• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 466
  • 150
  • 64
  • 59
  • 18
  • 14
  • 14
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 926
  • 926
  • 926
  • 377
  • 280
  • 274
  • 177
  • 162
  • 161
  • 147
  • 142
  • 135
  • 135
  • 122
  • 122
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Sustainability assessment of electricity options for Mexico : current situation and future scenarios

Santoyo Castelazo, Edgar January 2011 (has links)
The aim of this research has been to identify the most sustainable options for electricity production in Mexico with an outlook to 2050. An integrated methodology for sustainability assessment of different electricity technologies and scenarios has been developed, taking into account environmental, economic and social aspects. The environmental impacts have been estimated using life cycle assessment; the economic costs considered include total capital and annualised costs while social aspects include security and diversity of energy supply, public acceptability, health and safety impacts and intergenerational issues. To help identify the most sustainable options, multi-criteria decision analysis has been used. The methodology has been applied to Mexican conditions for the assessment of both current and future electricity production. The results for the current situation show that on a life cycle basis 129 million tonnes of CO2 eq. are emitted annually from 225 TWh of electricity generated in Mexico. Heavy fuel oil, gas and coal power plants contribute together to 87% of CO2 eq. emissions. Total annualised costs are estimated at US$ 22.4 billion/yr with the fuel costs contributing 54%, mainly due to the operation of gas and heavy fuel oil power plants. A range of future scenarios up to 2050 has been developed in an attempt to identify the most sustainable options. The development of the scenarios has been driven and informed by the national greenhouse gas emission reduction target of 50% by 2050 on the 2000 levels, translating to an 85% reduction from the power sector. The results show that the business as usual (BAU) scenario (with the highest contribution from fossil fuels) is the least sustainable option with the CO2 eq. emissions increasing by almost 300% and the annualised costs by 290% for a projected electricity demand of 813 TWh in 2050. Overall, the most sustainable scenarios are those with higher penetration of renewable energies (wind, solar and hydro) and nuclear power, as in Green, A-3 and C-3. For example, compared to the BAU scenarios, the CO2 eq. emissions reduce by 84%, 89% and 89%, respectively. Although renewable energy based scenarios require high capital costs, the total annualised costs even out over time due to lower fuel costs. The lowest annualised costs are for C-3 scenario, representing a 40% reduction on BAU. With respect to social issues, the BAU scenario is also the least preferred option with the highest risks related to security and diversity of supply, health and safety and climate change. The most sustainable options are scenarios A-3 and Green, with social barriers related to public acceptability, reliability of supply and availability of energy resource. Most critical aspects for scenario C-3 are health and safety risks, and intergenerational issues related to nuclear power. Therefore, the Mexican Government should aim to strengthen the current low carbon energy policies as well as put measures in place to encourage reducing the electricity demand. In the case of the energy policy driver focusing on climate change mitigation or annualised costs, scenarios A-3 and C-3 are the most sustainable options.
62

Sustainability assessment of integrated bio-refineries

Falano, Temitope January 2012 (has links)
Integrated bio-refineries offer a potential for a more sustainable production of fuels and chemicals. However, the sustainability implications of integrated bio-refineries are still poorly understood. Therefore, this work aims to contribute towards a better understanding of the sustainability of these systems. For these purposes, a methodological framework has been developed to assess the sustainability of different 2nd generation feedstocks to produce bio-ethanol, energy, and platform chemicals using bio-chemical or thermo-chemical routes in an integrated bio-refinery.The methodology involves environmental, techno-economic, and social assessment of the bio-refinery supply chain. Life cycle assessment (LCA) is used for the environmental assessment. The economic assessment is carried out using life cycle costing (LCC) along side traditional economic indicators such as net present value and payback period. Social issues such as employment provision and health and safety are considered within the social sustainability assessment. The methodology has been applied to two case studies using the bio-chemical and the thermo-chemical conversion routes and four feedstocks: wheat straw, poplar, miscanthus and forest residue.For the conditions assumed in this work and per litre of ethanol produced, the LCA results indicate that the thermo-chemical conversion is more environmentally sustainable than the bio-chemical route for eight out of 11 environmental impacts considered. The LCA results also indicate that the main hot spot in the supply chain for both conversion routes is feedstock cultivation. The thermo-chemical route is economically more sustainable than the bio-chemical because of the lower capital and operating costs. From the social sustainability point of view, the results suggest that provision of employment would be higher in the bio-chemical route but so would the health and safety risks.
63

