Spelling suggestions: "subject:"eie algebra"" "subject:"eie álgebra""
71 |
Characteristic classes of modulesKong, Maynard 25 September 2017 (has links)
In this paper we have developed a general theory of characteristic classes of modules. To a given invariant map defined on a Lie algebra, we associate a cohomology class by using the curvature form of a certain kind of connections. Here we present a very simple proof of the invariance theorem (Theorem 12), which states that equivalent connections give rise to the same characteristic class. We have used those invariant maps of {9} to define Chern classes of projective modules and we have derived their basic properties. It might be interesting to observe that this theory could be applied to define characteristic classes of bilinear maps. In particular, the Euler classes of {6} can be obtained in this way.
|
72 |
Reconstruction of invariants of configuration spaces of hyperbolic curves from associated Lie algebras / 双曲的曲線の配置空間の不変量の付随するリー代数からの復元Sawada, Koichiro 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21540号 / 理博第4447号 / 新制||理||1639(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 玉川 安騎男, 教授 向井 茂, 教授 望月 新一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
73 |
Non-Resonant Uniserial Representations of Vec(R)O'Dell, Connor 05 1900 (has links)
The non-resonant bounded uniserial representations of Vec(R) form a certain class of extensions composed of tensor density modules, all of whose subquotients are indecomposable. The problem of classifying the extensions with a given composition series is reduced via cohomological methods to computing the solution of a certain system of polynomial equations in several variables derived from the cup equations for the extension. Using this method, we classify all non-resonant bounded uniserial extensions of Vec(R) up to length 6. Beyond this length, all such extensions appear to arise as subquotients of extensions of arbitrary length, many of which are explained by the psuedodifferential operator modules. Others are explained by a wedge construction and by the pseudodifferential operator cocycle discovered by Khesin and Kravchenko.
|
74 |
Quantum Decoherence in Time-Dependent Anharmonic SystemsBeus, Ty 15 June 2022 (has links)
This dissertation studies quantum decoherence in anharmonic oscillator systems to monitor and understand the way the systems evolve. It also explores methods to control the systems' evolution, and the effects of decoherence when applicable. We primarily do this by finding the time evolution of the systems using their Lie algebraic structures. We solve for a generalized Caldirola-Kanai Hamiltonian, and propose a general way to produce a desired evolution of the system. We apply the analysis to the effects of Dirac delta fluctuations in mass and frequency, both separately and simultaneously. We also numerically demonstrate control of the generalized Caldirola-Kanai system for the case of timed Gaussian fluctuations in the mass term. This is done in a way that can be applied to any system that is made up of a Lie algebra. We also explore the evolution of an optomechanical coupled mirror-laser system while maintaining a second order coupling. This system creates anharmonic effects that can produce cat states which can be used for quantum computing. We find that the decoherence in this system causes a rotational smearing effect in the Husimi function which, with the second order term added, causes rotational smearing after a squeezing effect. Finally, we also address the dynamic evolution and decoherence of an anharmonic oscillator with infinite coupling using the Born-Markov master equation. This is done by using the Lie algebraic structure of the Born-Markov master equation's superoperators when applying a strategic mean field approximation to maintain dynamic flexibility. The system is compared to the Born-Markov master equation for the harmonic oscillator, the regular anharmonic oscillator, and the dynamic double anharmonic oscillator. Throughout, Husimi plots are provided to visualize the dynamic decoherence of these systems.
|
75 |
Restricted L_infinity-algebrasHeine, Hadrian 20 September 2019 (has links)
We give a model of restricted L_infinity-algebras in a nice preadditive symmetric monoidal infinity-category C as an algebra over the monad associated to an adjunction between C and the infinity-category of cocommutative bialgebras in C, where the left adjoint lifts the free associative algebra. If C is additive, we construct a canonical forgetful functor from restricted L_infinity-algebras in C to spectral Lie algebras in C and show that this functor is an equivalence if C is a Q-linear stable infinity-category. For every field K we construct a canonical forgetful functor from restricted L_infinity-algebras in connective K-module spectra to the infinity-category underlying a model structure on simplicial restricted Lie algebras over K.
