• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 38
  • 8
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 165
  • 165
  • 165
  • 80
  • 76
  • 40
  • 33
  • 31
  • 29
  • 26
  • 26
  • 23
  • 22
  • 22
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A comparative analysis of road bound and drone-based parcel deliveries : – An ex-ante evaluation regarding environmental impact, life cycle cost and delivery time

Jonsson, Greta, Hansson, Erika January 2022 (has links)
The increased demand for fast deliveries of goods have led to more costly and less environmentally friendly transports since many of the delivering trucks are not being fully loaded. The inefficiencies of deliveries have created a need for development of new freight systems. One alternative vehicle that has gained increasingly interest is usage of UAVs (unmanned arial vehicles), also known as drones. Several drones in varying sizes and configurations are being developed and applications within transports of both people and goods is seen as promising areas for the future. The study aims at investigating the performance of drone deliveries regarding time, cost, and environmental impact and to see what parameters are important for the performance. This have been made by comparing a UAV to two different vans (electric and HVO) for parcel deliveries in four chosen missions in both urban and rural settings. The evaluation takes a future perspective and are based on information received through both literature review and a market investigation.  The result from this study indicates that UAVs are likely to be a competitive future option for parcel deliveries regarding time and cost. This is concluded since the results shows significant savings in both costs and delivery time and these results are not changed by the sensitivity analyses. The result regarding environmental performance shows that the UAVs competitiveness depends on the vehicle of comparison. The drone has a better environmental performance than vans with fossil-based propellants but given the energy intensity of the UAV, it is not favourable compared to an electric van. The energy requirement of the drone is one of the most important factors affecting the performance. The energy requirements per km for the UAV increases when the routes become shorter since different phases of the flight have different energy intensity. The most demanding phase is lifting and when the distance between the stops is reduced this phase becomes more prominent. Another important factor is the possibility to reduce the travelled distance by taking the straight path with the UAV compared to being bound by the road infrastructure. The shorter distance for the UAV contributes both to reduced time but also reduced energy requirements which in its turn affect both environmental and economic performance. The distances and energy requirements are thus not the most important factor for the economic sustainability but rather the cost of staff. Since the drones are unmanned, several UAVs could be controlled by the same operator contributing to reduced cost of staff. The low energy requirements for the UAV in the longer and more rural cases makes this type of applications the most beneficial regarding environmental performance. Urban missions are instead the most preferable regarding cost and time, since a bigger share of the distance can be saved and the difference in speed between the UAV and the van is larger.
42

Bridge Life Cycle Cost Optimization : Analysis, Evaluation, & Implementation

Abed El-Fattah Safi, Mohammed January 2009 (has links)
No description available.
43

New Method Aiming at Comprehensive Evaluation of Low Impact Development:Case Study in Tianjin, China / 環境影響の少ない都市計画の新たな総合的評価モデルの開発:中国天津市を例として

Li, Yu 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21743号 / 工博第4560号 / 新制||工||1711(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 田中 茂信, 准教授 田中 賢治, 教授 中北 英一 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
44

A strategy to reduce total cost of ownership of the U.S. Air Force’s airfield pavements

Synovec, Thomas 25 November 2020 (has links)
The U.S. Air Force (USAF) estimates it has a $33 billion (about 10 percent is airfield pavements) deferred maintenance backlog within its $263 billion infrastructure portfolio. Given the scope of this backlog and the importance of airfields, the USAF has a vested interest in finding strategies to help reverse this growing trend. Without an increase in funding, divestiture of excess infrastructure, or change in strategy, this backlog is estimated to climb to over $50 billion by 2030. Reversing the growing infrastructure backlog trend requires new methods and strategies to rethink how the USAF invests in its infrastructure. As such, the overall goal of this research is to develop a comprehensive and practical asset management approach to reduce the total cost of ownership of USAF airfield pavements. By reducing the cost of ownership, the goal is to reverse the growing maintenance backlog while maintaining a pavement portfolio capable of supporting USAF flying operations into the future. While this research is particularly relevant to the USAF, it seeks to fill research gaps within the current body of knowledge related to pavement management strategies for other agency types by presenting a practical, simulation-based methodology for work planning and budget allocation across a large pavement portfolio over a thirty-year period. The dissertation presents the development of the BEAST and RAMPSS algorithms. The BEAST algorithm is a simulation tool capable of modeling behaviors and decisions of 109 organizations managing a global network of airfield pavements over thirty years. Additionally, the BEAST is used to forecast outcomes of USAF investment decisions utilizing its current management strategies and historical behaviors. The RAMPSS is a simulation algorithm designed to select the most economical maintenance strategy for each pavement section in the USAF’s portfolio (i.e., individualized maintenance recommendation strategy for each pavement section). Analysis from the RAMPSS algorithm of the USAF’s pavement portfolio suggests that airfields are generally more cost-effective to maintain if kept in better conditions with strategies other than localized preventative maintenance. The USAF’s current maintenance strategy is unsustainable; however, switching to recommendations from RAMPSS (incorporated and modeled in the BEAST) provides a potentially significant course correction.
45

