Spelling suggestions: "subject:"lignin."" "subject:"signin.""
511 |
On the bleachability of alkaline pulps. The influence of residual lignin structure.Wafa Al-Dajani, Waleed January 2001 (has links)
No description available.
|
512 |
Historical Reconstruction of Terrestrial Organic Matter Inputs to Fiordland, NZ Over the Last ~500 YearsSmith, Richard 2011 August 1900 (has links)
Fjords contain a significant quantity of sediments deposited in coastal zones over the last ~100,000 years. Studies of Northern Hemisphere fjords have shown that a large part of the high concentration of sedimentary organic matter (OMsed) is terrestrial in origin (OMterr), composed of a modern detrital fraction and an old mineral-associated fraction (OMfossil). These results suggest that fjords are disproportionately responsible, on a per area basis, for the burial of organic matter in coastal zones. This study, after a rigorous examination of CuO and GDGT biomarker methods used to quantify terrestrial organic matter in coastal environments, demonstrated this hypothesis in a Southern Hemisphere fjord system, Fiordland, New Zealand.
CuO analysis of Doubtful Sound surface sediments indicated a large contribution of vascular plant material to fjord sediments. The BIT Index correlated strongly with both delta13C and C/N values in Doubtful Sound surface sediments, indicated that it may accurately trace the relative proportions of marine and soil organic matter (OMsoil) in Fiordland. However, a detailed analysis of the conversion of the BIT Index to quantitative estimates of terrestrial (soil) organic matter revealed that these values are overestimates. Reconstructions of the BIT Index and tetraethers in cores from two locations on the Louisiana continental shelf demonstrated the influence of the crenarchaeol term on BIT Index-based terrestrial organic matter estimates. The differences in the applicability of the BIT Index to these two coastal environments was most likely due to large seasonal changes in productivity on the Louisiana Continental Shelf as well as higher marine relative to terrestrial inputs.
Six cores were reconstructed for contributions from marine OM (OMmar), OMfossil, and OMterrestrial representing the last ~500 years of sedimentation. Spatial variations were larger than temporal variations, owing to negligible development and deforestation in the region. OMterr was the dominant fraction in all but one core, and OMfossil inputs were significant. Additionally, source reconstructions from a variety of biomarkers indicated that Landslides deliver large volumes of detrital organic matter to fjord sediments. These results confirm that fjords bury quantitatively significant volumes of organic carbon on a global scale.
|
513 |
Biochemical Control Aspects in Lignin PolymerizationHolmgren, Anders January 2008 (has links)
Lignins are produced by all vascular plants and they represent one of the most abundant groups of biopolymers in nature. Lignin chemistry research, which has been of great importance for the progress of pulping technologies, has been plagued by the difficulties of its isolation and characterization. The pioneering work of Karl Freudenberg in the 1950’s with synthetic models of lignin paved the way for a detailed structural characterization of many lignin substructures. His work with the so-called “synthetic lignins” or dehydrogenative polymers (DHP) also laid a foundation for understanding how different lignin substructures are formed, reinforcing the already existing theory of lignin polymerization. However, subsequent structural characterizations of DHPs and lignins have repeatedly put this theory to the test. In the past decade, even a new radically different hypothesis for lignin polymerization has emerged and is sustained by a few researchers in the field. In this work, DHPs were produced from phenolic monomers, mostly coniferyl alcohol, a common lignin monomer, in a variety of reaction conditions. This was done in order to establish how different chemical factors, potentially active in the plant cell wall during lignin polymerization, influence the polymer’s final properties. In the presence of nicotine amide adenine dinucleotide (NADH), a quinone methide model, which is an intermediate formed during lignin polymerization, was effectively reduced. An equivalent reduced structure was produced during DHP synthesis in the presence of NADH. These studies showed that reduction might take place during oxidative polymerization, possibly explaining how reduced lignin structures are formed in the plant cell wall. Another reductive agent, ascorbic acid, was