Life cycle environmental and economic sustainability assessment of micro-generation technologies in the UK domestic sector

Greening, Benjamin Paul January 2014 (has links)
This research has assessed the environmental and economic sustainability of domestic micro-generation technologies under UK conditions as both individual technologies and as part of a range of future energy supply scenarios for the domestic sector extending to 2050. A life cycle approach has been used for both environmental and economic assessment considering the relevant sustainability impacts, which include global warming potential, the depletion of fossil fuels, human toxicity and life cycle cost. The micro-generation technologies studied were selected on the basis of their ability to contribute to current and future energy supply and also their suitability under UK conditions. These technologies were micro-wind, solar photovoltaics, micro-combined heat and power, heat pumps and solar thermal water heating. The technologies were compared with one another and with the incumbent technologies, which were grid electricity and natural gas condensing boilers. Three journal papers have been published as a result of this research. The evaluation of micro-generation technologies on a life cycle basis indicated that despite reducing certain environmental impacts, all technologies increased at least one and as many as eight environmental impacts compared to their current fossil-fuel alternatives. All micro-generation technologies would reduce global warming and fossil fuel depletion compared to conventional technologies, highlighting their potential to contribute to energy policy goals. However, they cannot currently compete with conventional technologies for capital cost, although their life cycle costs – taking into account incentives from schemes such as Feed-in Tariffs – can be competitive. Considering both environmental and economic implications suggested that Stirling engine micro-combined heat and power is one of the most sustainable options for heat and electricity generation. The results also suggested that heat pumps should not be receiving incentives from the Government due to their poor environmental performance. Four potential future energy supply scenarios for the UK domestic sector were studied extending to 2050. The scenarios varied in terms of the level of effort made to improve the environmental and economic sustainability of the sector. Scenario 1 involved no further implementation of micro-generation beyond 2009, increasing energy demand and a grid electricity dominated by fossil fuels. In contrast, Scenario 4 portrayed a future where there is 1 micro-generation technology per dwelling, a 50% reduction in demand and almost complete decarbonisation of the grid mix. The results indicated that a huge transformation of the sector is required to achieve the 80% reduction in CO2 emissions by 2050. This would include halving energy demand, almost complete decarbonisation of grid electricity and the installation of a micro-generation unit in every dwelling. To conclude, despite the level of interest micro-generation is currently receiving, this work suggested their usage may not necessarily be as beneficial as some believe. Their use does reduce greenhouse gas emissions and fossil fuel consumption; however, to have any influence on energy policy goals this use would have to be widespread. Furthermore, reduced emissions will come at the expense of other environmental impacts. Finally, with a number of the technologies not yet cost competitive – even with incentives – the Government focus on measures to reduce demand and decarbonise the grid may prove to be a better option as this work suggested that energy policy goals could be achieved without high penetration of micro-generation.
64

