• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamiques d'imbibition en milieu confiné / Imbibition dynamics in confined media

Levaché, Bertrand 03 March 2014 (has links)
Ce travail de thèse expérimental porte sur les dynamiques d'imbibition en milieu confiné. Cette situation survient lorsqu'un fluide mouillant les parois d'un solide vient déplacer un second fluide non-miscible. La divergence des contraintes visqueuses au niveau de la ligne de contact avec le solide complexifie la description de la forme et de la dynamique d'invasion du ménisque qui ne peut se résumer, même aux échelles macroscopique du confinement solide, à l'avancement d'un front liquide homogène. L'absence de longueur caractéristique intrinsèque aux fluides nécessite de tenir compte des couplages entre écoulement et forme des interfaces à toutes les échelles, depuis le nanomètre (interactions moléculaires) jusqu'à l'échelle du confinement (une centaine de micromètres dans nos expériences). Ce caractère multi-échelle est au centre des travaux effectués durant cette thèse. A l'aide du développement de nouveaux outils microfluidiques, nous étudions quantitativement l'imbibition dans une géométrie de type Hele-Shaw. Une étude à la fois expérimentale et numérique nous permet de mettre en évidence l'existence d'une nouvelle transition d'entrainement. Une étude complète du modèle numérique nous permet ensuite d'unifier ce nouveau mode avec celui reporté jusqu'à présent dans la littérature. Nous nous intéressons aussi à l'imbibition dans des réseaux poreux modèle. Nous identifions alors expérimentalement un nouveau mode d'invasion généralisant l'entrainement obtenu précédemment. Ce scénario est piloté par l'écoulement en film de coin autour des obstacles constituant le poreux. Nous proposons alors un critère géométrique simple pour discriminer les différents modes d'invasions. / This experimental thesis deals with imbibition in confined media. This situation occurs when a fluid which preferentially wets the solid displaces another immiscible fluid. The divergence of the viscous stress at the contact line with the solid complicates the description of both the shape and the invasion dynamic of the meniscus that can no longer be described, even at the macroscopic length scale of the solid confinement, by only the displacement of a homogeneous liquid front. The absence of any intrinsic fluids length scale requires to take into account the coupling between the interface shape and the flow at all scales, from nanometers (molecular interaction) to solid confinement scale (hundred micrometers in our experiments). Multi-scale behavior will be the central point of this thesis. Using new microfluidics tools, we first made a quantitative study of imbibitions in Hele-Shaw geometry. We demonstrate a new class of liquid entrainment transition both experimentally and numerically. In addition, an extensive analysis of our numerical model shows that it consistently describes all scenarios that have been reported so far. We then study imbibitions in model porous media. We demonstrate a new invasion process, where the flow occurs along the corner of the porous? obstacles, that generalizes the previous entrainment. We finally propose a geometric criterion that discriminates between the different invasion scenarios.
2

Modélisation globale de l'alimentation d'une emprise lubrifiée par émulsion : simulation numérique directe et analyse physique des phénomènes

Guillaument, Romain 07 December 2010 (has links)
L'objet de cette thèse est de modéliser et simuler des écoulements diphasique/triphasique à phase non miscibles. L'impact de plusieurs gouttes d' émulsion (eau/huile) sur une plaque mouillante l'huile est simulée. Ainsi, une méthode pour lisser l'interface (SVOF), afin d'obtenir une courbure précise, basée sur une méthode eulérienne de type "Volume Of Fluid" (VOF) spécifique au caractère multiphasique de l' écoulement est développée. Un modèle de ligne triple et un modèle de mouillabilité sont développés pour calculer les forces capillaires. Ces modèles et ces méthodes sont validées partir de données expérimentales puis utilisées pour simuler le Plate-Outet les écoulements macroscopiques au voisinage du cylindre de laminage / The scope of this dissertation is to model and simulate non-miscible multiphase °ows. Theimpact of several emulsion droplet on the wetting steel strip is simulated. So, the method ofsmooth VOF based on Eulerian "Volume Of Fluid" approach which is particulary adapted tointerfacial °ows is developed. The new method SVOF allows to calculate the curvature with abetter precison than other method. A wettability model and a triple line model are developedto calculate the capillary forces. This models and this methods validated on the experimentaldata and used to simulate the Plate-Out and the macroscopic °ows in neighbourhood of coldrolling system.
3