Sustainable Design and Operation of the Cement Industry

Avetisyan, Hakob G. 19 December 2008 (has links)
No description available.
46

Exploring the Intersection of Science and Policy: The Case Study of Installing Solar Panels and Energy Storage System at the University of Ottawa

Elshorbagy, Eslam 14 September 2022 (has links)
Buildings account for up to a third of total world greenhouse gas GHG emissions, and this pattern is expected to persist. By 2050, cities will be home to 70 % of the world's population, demanding a significant number of buildings to be constructed. Efforts to reduce these emissions in the past had varied performance. However, several examples indicate that well thought and adequately executed mix of building technology coupled with environmental policies may reduce emissions. Therefore, cities worldwide are joining the race to decarbonize their buildings to become net-zero carbon and support green economies through a diversified bundle of policies. However, designing and selecting the appropriate mix of building technology and environmental policies is challenging to generate the most outlast net-zero carbon impacts. This research aims to uncover the intersection between science and policy's role in achieving a global net-zero energy building sector. First, an urban comparative analysis for ten environment-leading cities has been made to understand the latest progress in the building sector and draw on future recommendations. The findings are thematically grouped into five themes a) Building's energy efficiency (energy demand sector). (b) Electrified renewable grids (energy supply sector). (c) Green fiscal incentives (d) Education and capacity building. (e) Governance and collaboration. Second, the University of Ottawa has been utilized as a part of the campus as a living lab initiative to examine installing photovoltaic panels over the campus buildings as part of the university expansion program to achieve net-zero operations by 2040. The following parameters have been considered to address the PV systems viability, 1) the expected electricity output. 2) the initial and operational costs. 3) the GHG reductions in operational energy. 4) the PV system embodied carbons. RETScreen Expert software has been used to perform the Life Cycle Cost Analysis (LCCA) to assess PV system output and financial viability. One Click-LCA software to carry-out Life Cycle Assessment (LCA) to assess embodied carbons. The results indicate from analyzing 31 buildings that 20% - 107% of electricity can be offset depending on each building's energy use and solar collector area. Additionally, the 31 buildings analyzed for electricity generation collectively have the potential to save around 23% of the total campus electricity consumption with a production capacity of 18 million units (kWh) annually, including 21,108 solar panels. Also, the project shows financial viability only if the PV systems are installed as part of the whole campus with a Net Present Value (NPV) of $4,985,89 and an Internal Rate of Return (IRR) of 11.4%. The analysis shows 24% and 18% maximum sensitivity to increased initial cost and decreased electricity generation/rate. Finally, the GHG estimated reductions over 25 years from generated electricity are 14,445 tCO2, and the estimated increased embodied carbons from the Life Cycle Assessment are set to be 1,023 tCO2. Additionally, drawing upon urban analysis and the case study, the research highlights the dynamic nature of the building sector emissions reduction and city initiatives. Thirdly, a detailed analysis was carried out in the System Advisor Model (SAM) software to integrate the solar system with energy storage in the Advanced Research Complex (ARC) Building at the University of Ottawa. The study assesses the system viability and helps the university to reduce its monthly electricity bill and help Ontario to maintain its grid reliability by keeping the electricity demand low at peak times. The findings show that using an integrated solar system with an energy storage system by mitigating 100%, 90%, 75%, and 50% of the building electricity demand during the Ontario gird peak could lead to a Net Present Value of $2,01, $1.70, $1.30, and $0.864 million over 25 years the lifetime of the project through the Ontario Global Adjustment Program. The study also shows that with the absence of the Ontario Global Adjustment Program as a fiscal reform tool and relying only on the time of use electricity rates, the solar panels with an energy storage system could lead to a negative Net Present Value of $-550 thousand.
47