Sustainability assessment of active packaging incorporating nanomaterials

Zhang, Hai 16 November 2017 (has links)
Packaging plays an important role in ensuring food safety and quality. The development antimicrobial packaging enables actively inhibiting/killing the spoilage microorganisms, and thus extending food product's shelf life. Generally, 50% shelf life extension is possible. The interest for using metallic nanoparticles in active packaging derives from its superior antimicrobial efficacy and no negative impact on the food sensory properties. In this thesis, the packaging material of concern is a PLA (Polylactic Acid) coated paper incorporating zinc oxide nanoparticles (ZnO NPs) in the coating layer. The material was characterized and its antimicrobial activity was evaluated. The SEM images show that the nanoparticles were homogenously distributed across the surface thanks to its surface modification. Antimicrobial assay indicates that the active material was effective in inactivating E. coli and S. aureus. Furthermore, E. coli was found to be more susceptible to this type of agent, showing 3.14 log reduction for 0.5 wt% agent loading in the PLA coating layer. This result was compared across the publications using the same agent for treating both Gram-positive and Gram-negative microorganisms. The discrepancy between the results can be explained by the fact that ZnO nanoparticles have multiple action mechanisms, and different antimicrobial testing methods may activate part of the action mechanisms. On the other hand, recyclability is regarded as an important attribute for paper-based packaging material, as it enables to conserve the resources and reduce the environmental impacts. Accordingly, when it comes to the nano-enabled paper packaging material, recyclability should be maintained. In this case, a recyclability test was carried out in a lab-scale paper recycling line. The protocol was based on a method adapted from the ATICELCA MC501-13, which enabled to recover over 99% of the solids material. The mass balance result indicates that 86%-91% zinc oxide nanoparticles ended up in the rejected material stream, mostly embedded within the polymer coating; whereas 7%-16% nanoparticles ended up in the accepted material stream. Besides, the tensile strength of the recycled handsheets suggests that the nano-enabled coating had no negative impacts on the recovered fibre quality. Active packaging plays a positive role in reducing food losses. If food and packaging are considered as a whole system, its overall environmental impact can be justified by incorporating the food loss reduction due to the application of active packaging. The LCA calculation shows that a breakeven point can be easily achieved for the case of red meat products of high environmental impact. / El envase juega un papel importante asegurando la seguridad y calidad de los alimentos. El desarrollo de envases activos, especialmente envase antimicrobiano, permite inhibir o matar los microorganismos causantes del deterioro de los alimentos, alargando por tanto su vida útil. De forma general es posible extender la vida útil de los alimentos en un 50%. El interés por el uso de nanopartículas metálicas en el envasado activo se deriva de su gran efectividad antimicrobiana sin causar un efecto negativo en sus propiedades sensoriales. En la presente tesis, se ha desarrollado un papel recubierto de PLA (ácido poliláctico) con nanopartículas de óxido de zinc (ZnO NPs) incorporadas en la capa de recubrimiento. Se ha caracterizado el material y se ha evaluado su capacidad antimicrobiana. Las imágenes obtenidas mediante SEM muestran que las nanopartículas fueron distribuidas a lo largo de la superficie gracias a su modificación. Los ensayos de efectividad antimicrobiana indicaron una actividad del material frente a E. coli y a S. aureus. Además, E. coli resultó ser más susceptible a este agente activo incorporado al 0.5 % en peso en el recubrimiento de PLA, mostrando una reducción de 3.14 log. Este resultado fue comparado con publicaciones donde se emplearon los mismos agentes activos para frente a microorganismos Gram-positivos y Gram-negativos. Las discrepancias encontradas entre los resultados pueden deberse a que las nanopartículas de ZnO tienen múltiples mecanismos de acción, y los diferentes métodos de ensayo poder estimular parte de estos mecanismos. Por otra