Maîtrise de la dynamique de la ligne triple pendant le séchage, vers des matériaux structurés à effet lotus / Elaboration of multi structural surfaces materials by control of drying mecanism

Vuillemey, Benjamin 12 December 2016 (has links)
Le séchage d’une solution chargée en particules est la solution la plus simple pour couvrir uniformément la surface d’un matériau. Le choix de la solution et ses propriétés physico-chimiques dictent alors le comportement du film obtenu. Le matériau peut ainsi être rendu hydrophobe en appliquant un tapis de molécules qui n’ont aucune affinité avec l’eau. Un moyen d’améliorer encore cette hydrophobie est de modeler la surface pour incorporer une certaine rugosité dans le revêtement. Cette stratégie est adoptée par plusieurs végétaux, dont le plus célèbre est le lotus.L’évaporation de suspensions apparait comme la méthode la plus simple pour parvenir à la structuration de la surface des matériaux. L’exemple le plus éloquent est celui de la goutte de café, où les particules viennent préférentiellement s’agglomérer sur son périmètre, portées par les différents flux résultant du mécanisme de séchage. Cependant, ce procédé d’auto-assemblage des particules sur la ligne triple air-liquide-substrat au cours du séchage, est difficile à appréhender. Ce constat est lié à la synergie entre la rhéologie des suspensions, leur physico-chimie et les aspects de tension inter faciale, qui s’opère au cours du procédé d’évaporation.Le travail proposé ici vise à comprendre et à maitriser le déplacement de la ligne triple pour accroitre le potentiel de cette méthode d’élaboration de revêtements. Nous proposons une méthode qui permet d’agir sur cette ligne triple. A la sortie de notre dispositif, le liquide est soumis à une évaporation libre, si bien que la ligne de contact adopte un mouvement périodique, apparenté à une respiration. Ce phénomène, peut être contrôlé en amplitude et en fréquence. Par la combinaison de paramètres mécaniques propres au procédé et d’autres intrinsèque au fluide, l’expérimentateur est capable de gouverner ce mouvement, ainsi que le profil du ménisque formé.La connaissance des moyens d’actions sur la respiration de la ligne triple est ensuite utilisée pour produire des surfaces périodiques. Ces dernières sont issues du séchage de latex de polymère. Le comportement cyclique de la ligne triple, combiné avec un déplacement contrôlé du substrat, permet de créer des zones préférentielles de dépôt. Les surfaces obtenues présentent un réseau de lignes successives, dont la longueur d’onde se rapporte aux paramètres du procédé. / Solvent evaporation appears as an easy way to deposit a periodic film on any surface. Its resulting structure is directly linked to the particles contained on the suspension and its behaviour with its solid and liquid environment during drying step. The coffee ring effect is the most eloquent example, which is characterized by a preferential agglomeration of the particle in the drop periphery. Such process is difficult to assess: handling the air-liquid-substrate interface movement is a basic need to increase the technical power of that coating method.To investigate the contact line motion during drying, we focus on the meniscus, which comes from a liquid flow between a sealed container and a substrate. Observations of liquid flowing out such disposal show a cyclic movement. Such phenomenon can be compared to a breathing of the contact line. The present work is firstly dedicated to the characterization of that periodic movement. These learnings are then applied to polymer latexes to produce periodic films.Our characterization method is based on meniscus observation and force balance recording. The observed breathing can be tuned in frequency and amplitude, by acting both on physical properties of the solvents, and geometrical settings of the device. Surface tension play a key role in the movement, by acting on the meniscus shape. Geometrical settings appears to affect the evaporation process. On a global scale, the rate is constant but the disposal gap is directly linked to the cycle frequency.Eventually, our disposal is used to coat smooth surface with polymer latexes. The self-organization of particles during the drying process is tried to be controlled by the periodic motion of the contact line. The roughness of the obtained textured coating is expected to be tuned by a combined choice of disposal settings and specific solutions properties.
4