Service Life Modeling of Virginia Bridge Decks

Williamson, Gregory Scott 09 April 2007 (has links)
A model to determine the time to the End of Functional Service Life (EFSL) for concrete bridge decks in Virginia was developed. The service life of Virginia bridge decks is controlled by chloride-induced corrosion of the reinforcing steel. Monte Carlo resampling techniques were used to integrate the statistical nature of the input variables into the model. This is an improvement on previous deterministic models in that the effect of highly variable input parameters is reflected in the service life estimations. The model predicts the time required for corrosion to initiate on 2% of the reinforcing steel in a bridge deck and then a corrosion propagation time period, determined from empirical data, is added to estimate the EFSL for a given bridge deck or set of bridge decks. Data from 36 Virginia bridge decks was collected in order to validate the service life model as well as to investigate the effect of bridge deck construction specification changes. The bridge decks were separated into three distinct groups: 10 bare steel reinforcement decks â 0.47 water/cement (w/c), 16 Epoxy-Coated Reinforcement (ECR) decks â 0.45 w/c, and 10 ECR decks â 0.45 w/(c+pozzolan). Using chloride titration data and cover depth measurements from the sampled bridge decks and chloride corrosion initiation values determined from the literature for bare steel, service life estimates were made for the three sets of bridge decks. The influence of the epoxy coating on corrosion initiation was disregarded in order to allow direct comparisons between the three sets as well as to provide conservative service life estimates. The model was validated by comparing measured deterioration values for the bare steel decks to the estimated values from the model. A comparison was then made between the three bridge deck sets and it was determined that bridge decks constructed with a 0.45 w/(c+p) will provide the longest service life followed by the 0.47 w/c decks and the 0.45 w/c decks, respectively. From this it can be inferred that the addition of pozzolan to the concrete mix will improve the long-term durability of a bridge deck while a reduction in w/c appears to be of no benefit. / Ph. D.
48

High-Intensity Discharge Industrial Lighting Design Strategies for the Minimization of Energy Usage and Life-Cycle Cost

Flory, Isaac L. IV 13 October 2008 (has links)
Worldwide, the electrical energy consumed by artificial lighting is second only to the amount consumed by electric machinery. Of the energy usage attributed to lighting in North America, approximately fifteen percent is consumed by those lighting products that are classified as High-Intensity Discharge (HID). These lighting products, which are dominated by Metal-Halide and High-Pressure Sodium technologies, range in power levels from 35 to 2000 watts and are used in both indoor and outdoor lighting applications, one category of which is the illumination of industrial facilities. This dissertation reviews HID industrial lighting design techniques and presents two luminaire layout algorithms which were developed to provide acceptable lighting performance based upon the minimum number of required luminaires as determined by the lumen method, regardless of the aspect ratio of the target area. Through the development of lighting design software tools based upon the Zonal Cavity Method and these layout algorithms, models for the quantification of energy requirements, lighting project life-cycle costs, and environmental impacts associated with conventional industrial lighting installations are presented. The software tools, which were created to perform indoor HID lighting designs for the often encountered application of illuminating general rectangular areas with non-sloped ceilings utilizing either High-Bay or Low-Bay luminaires, provide projections of minimal lighting system costs, energy consumption, and environmental impact based upon lamp selection, ballast selection, luminaire selection and lighting system maintenance practices. Based upon several industrial lighting application scenarios, lighting designs are presented using both the new software tools and a commercially available lighting design software package. For the purpose of validating this research, analyses of both designs for each scenario are presented complete with results of illuminance simulations performed using the commercially available software. / Ph. D.
49

