Materialien 4.2.2 Deacetylierung zur Perlcellulose 4.2.3 Partikelgröße 4.2.4 Salzgehalt 4.2.5 Tensidgehalt 4.2.6 Celluloseacetat-butyrat 4.2.7 Celluloseacetat-phthalat 4.2.8 Zusammenfassung der Herstellung sphärischer Partikel aus Celluloseestern 4.3 Kohlenstoffe auf Basis von sphärischen Celluloseestern 4.3.1 Einfluss der Carbonisierungsbedingungen auf die hergestellten Kohlenstoffe aus CA1-Perlen 4.3.2 Einfluss der verschiedenen Herstellungsbedingungen der Celluloseacetat-Perlen auf den resultierenden Kohlenstoff 4.3.3 Kohlenstoffe aus Celluloseacetat-butyrat-Perlen 4.3.4 Kohlenstoffe aus Celluloseacetat-phthalat 4.3.5 Zusammenhänge zwischen Präkursoren und Kohlenstoffen 4.4 Aktivierte Kohlenstoffe 4.4.1 Aktivierung von CA- und CAB-Perlen mit KOH 4.4.2 Vergleich von KOH mit anderen Aktivierungsreagenzien 4.5 Superkondensatoren mit Elektroden aus Kohlenstoffen auf Basis von sphärischen Celluloseestern in alkalischen Elektrolyten 4.5.1 Einfluss der Carbonisierungsbedingungen auf die Performance von Superkondensatoren mit CA1-Elektroden 4.5.2 Superkondensatoren auf Basis von Kohlenstoffen aus verschiedenen Celluloseestern 4.5.3 Aktivierte Kohlenstoffe 4.5.4 Zusammenhang zwischen den hergestellten Kohlenstoffen und deren Einsatz als Elektrodenmaterial in Superkondensatoren 4.6 Vergleich von alkalischen und neutralen Elektrolyten in Superkondensatoren 4.6.1 Charakterisierung der Elektrolyte 4.6.2 Neutrale Elektrolyte und alkalische Elektrolyte im Vergleich 4.6.3 Einfluss von Konzentration und Temperatur auf die Zellperformance mit Na2SO4-Elektrolyten 4.7 Kohlenstoffe aus sphärischen Celluloseestern als Anodenmaterial in Lithium-Ionen-Batterien 4.7.1 Einfluss der Carbonisierungsbedingungen auf CA1 als Anodenmaterial 4.7.2 Bindersysteme 4.7.3 Kohlenstoffe aus Celluloseestern mit verschiedenen Herstellungsbedingungen 4.7.4 Einfluss der Temperatur 4.8 Lithium-Ionen-Kondensatoren mit aktiviertem Kohlenstoff aus CA-Perlen als Kathodenmaterial 4.9 Vergleich der Kohlenstoffe als Elektrodenmaterial in den verschiedenen Energiespeichersystemen 5 ZUSAMMENFASSUNG 6 LITERATURVERZEICHNIS 7 ANHANG
3