also tested during synthesis of DHPs. It displayed a totally different effect than NADH, probably due to its anti-oxidant nature, by altering the final amounts of certain inter-unit substructures, in favour of β-O-4′ structures, which are so prominent in natural lignins. Furthermore, the new suggested model for lignin polymerization, stating that lignin itself possesses the ability for template replication, was tested by synthesizing DHPs in the presence of a simple β-β′ substructure model. The DHPs produced the same amounts of β-β′ substructures as a control synthesis without the model structure, indicating that no replication had occurred. Finally, the role of the monolignol γ-carbon oxidation state in lignin polymerization, was studied. Hypothetically, lignin- like polymers could be produced by the plant, using monolignol biosynthetic precursors which exhibit γ-carbonyl groups instead of an alcohol group, like the common lignin monomer. Synthetic lignins produced with ferulic acid, coniferaldehyde and the normal monolignol, coniferyl alcohol, displayed important differences in chemical and physical properties. Both the ferulic acid and coniferaldehyde polymers exhibited almost no saturated inter-unit substructures and very few cyclic structures, both of which are very common in coniferyl alcohol dehydrogenative polymers and natural lignins. This could have significant implications for the formation of an important type of lignin carbohydrate complexes (LCC). Also the hydrophobicity of the alcohol-type polymer was lower than the other two. The biological implications of all these findings are discussed and some suggestions are made to explain how all these factors might affect lignin polymerization and structure in nature. / QC 20100811
|
514 |
Hydrodeoxygenation of lignin model compounds via thermal catalytic reactionsRoy, Michael Joseph 25 July 2012 (has links)
Lignin is an important component of biomass accounting for up to 30% by weight but up to 40% of the total energy content of the plant. As the push towards alternative fuels develops, more and more amounts of lignin will be gathered and used predominately as low grade boiler fuel to run primary processes. We argue there is usefulness in the conversion of lignin into value added specialty chemicals and fuels. In this work, a new approach for hydrodeoxygenation of lignin model compounds using platinum as the catalyst and organic solvent as the reaction medium was conducted, and the results were compared with those obtained using water as the reaction medium. It is shown that the organic solvent, with its increased hydrogen solubility, is able to hydrogenate the model compound with the same effect at lower temperature, hydrogen pressure, and time.
|
515 |
Direct and multistep conversion of lignin to biofuelsKosa, Matyas 30 August 2012 (has links)
Lignin is the second most abundant biopolymer on Earth, right after cellulose, with a highly complex chemical structure that hinders its possible utilizations. Applications that utilize lignin in different manners are of great interest, due to its inexpensive nature. Present work is based on the notion of converting lignin into different biofuels that have only a few, however important, advantages over lignin as a direct energy source. The first part of current work (pyrolysis) details the analysis of lignin from a relatively new lignin isolation process called LignoBoost. It is obtained from the pulp and paper industry via CO₂ precipitation of lignin from black liquor (BL). This method is environment friendly, results lignin with minimal oxidation, eliminates the main bottleneck of the Kraft cycle (recovery boiler capacity), and yet leaves enough lignin in the process stream to recover pulping chemicals and generate energy for the pulp mill. Pyrolysis had converted this lignin into bio-oil with high aliphatic content and low oxidation level, all advantageous for application as liquid fuel. The second part of this dissertation proved the theory that lignin degradation and lipid accumulation metabolic pathways can be interconnected. Gram-positive Rhodococcus opacus species, DSM 1069 and PD630 were used to evaluate lignin to lipid bioconversion, starting with ethanol organosolv and Kraft lignin. This conversion is a first step in a multistep process towards biodiesel production, which includes transesterification, after lipids are extracted from the cells. Results clearly indicated that the lignin to lipid bioconversion pathway is viable, by cells gaining up to 4 % of their weight in lipids, while growing solely on lignin as a carbon and energy source.