Effectivess of Using Geotextiles in Flexible Pavements: Life-Cycle Cost Analysis

Yang, Shih-Hsien 28 March 2006 (has links)
Using geotextiles in secondary roads to stabilize weak subgrades has been a well accepted practice over the past thirty years. However, from an economical point of view, a complete life cycle cost analysis (LCCA), which includes not only costs to agencies but also costs to users, is urgently needed to assess the benefits of using geotextile in secondary road flexible pavement. In this study, a comprehensive life cycle cost analysis framework was developed and used to quantify the initial and the future cost of 25 representative design alternatives. A 50 year analysis cycle was used to compute the cost-effectiveness ratio for the design methods. Four flexible pavement design features were selected to test the degree of influence of the frame's variables. The analysis evaluated these variables and examined their impact on the results. The study concludes that the cost effectiveness ratio from the two design methods shows that the lowest cost-effectiveness ratio using Al-Qadi's design method is 1.7 and the highest is 3.2. The average is 2.6. For Perkins' design method, the lowest value is 1.01 and the highest value is 5.7. The average is 2.1. The study also shows when user costs are considered, the greater TBR value may not result in the most effective life-cycle cost. Hence, for an optimum secondary road flexible pavement design with geotextile incorporated in the system, a life cycle cost analysis that includes user cost must be performed. / Master of Science
50

Desarrollo de un modelo para la optimización del reemplazo de vehículos para una flota de transporte urbano de pasajeros