parte, el reciclado juega un importante papel en la conservación de los recursos y en la reducción de los impactos medioambientales. Por tanto, cuando se trata de un material de envase de papel con sustancias de tamaño nano, el reciclado debe tratarse adecuadamente. El ensayo de reciclabilidad fue llevado a cabo a escala laboratorio en una línea de reciclado de papel. El protocolo de ensayo se basó en el método adaptado de ATICELCA MC501-13, permitiendo una recuperación del 99% de material sólidos. Los resultados del balance de materia indicaron que el 86%-91% de las nanopartículas de óxido de zinc llegaron al flujo de material de rechazo, principalmente mezclado en el recubrimiento polimérico. Además, los resultados de tracción de las láminas recicladas sugieren que el recubrimiento con partículas nano no tiene un efecto negativo sobre la calidad de la fibra recuperada. El envase activo juega un papel positivo en la reducción de los residuos alimentarios. Como resultado del uso del envase activo, considerando el envase y el alimento como un todo, el impacto ambiental sobre este sistema completo puede ser compensado por la reducción de pérdidas de alimentos. El cálculo LCA muestra que el punto de equilibrio se puede conseguir fácilmente en el caso de productos de carne roja de elevado impacto ambiental. / L'envàs té un paper prou important en la seguretat i la qualitat del aliments. El desenvolupament dels envasos actius, especialment l'envàs antimicrobià, el qual permeteix l'inhibició o mort dels microorganismes que produeixen el deteriorament dels aliments i, per tant, allargant la seua vida útil. De manera general, es possible l'allargament de la vida útil dels aliments en un 50%. L'interès per la utilització de nanopartícules metàl·liques en l'envasat actiu es deriva de la seua gran efectivitat antimicrobiana sense produir un efecte negatiu en les seus propietats sensorials. En aquesta present tesis, s'ha desenvolupat un paper recobert de PLA (àcid polilàctic) amb nanopartícules d'òxid de zinc (ZnO NPs) incorporades a la capa de recobriment. S'ha caracteritzat el material i s'ha avaluat la seua capacitat antimicrobiana. Les imatges obtingudes per mitjà del SEM mostren que les nanopartícules foren distribuïdes en tota la superfície gràcies a la seua modificació. Els assajos d'efectivitat antimicrobiana varen indicar una activitat del material front a E.coli i a S. aureus. A més, E. coli va resultar ser més susceptible a aquest agent actiu incorporat al 0.5 % en pes en el recobriment de PLA, mostrant una reducció de 3.14 log. Aquest resultat va ser comparat amb publicacions on es van emprar els mateixos agents actius front a microorganismes Gram-positiu i Gram-negatiu. Les discrepàncies trobades entre els resultats poden deure's a que les nanopartícules de ZnO tenen diversos mecanismes d'acció, i els diferents mètodes d'assaig poder estimular part d'aquestes mecanismes. Per altra banda, el reciclatge també té un paper important en la conservació dels recursos i en la reducció dels impactes mediambientals. Per tant, quan es tracta d'un material d'envàs de paper amb substàncies de la grandària 'nano', el reciclatge ha de tractar-se adequadament. El assaig de reciclabilitat va ser dut a terme a escala de laboratori en una línia de reciclatge de paper. El protocol de l'assaig es va basar en el mètode adaptat d'ATICELCA MC501-13, permetent una recuperació del 99% del material sòlid. Els resultats del balanç de matèria van indicar que el 86-91% de les nanopartícules d'òxid de zinc varen arribar al fluix material de rebuig, principalment mesclat en el recobriment polimèric. A més, els resultats de tracció de les làmines reciclades suggereixen que el recobriment amb nanopartícules nano no tenen un efecte negatiu sobre la qualitat de la fibra recuperada. L'envàs actiu juga un paper positiu en la reducció dels residus alimentaris. Com a resultat de l'ús de l'envàs actiu, considerant l'envàs i l'aliment com un tot conjunt, l'impacte ambiental sobre aquest sistema complet pot ser compensat per la reducció de pèrdues d'aliments. El càlcul LCA mostra que el punt d'equilibri es pot aconseguir fàcilment en el cas de productes de carn roja d'elevat impacte ambiental. / Zhang, H. (2016). Sustainability assessment of active packaging incorporating nanomaterials [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/75348 / TESIS
65