Amorphe, Al-basierte Anodenmaterialien für Li-Ionen-Batterien

Thoss, Franziska 25 June 2013 (has links)
Hochleistungsfähige Lithium-Ionen-Batterien sind insbesondere von der hohen spezifischen Kapazität ihrer Elektrodenmaterialien abhängig. Intermetallische Phasen sind vielversprechende Kandidaten für alternative Anodenmaterialien mit verbesserten spezifischen Kapazitäten (LiAl: 993 Ah/kg; Li22Si5: 4191 Ah/kg) gegenüber den derzeit vielfach verwendeten Kohlenstoff-Materialien (LiC6: 372 Ah/kg). Nachteilig ist jedoch, dass die kristallinen Phasenumwandlungen während der Lade-Entlade-Prozesse Volumenänderungen von 100-300% verursachen. Durch die Sprödigkeit der intermetallischen Phasen führt dies zum Zerbrechen des Elektrodenmaterials und damit zum Kontaktverlust. Um Lithiierungs- und Delithiierunsprozesse ohne kristalline Phasenumwandlungen zu realisieren und somit große Volumenänderungen zu vermeiden, wurden amorphe Al-Legierungen untersucht. In amorphe, mittels Schmelzspinnen hergestellte Legierungen (Al86Ni8La6 und Al86Ni8Y6) kann beim galvanostatischen Zyklieren nur sehr wenig Li eingelagert werden. Da kristalline Phasenumwandlungen im amorphen Zustand nicht möglich sind, wird für die Diffusion und Einlagerung von Li-Ionen ein ausreichendes freies Volumen im amorphen Atomgerüst benötigt. Die Dichtemessung der Legierungen zeigt, dass dieses freie Volumen für eine signifikante Lithiierung nicht ausreichend ist. Wird Li bereits in die amorphe Ausgangslegierung integriert, können Li-Ionen auf elektrochemischem Wege aus ihr entfernt und auch wieder eingebaut werden. Die neuartige Legierung Al43Li43Ni8Y6, die Li bereits im Ausgangszustand enthält, konnte mittels Hochenergiemahlung als amorphes Pulver hergestellt werden. Verglichen mit den Li-freien amorphen Legierungen Al86Ni8La6 bzw. Al86Ni8Y6 und ihren kristallisierten Pendants zeigt diese neu entwickelte, amorphe Legierung eine signifikant höhere Lithiierungsfähigkeit und erreicht damit eine spezifische Kapazität von ca. 800 Ah/kg bezogen auf den Al-Anteil. Durch den Abrieb des Stahlmahlbechers enthält das Pulver Al43Li43Ni8Y6 einen Fe-Anteil von ca. 15 Masse%. Dieses mit Fe verunreinigte Material zeigt besonders bei niedrigen Laderaten eine bessere Zyklenstabilität als ein im abriebfesten Siliziumnitrid-Becher gemahlenes Pulver der gleichen Zusammensetzung. Mittels Mössbauerspektroskopie wurde nachgewiesen, dass das Pulver z.T. oxidisches Fe enthält. Dieses kann über Konversionsmechanismen einen Beitrag zur spezifischen Kapazität leisten. / High-energy Li-ion batteries exceedingly depend on the high specific capacity of electrode materials. Intermetallic alloys are promising candidates to be alternative anode materials with enhanced specific capacities (LiAl: 993 Ah/kg; Li22Si5: 4191 Ah/kg) in contrast to state-of-the-art techniques, dominated by carbon materials (LiC6: 372 Ah/kg). Disadvantageously the phase transitions during the charge-discharge processes, induced by the lithiation process, cause volume changes of 100-300 %. Due to the brittleness of intermetallic phases, the fracturing of the electrode material leads to the loss of the electrical contact. In order to overcome the huge volume changes amorphous Al-based alloys were investigated with the intension to realize the lithiation process without a phase transformation. Amorphous powders (Al86Ni8La6 and Al86Ni8Y6) produced via melt spinning and subsequent ball milling only show a minor lithiation during the electrochemical cycling process. This is mainly caused by the insufficient free volume, which is necessary to transfer and store Li-ions, since phase transitions are impossible in the amorphous state. If Li is already integrated into the amorphous alloy, Li-ions can easily be removed and inserted electrochemically. The new alloy Al43Li43Ni8Y6 contains Li already in its initial state and could be prepared by high energy milling as an amorphous powder. Compared with the Li-free amorphous alloys Al86Ni8La6 or Al86Ni8Y6 and their crystalline counterparts, this newly developed amorphous alloy achieves a significantly higher lithiation and therefore reaches a specific capacity of 800 Ah/kg, based on the Al-content. By the abrasion of the steel milling vials the powder contains a wear debris of 15 mass% Fe. This contaminated material shows a better cycling stability than a powder of the same composition, milled in a non-abrasive silicon nitride vial. By means of Mössbauer spectroscopy has been shown that the wear debris contains Fe oxides. This may contribute to the enhancement of the specific capacity about conversion mechanisms.

Page generated in 0.0797 seconds