Simulation numérique directe d'écoulements à l'aide d'une méthode de frontière immergée

Noël, Emeline 19 November 2012 (has links) (PDF)
Les travaux menés, depuis plusieurs années, au CORIA ont abouti à la construction d'un outil numérique (ARCHER) permettant la simulation numérique directe d'écoulements diphasiques et notamment l'atomisation d'un jet liquide à haute vitesse. Ce type de simulation permet de capturer les phénomènes d'atomisation au voisinage de l'injecteur difficilement caractérisables par les outils expérimentaux actuels. Ces simulations requièrent des conditions d'injection délicates à évaluer a priori car elles dépendent des caractéristiques de l'écoulement au sein de l'injecteur. Or, certains jets présentent une grande sensibilité à ces conditions d'injection. Dès lors, il est nécessaire de simuler l'écoulement au sein de l'injecteur afin d'appréhender la nature de cette sensibilité. L'utilisation d'un maillage cartésien par le code ARCHER conjuguée à la volonté de simuler le système d'atomisation dans son ensemble ont orienté ces travaux vers l'utilisation d'une méthode de frontière immergée. Ces travaux ont ainsi permis de reproduire des écoulements au sein d'injecteurs de forme quelconque tout en conservant le maillage cartésien d'origine, précieux tant pour l'efficacité du solveur que pour sa précision. Dans un premier temps, l'implantation dans le code ARCHER d'une méthode de frontière immergée a été réalisée et testée sur des configurations de canal et de conduite et de l'écoulement autour d'un cylindre. L'application de cette méthode a porté sur la simulation de l'écoulement au sein d'un injecteur triple disque mono-trou et a notamment permis de caractériser l'origine de l'écoulement secondaire formé dans l'orifice de décharge. Afin d'évoluer vers la construction d'un outil numérique capable de simuler le système d'atomisation dans son ensemble, un couplage entre la méthode de frontière immergée et la méthode Ghost fluid a été nécessaire. La version bi-dimensionnelle développée a été testée sur la relaxation d'une goutte posée sur une paroi. Cette version a permis de simuler des écoulements au sein de canaux à différents rapports de longueur sur diamètre et l'écoulement au sein d'une buse convergente. La simulation simultanée de l'écoulement interne et externe a permis de lier les fluctuations de vitesses des écoulements internes à la création de surface engendrée sur les écoulements externes.
5

Modélisation et simulation à l' échelle du pore de la récupération assistée des hydrocarbures par injection de polyméres / Pore-scale numerical simulation of Oil Recovery by polymer injection

Pinilla Velandia, Johana Lizeth 13 December 2012 (has links)
Ce travail est motivé par la nécessité de mieux comprendre la technique de récupération du pétrole par injection de polymères à l'échelle du pore. On considère deux fluides immiscibles dans un réseau de microcanaux. A cette échelle, le diamètre des canaux est de l'ordre de quelques dizaines de micromètres tandis que la vitesse est de l'ordre du centimètre par seconde. Cela nous permet d'utiliser les équations de Stokes incompressible pour décrire l'écoulement des fluides. Le modèle Olroyd-B est utilisé pour décrire l'écoulement du fluide viscoélastique. Afin d'effectuer des simulations numériques dans une géométrie complexe comme un réseau de microcanaux, une méthode de pénalisation est utilisée. Pour suivre l'interface entre les deux fluides, la méthode Level-Set est employée. Le modèle pour la dynamique de la ligne triple est basé sur les la loi de Cox. Enfin, on présente des résultats de simulations numériques avec des paramètres physiques réalistes. / This work is motivated by the need for better understanding the polymer Enhanced Oil Recovery (EOR) technique at the pore-scale. We consider two phase immiscible fluids in a microchannel network. In microfluidics, the diameter of the channels is of the order of a few tens of micrometers and the flow velocity is of the order of one centimeter per second. The incompressible Stokes equations are used to describe the fluid flow. The Oldroyd-B rheological model is used to capture the viscoelastic behavior. In order to perform numerical simulations in a complex geometry like a microchannel network, a penalization method is implemented. To follow the interface between the two fluids, the Level-Set method is employed. The dynamic contact line model used in this work is based on the Cox law. Finally, we perform simulations with realistic parameters.
6