The Impact of a Teracom Group Product From a Life Cycle Perspective

Södergren, Jacob January 2013 (has links)
All kinds of products have economic, social and environmental impact throughout their entire life cycle. Today’s growing need for electronic devices contributes to the increasing problem within these fields.  The aim of this study is to investigate and determine the impact of a chosen Teracom Group product from a sustainability perspective and to develop recommendations regarding how to proceed, in order to reduce the impact of products. This study is mainly focusing on the environmental aspect of the concept of sustainability. A life cycle assessment (LCA) of a set-top box (STB) is conducted based on chosen indicators by using the software SimaPro. The goal of the assessment is to identify the phases within the life cycle with largest environmental impact and contribute to Teracom Group’s further sustainable work. 18 impact categories are included to express emissions and use of natural resources. The result clearly shows that the production phase has the largest environmental impact within categories such as terrestrial acidification, human toxicity, freshwater ecotoxicity, marine ecotoxicity, urban land occupation and metal resource depletion. The use phase affects the environment foremost within climate change, ozone depletion, terrestrial ecotoxicity, ionising radiation, agricultural land use, natural land transformation and water depletion. Transports and the waste scenario only have a small effect on certain categories. The experiences of this study are discussed, demonstrating the difficulty in making an LCA in the position of being at the company purchasing products, not at the company manufacturing them. The company has previously not focused enough on sustainability regarding products. An LCA performed by the supplier would be more reliable due to a better possibility of collecting accurate data. Communication and cooperation between the company and its suppliers are key solutions. Higher requirements during procurement should be put on the products, including demands on performed LCAs with clearly described references and methods, critically review by a third party.
66

Life Cycle Assessment (LCA) of a GSS-P 91413 Autoclave Produced in the Getinge Factory

Hella, Babu David, Madhusoodhanan, Ananthakrishnan Karakkatt January 2022 (has links)
In this dissertation, we analyze the Life Cycle Assessment (LCA) of the Steam Sterilizer, popularly known as Autoclave. The LCA will help Getinge Sterilization AB to identify the stages of the life cycle of Autoclave model GSS-P 91413, which contributes more to the environmental footprint. We use the ISO 14040 LCA framework to conduct the Cradle to Grave boundary study of the Autoclave. The results have shown the use phase to be a dominant phase with almost 84% of carbon footprint. For Getinge to produce sustainable products and reach its long-term goal of becoming carbon neutral, they need to reduce its environmental footprint in every phase of the product life cycle. Thus, this report suggests the best way that the company can impact the changes to the users even though they have very little control over it. The results were obtained using the Sustainable Minds (SM 2013) software, which is ISO certified, henceforth the results are trustworthy. This Thesis has 8 parts: Introduction, Method, Theory, Results, Conclusion, Critical Review, References, and Appendices.
67

Rigorous Design of Chemical Processes: Surrogate Models and Sustainable Integration

Quirante, Natalia 18 December 2017 (has links)
El desarrollo de procesos químicos eficientes, tanto desde un punto de vista económico como desde un punto de vista ambiental, es uno de los objetivos principales de la Ingeniería Química. Para conseguir este propósito, durante los últimos años, se están empleando herramientas avanzadas para el diseño, simulación, optimización y síntesis de procesos químicos, las cuales permiten obtener procesos más eficientes y con el menor impacto ambiental posible. Uno de los aspectos más importantes a tener en cuenta para diseñar procesos más eficientes es la disminución del consumo energético. El consumo energético del sector industrial a nivel global representa aproximadamente el 22.2 % del consumo energético total, y dentro de este sector, la industria química representa alrededor del 27 %. Por lo tanto, el consumo energético de la industria química a nivel global constituye aproximadamente el 6 % de toda la energía consumida en el mundo. Además, teniendo en cuenta que la mayor parte de la energía consumida es generada principalmente a partir de combustibles fósiles, cualquier mejora de los procesos químicos que reduzca el consumo energético supondrá una reducción del impacto ambiental. El trabajo recopilado en esta Tesis Doctoral se ha llevado a cabo dentro del grupo de investigación COnCEPT, perteneciente al Instituto Universitario de Ingeniería de los Procesos Químicos de la Universidad de Alicante, durante los años 2014 y 2017. El objetivo principal de la presente Tesis Doctoral se centra en el desarrollo de herramientas y modelos de simulación y optimización de procesos químicos con el fin de mejorar la eficiencia energética de éstos, lo que conlleva a la disminución del impacto ambiental de los procesos. Más concretamente, esta Tesis Doctoral se compone de dos estudios principales, que son los objetivos concretos que se pretenden conseguir: - Estudio y evaluación de los modelos surrogados para la mejora en la optimización basada en simuladores de procesos químicos. - Desarrollo de nuevos modelos para la optimización de procesos químicos y la integración de energía simultánea, para redes de intercambiadores de calor.
68