|
76 |
Classification of Lie AlgebrasGhasemi, Sepideh January 2021 (has links)
This thesis aims to provide a classification of low-dimensional Lie algebras. We make emphasis on several structural properties, such as nilpotency, solvability and (semi) simpli- city. The first two properties relate to two fundamental theorems by Lie and Engels which classification results will be presented in a table for ease of access. / <p>I presented my thesis on 1st of October 2021.</p>
|
77 |
Integrability of super spin chains in 6D N=(1,0) SCFTsHe, Zuxian January 2023 (has links)
Superconformal field theories (SCFTs) are an important class of quantum field theories. These SCFTs have been a significant component in exploring and comprehending the fundamental framework of quantum field theories. In the vast realm of quantum field theories, integrability plays a crucial role, providing powerful analytic tools that allow us to solve certain physical quantities exactly. In this thesis, we focus on the representation theory of the algebraic structure in six-dimensional (6D) SCFTs and investigate the intricate interplay between 6D SCFTs and integrability. To begin, we delve into the fundamental concepts of representation theory, establishing a solid foundation for our subsequent analysis. The discussion then will move on to all possible generators in the SCFTs, explaining how they are realized in terms of bosonic and fermionic oscillators. Finally, we investigate spin chains and their application in 6D SCFTs. We demonstrate that symmetry arguments derived from representation theory are not sufficient to establish the integrability of the spin chains in 6D SCFTs. This conclusion does not imply the absence of integrable systems within 6D SCFTs; rather, it suggest there are other potential methods available e.g., correlation functions, to explore the appearance of integrable systems in 6D SCFTs. / Superkonforma fältteorier (SCFTs) är en viktig klass av kvantfältteorier. Dessa SCFTs utgör en viktig komponent för att utforska och förstå det fundamentala ramverket för kvantfältteorin. Inom det stora riket av kvantfältteori spelar integrabilitet en avgörande roll, vilket tillhandahåller kraftfulla analytiska verktyg som gör att vi kan lösa vissa fysiska storheter exakt. I denna avhandling fokuserar vi på representationsteorin av den algebraiska strukturen i sexdimensionella (6D) SCFTs och undersöker det intrikat samspelet mellan 6D SCFTs och integrabilitet. Till att börja med kommer vi att fördjupa oss i de grundläggande begreppen inom representationsteori och skapa en gedigen grund för vår efterföljande analys. Diskussionen kommer sedan att gå vidare till alla möjliga generatorer i SCFTs, och förklarar hur de realiseras i termer av bosoniska och fermioniska oscillatorer. Slutligen kommer spinnkedjor och dess tillämpningar i 6D SCFTs att undersökas. Vi kommer visa att symmetriargument som härleds från representationsteori inte är tillräckliga för att fastställa integrerbarhet av spinnkedjor i 6D SCFTs. Denna slutsats innebär inte att integrerbara system inte existerar inom 6D SCFTs, utan föreslår att det finns andra potentiella metoder, till exempel korrelationsfunktioner, för att utforska existensen av integrerbara system i 6D SCFTs.
|
78 |
ON THE FEIGIN-TIPUNIN CONJECTURE / FEIGIN-TIPUNIN予想についてSugimoto, Shoma 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23685号 / 理博第4775号 / 新制||理||1684(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 荒川 知幸, 教授 玉川 安騎男, 教授 並河 良典 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
79 |
Hopf algebras associated to transitive pseudogroups in codimension 2Cervantes, José Rodrigo 08 June 2016 (has links)
No description available.
|
80 |
Demazure slices of type A₂l(²) / A₂l(²)型のデマジュールスライスについてChihara, Masahiro 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23678号 / 理博第4768号 / 新制||理||1683(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 加藤 周, 教授 雪江 明彦, 教授 池田 保 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
Page generated in 0.0405 seconds