Sá Riechi, Jorge Luiz de 22 March 2018 (has links)
Cada vez más, las empresas de transporte de viajeros se encuentran enmarcadas por un reto financiero para su supervivencia en un mundo globalizado, y están en busca de una gestión eficiente para optimizar los costes de explotación de las flotas. El principal objetivo es obtener el mínimo coste por kilómetro recorrido de los autobuses durante toda su vida útil, pero sin olvidar la influencia de la edad y del kilometraje sobre los vehículos. Desde un punto de vista puramente económico, es evidente que se obtengan los costes de operación y mantenimiento más bajos en los primeros años de trabajo de los vehículos. Pero cuando se consideran otros tipos de costes, como la compra del vehículo, impuestos, subvenciones o incentivos fiscales, y la necesidad de sustitución por nuevos vehículos dotados de innovaciones tecnológicas en conformidad con las exigentes normas de sostenibilidad y sus altos costes, la optimización económica es un reto para los operadores. Así, la determinación del momento óptimo de reemplazo es una tarea cada vez más dependiente de la disponibilidad, fiabilidad y precisión de los datos que se manejen, debido a la incertidumbre en la predicción de algunos valores y costes, tales como los futuros precios del combustible, costes de mantenimiento y la tasa de utilización. Teniendo en cuenta que este proceso ocurre a nivel global en diferentes sectores, existen diferentes modelos y herramientas de gestión que permiten encontrar al menos una solución para el problema de reemplazo. En este trabajo se han planteado dos modelos clásicos aplicados en problemáticas similares, para adaptarlos a la resolución del caso de flotas de transporte urbano de dos países diferentes, España y Brasil, propiciando así un análisis bajo condiciones y entornos distintos. Con el acceso a los datos reales de las flotas, fue desarrollada e implementada la metodología combinada entre la herramienta gerencial Life Cycle Cost y el modelo matemático de Simulación Monte Carlo, mediante la realización de un análisis estocástico, considerando tanto la edad y el kilometraje promedio anual. El estudio ha demostrado que la inclusión de las variables aleatorias en el proceso de determinación de la edad óptima de cambio, junto con la mejor tasa de utilización de los vehículos en función del kilometraje medio, aporta ventajas al proceso de reemplazo convencional, al permitir una perspectiva más confiable de los futuros escenarios, mediante el análisis probabilístico dependiente de las variables económicas y técnicas. Los resultados obtenidos apuntan hacia la eficiencia del modelo, y que podrá ser utilizado de forma satisfactoria en otros estudios comparativos en flotas de transporte urbano. / The passenger transport companies have been increasingly challenged by financial restrictions for their survival in a globalised world and they are searching out an efficient management to optimise the exploitation costs of the fleets. The main objective is not only reaching the lowest average cost per mile of the buses during their lives, but also reaching such aim considering the influence of the age and mileage over the vehicles. From an economic point of view, it is evident that the operational and maintenance costs must be lower at the first working years of the vehicle. However, when other types of costs are taken into consideration, such as the purchasing price, taxes, subsidies or tax incentives, the need of the replacement for new vehicles endowed with technologic innovations in accordance with sustainable rules and their high costs, the economic optimisation becomes a challenge for the managers. Likewise, the determination of the optimum replacement moment is a more and more dependent task on the availability, reliability and precision of the data in use due to the uncertainty and unreliability when predicting some values and costs, such as future fuel prices, maintenance costs and bus use rate. In view of this process happens at a global level over different sectors of the economy, there are several models and tools of management that leads to a solution to the replacement problem. In this study, two classic modules were applied in similar conditions, however, some changes were required to adapt them for the resolution in two urban transport fleet in two different countries, Spain and Brazil, generating an analysis under different conditions and environments though. Using the access of real date from the two fleets, a methodology was developed combining the Life Cycle Cost tool and the mathematical model of Monte Carlo Simulation, by performing a stochastic analysis considering both age and average annual mileage for optimum vehicle replacement. This study has demonstrated that the inclusion of random variables into the determination process of optimum replacement age together with the best mileage of the vehicle in function of average mileage improve the conventional replacement process since it creates a more reliable perfective on future successes through probabilistic analysis dependent on economic and technical variables. The results suggest that the model is effective, and it could be used satisfactorily in other comparative studies about urban transport fleet. / Cada vegada més, les empreses de transport de viatgers es troben majors reptes financers per a la seva supervivència en un món globalitzat, i estan a la recerca d'una gestió eficient per optimitzar els costos d'explotació de les flotes. El principal objectiu és obtenir el mínim cost per quilòmetre recorregut dels autobusos durant tota la seva vida útil, però sense oblidar la influència de l'edat i del quilometratge sobre els vehicles. Des d'un punt de vista purament econòmic, és evident que s'obti els costos d'operació i manteniment més baixos en els primers anys de treball dels vehicles. Però quan es consideren altres tipus de costos, com la compra del vehicle, impostos, subvencions o incentius fiscals, i la necessitat de substitució per nous vehicles dotats d'innovacions tecnològiques en conformitat amb les exigents normes de sostenibilitat i els seus alts costos, l'optimització econòmica és un repte per als operadors. Així, la determinació del moment òptim de reemplaçament és una tasca cada vegada més dependent de la disponibilitat, fiabilitat i precisió de les dades que es manegen, a causa de la incertesa en la predicció d'alguns valors i costos, com ara els futurs preus del combustible, costos de manteniment i la taxa d'utilització. Tenint en compte que aquest procés ocorre a nivell global a diferents sectors, hi ha diferents models i eines de gestió que permeten trobar almenys una solució per al problema de reemplaçament. En aquest treball s'han plantejat dos models clàssics aplicats en problemàtiques similars, per adaptar-los a la resolució del cas de flotes de transport urbà de dos països diferents, Espanya i el Brasil, propiciant així una anàlisi sota condicions i entorns diferents. Amb l'accés a les dades reals de les flotes, va ser desenvolupada i implementada la metodologia combinada entre l'eina gerencial Life Cycle Cost i el model matemàtic de simulació Monte Carlo, mitjançant la realització d'una anàlisi estocàstica, considerant tant l'edat com la mitjana de quilometratge anual. L'estudi ha demostrat que la inclusió de les variables aleatòries en el procés de determinació de l'edat òptima de canvi, juntament amb la millor taxa d'utilització dels vehicles en funció del quilometratge mitjà, aporta avantatges al procés de reemplaçament convencional, en permetre una perspectiva més fiable dels futurs escenaris, mitjançant l'anàlisi probabilístic depenent de les variables econòmiques i tècniques. Els resultats obtinguts apunten cap a l'eficiència del model, i que podrà ser utilitzat de forma satisfactòria en altres estudis comparatius en flotes de transport urbà. / Sá Riechi, JLD. (2018). Desarrollo de un modelo para la optimización del reemplazo de vehículos para una flota de transporte urbano de pasajeros [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/99567

Page generated in 0.0901 seconds