Life Cycle Assessment of Ivalo2 M Bugrip

Eklund, Jon January 2018 (has links)
The yearly production of shoes has, the last decades, increased by a significantly amount. The increased production have put pressure on the environment, and therefore it is important to decrease the environmental impact from the shoe industry. Icebug is a shoe company, that want to run their business with environmental sustainability and thereby they need to possess knowledge of their shoe production, and its environmental impacts. A method to estimate the environmental impact from products is the Life Cycle Assessment (LCA) method. An LCA therefore have been performed for the shoe model Ivalo2 M Bugrip, one of the most sold models from Icebug. The result from the LCA show that the materials with the highest environmental impact was suede and rubber. The suede was the material with the highest environmental impact per weight unit. Therefore Icebug should decrease or replace the suede, with a material that has similar properties. The rubber was the most represented material within the shoe, and even if the environmental impact, per weight unit, was higher than most of the materials, Icebug should remain the rubber, because of its durability properties. The nylon plastic had high environmental impact, compared to the other plastics, whereby Icebug should decrease or replace the nylon. The environmental impact from the electricity was high. Therefore Icebug should try to decrease the energy consumption, and invest in renewable energy at the assembly factory. To decrease the resource depletion, recycled plastics and recycled rubber could be the best option. / <p>2018-12-11</p>
69

Barriers for implementation of the Environmental Load Profile and other LCA-based tools

Brick, Karolina January 2008 (has links)
The building sector is a vital part in the progress towards environmental sustainability, because of its high potential to decrease the environmental impact. However, the building industry remains one of the most critical industries for the adoption of environmental sustainability principles, because of several unique characteristics in terms of e.g. long-lived products and many stakeholders involved. Environmental assessment tools have an important role to play in implementing environmental sustainability in the building sector, as they provide a clear declaration of what are considered the key environmental considerations and also provide a way of communicating these issues. The Environmental Load Profile (ELP) is a Swedish Life Cycle Assessment (LCA) based tool for the built environment, originally developed as an instrument for evaluation of the environmental performance of Hammarby Sjöstad (HS), a new city district in Stockholm, Sweden. The ELP is facing implementation, aiming to be established as an instrument of common acceptance. Experiences and results from the ELP has revealed that it can be applied to give a comprehensive picture of the environmental performance of a city district, but also that the tool has a number of weaknesses and there is much to improve in the practical procedures for the use of the tool in environmental assessments. This research project has the overall goal of making the ELP a stakeholder-accepted methodology for LCA-based assessment for the built environment. The overall goal includes two subgoals: (i) a research goal is to find an acceptable compromise in the design of the ELP tool between a natural science and technology based scientific accuracy and a social-science based acceptance of the tool and (ii) an implementation goal is to study and report experience from the use of the tool as developed today. The thesis consists of three papers: (i) the first is a study of two Swedish LCA-based tools for the built environment, which is based on comparative assessments using the ELP and EcoEffect (EE), (ii) the second is based on a questionnaire and interview study, in which we have investigated responses on LCA-based tools for the built environment among stakeholder representatives of Sweden’s building sector, with the purpose to identify barriers and opportunities for increased use of such tools and (iii) the third is based on case studies in HS using the ELP. We have identified the dominant environmental aspects in the ELP and also investigated the accuracy of the results. The study is completed with a development of a simplified version of the ELP, which also is applied in HS. Findings show that despite applying the comparative parts of the ELP and EE on an equal basis (i.e. the object specific data), differences in results were found. The following factors give rise to the differences: (i) differences in material grouping and life expectancy for the construction materials used, (ii) diverse Life Cycle Inventory (LCI) data and (iii) different impact assessment. The required level of knowledge to compare, analyse and evaluate assessments made with the ELP and EE, is relatively high, which creates an educational barrier towards increased tool use. A number of other barriers that could mitigate a fruitful implementation of LCA-based tools in Sweden’s building sector have also been identified. We have found barriers between: (i) the current and the desired environmental work within the sector, (ii) the knowledge of and the use of LCA-based tools and (iii) the developers of the tools and the potential users. Other barriers further identified are especially connected to: (i) data (availability and credibility), (ii) costs, (iii) time, (iv) customer pressure, (v) knowledge and (vi) incentives. We have also identified the following opportunities for increased use of the tools: (i) different design of the tools for different actors and situations, (ii) combine LCA with LCC, (iii) involve environmental assessment in the implementation of the EU Directive on energy performance of buildings, (iv) develop reference values, (v) simplify input-data collection, (vi) improve environmental labelling and (vii) provide incentives. In the development of a simplified ELP we have noticed that the most important aspects contributing to the environmental load at a city district level (50 % of the total amount), covers 91-99 % of the total environmental load. The thesis shows that different simplifications of the ELP-tool are required for different purposes, actors and situations. A simplified version of the ELP, “ELP-light” was developed and applied in HS. In the development of ELP-light, we have used some of the identified opportunities and bridged some of the identified barriers. / QC 20101105
70