Simulation numérique directe d’écoulements à l’aide d’une méthode de frontière immergée / Direct numerical simulation flows thanks to an immersed boundary method

Noël, Emeline 19 November 2012 (has links)
Les travaux menés, depuis plusieurs années, au CORIA ont abouti à la construction d’un outil numérique (ARCHER) permettant la simulation numérique directe d’écoulements diphasiques et notamment l’atomisation d’un jet liquide à haute vitesse. Ce type de simulation permet de capturer les phénomènes d’atomisation au voisinage de l’injecteur difficilement caractérisables par les outils expérimentaux actuels. Ces simulations requièrent des conditions d’injection délicates à évaluer a priori car elles dépendent des caractéristiques de l’écoulement au sein de l’injecteur. Or, certains jets présentent une grande sensibilité à ces conditions d’injection. Dès lors, il est nécessaire de simuler l’écoulement au sein de l’injecteur afin d’appréhender la nature de cette sensibilité. L’utilisation d’un maillage cartésien par le code ARCHER conjuguée à la volonté de simuler le système d’atomisation dans son ensemble ont orienté ces travaux vers l’utilisation d’une méthode de frontière immergée. Ces travaux ont ainsi permis de reproduire des écoulements au sein d’injecteurs de forme quelconque tout en conservant le maillage cartésien d’origine, précieux tant pour l’efficacité du solveur que pour sa précision. Dans un premier temps, l’implantation dans le code ARCHER d’une méthode de frontière immergée a été réalisée et testée sur des configurations de canal et de conduite et de l’écoulement autour d’un cylindre. L’application de cette méthode a porté sur la simulation de l’écoulement au sein d’un injecteur triple disque mono-trou et a notamment permis de caractériser l’origine de l’écoulement secondaire formé dans l’orifice de décharge. Afin d’évoluer vers la construction d’un outil numérique capable de simuler le système d’atomisation dans son ensemble, un couplage entre la méthode de frontière immergée et la méthode Ghost fluid a été nécessaire. La version bi-dimensionnelle développée a été testée sur la relaxation d’une goutte posée sur une paroi. Cette version a permis de simuler des écoulements au sein de canaux à différents rapports de longueur sur diamètre et l’écoulement au sein d’une buse convergente. La simulation simultanée de l’écoulement interne et externe a permis de lier les fluctuations de vitesses des écoulements internes à la création de surface engendrée sur les écoulements externes. / Since several years, the research conducted at the CORIA laboratory led to the development of a numerical tool (ARCHER) alllowing direct numerical simulations of two phase flows. In particular, the simulations of high speed liquid jet primary break-up have been strongly investigated. These simulations are able to capture primary break-up phenomena near the nozzle exit where experimental characterisations are difficult to conduct. These simulations need injection conditions tricky to gauge a priori, since they depend on the flow characteristics inside the nozzle. Moreover, some jets are highly sensitive to these injection conditions. Therefore, it becomes necessary to simulate the flow inside the nozzle to better understand this sensitive nature. The objective to simulate the whole atomization system guided the present work dedicated to the use of an immersed boundary method (IBM). Such an approach allows reproducing flows inside nozzles of arbitrary shape while keeping the original cartesian mesh valuable for numerical efficiency and accuracy. As a first step, the implementation of an IBM in ARCHER was carried out and tested on channels, pipes and uniform flows past a circular cylinder. An industrial application focused on the flow inside a triple disk compound injector. This work led to a refined description of the secondary flow origin in the discharge hole. In order to move towards the design of a numerical tool able to simulate the whole injection system, a coupling between IBM and the Ghost Fluid Method (GFM) has been found necessary. This allows accounting for two phase flows inside the nozzle where the dynamics of the triple line has to be considered. The bidimensional developments have been tested on drops released on walls. This version enabled to simulate flows inside channels with different ratios of length over diameter and the flow inside a convergent nozzle. The simultaneous computation of flows inside and outside nozzle has enabled to link the velocity fluctuations of internals flows to the surface setting-up gene-rated on external flows.

Page generated in 0.0704 seconds