LIFE CYCLE ASSESSMENT OF HYDROGEN PRODUCTION FROM CANADIAN BIOMASS USING FORMIC ACID AS AN ENERGY CARRIER FOR TRANS-ATLANTIC ENERGY EXPORT

Tabari, Amir January 2024 (has links)
The importance of Hydrogen (H2) in current global energy systems is undeniable. Moving from the energy systems depending on fossil fuel to energy systems that are carbon-free is a necessity, thus solutions such as hydrogen economy is required. Especially after recent geopolitical challenges in Europe which could make the energy acquisition a crucial problem. Liquid organic hydrogen carriers (LOHC) are applicable pathways for transitioning H2 into energy and to avoid the storage and transportation limitations of gaseous and liquid H2. Formic acid (FA) is an attractive alternative for such purposes due to its minimal level of toxicity and its significant volumetric storage capacity for H2. In this study, a Life cycle assessment (LCA) of the supply chain involving the Trans-Atlantic export of energy from Canada to Germany is conducted using formic acid as a LOHC and OxFA process to convert biomass to formic acid. The environmental impacts of all units and processes involved in this supply chain are examined, and the results are compared against other traditional systems for hydrogen production. A sensitivity analysis was also performed to recognize the crucial contributors and assess the processes and units that impose considerable influence on the overall environmental impact. / Thesis / Master of Applied Science (MASc) / Hydrogen (H2) plays a crucial role in transitioning from fossil fuel-based to carbon-free energy systems, a shift highlighted by recent geopolitical challenges in Europe. Liquid organic hydrogen carriers (LOHC) offer a solution for hydrogen storage and transport issues associated with its gaseous and liquid states. Formic acid (FA) is particularly promising as a LOHC due to its low toxicity and high hydrogen storage capacity. This study conducts a Life Cycle Assessment (LCA) of a supply chain that uses formic acid to export energy from Canada to Germany, involving the OxFA process for converting biomass to formic acid. The environmental impacts of all processes in this supply chain are evaluated and compared with traditional hydrogen production methods. Additionally, a sensitivity analysis identifies key contributors and assesses their impact on the overall environmental footprint.

Page generated in 0.1002 seconds