|
516 |
Optimizing Enzymatic Preparations of Mechanical Pulp Through the Characterization of New Laccases and Non-productive Interactions Between Enzymes and LigninWaung, Debbie 30 December 2010 (has links)
The overall objective of this research is to identify and optimize enzymatic applications that have the potential to degrade middle lamella lignin, so as to decrease economic and environmental costs associated with the production of mechanical pulp. Non-productive binding of enzyme to lignin in lignocellulosic biomass reduces enzyme availability and efficiency. The elucidation of non-productive binding behavior between hydrolytic enzymes and lignocellulosic substrates could significantly improve the efficiency of corresponding industrial bioprocesses. The first part of this report presents a study that characterizes non-catalytic interactions between enzymes and fibre. The second part of this report presents the biochemical and mutational studies of a novel, small laccase SCO6712 from Streptomyces coelicolor. The findings from this research support the design, control, and optimization of enzymatic treatments of lignocellulosic fibres in the pulp and biofuel industries.
|
517 |
Enzymes and Feedstocks for Sustainable Biomass UtilisationMottiar, Yaseen 15 August 2012 (has links)
Modern biorefineries provide a framework for the sustainable conversion of biomass to biofuels and biochemicals. In light of the recalcitrance of lignin in woody feedstocks, the native shrub eastern leatherwood is proposed as a model hypolignified species. Xylem tissue of this low-lignin plant contained syringyl-rich lignin that was more easily hydrolysed and did not appear to be localised in the middle lamellae. Also, leatherwood cellulose was less crystalline and the xylan was highly acetylated. While viable low-lignin plants will enable the sustainable utilisation of woody feedstocks, high-value bioproducts are needed to economise future biorefineries. The carbohydrate oxidoreductases galactose oxidase and glucooligosaccharide oxidase were studied for use in the oxidation and derivatisation of plant-derived polysaccharides for the production of such high-value bioproducts. The carbohydrate-binding module of galactose oxidase was necessary for recombinant protein production. Also, a mutant library of glucooligosaccharide oxidase variants was produced to generate enzymes with novel activity.
|
518 |
Optimizing Enzymatic Preparations of Mechanical Pulp Through the Characterization of New Laccases and Non-productive Interactions Between Enzymes and LigninWaung, Debbie 30 December 2010 (has links)
The overall objective of this research is to identify and optimize enzymatic applications that have the potential to degrade middle lamella lignin, so as to decrease economic and environmental costs associated with the production of mechanical pulp. Non-productive binding of enzyme to lignin in lignocellulosic biomass reduces enzyme availability and efficiency. The elucidation of non-productive binding behavior between hydrolytic enzymes and lignocellulosic substrates could significantly improve the efficiency of corresponding industrial bioprocesses. The first part of this report presents a study that characterizes non-catalytic interactions between enzymes and fibre. The second part of this report presents the biochemical and mutational studies of a novel, small laccase SCO6712 from Streptomyces coelicolor. The findings from this research support the design, control, and optimization of enzymatic treatments of lignocellulosic fibres in the pulp and biofuel industries.
|
519 |
Enzymes and Feedstocks for Sustainable Biomass UtilisationMottiar, Yaseen 15 August 2012 (has links)
Modern biorefineries provide a framework for the sustainable conversion of biomass to biofuels and biochemicals. In light of the recalcitrance of lignin in woody feedstocks, the native shrub eastern leatherwood is proposed as a model hypolignified species. Xylem tissue of this low-lignin plant contained syringyl-rich lignin that was more easily hydrolysed and did not appear to be localised in the middle lamellae. Also, leatherwood cellulose was less crystalline and the xylan was highly acetylated. While viable low-lignin plants will enable the sustainable utilisation of woody feedstocks, high-value bioproducts are needed to economise future biorefineries. The carbohydrate oxidoreductases galactose oxidase and glucooligosaccharide oxidase were studied for use in the oxidation and derivatisation of plant-derived polysaccharides for the production of such high-value bioproducts. The carbohydrate-binding module of galactose oxidase was necessary for recombinant protein production. Also, a mutant library of glucooligosaccharide oxidase variants was produced to generate enzymes with novel activity.
|
520 |
Elucidation of secondary cell wall secretion mechanisms of Arabidopsis thaliana, Poplar (Populus deltoides x P. trichocarpa) and Pine (Pinus contorta)Kaneda, Minako 05 1900 (has links)
Lignin is a key component of plant secondary cell walls, providing strength to the plant and allowing water transport. Lignin is a polymer of monolignols that are synthesized in the cell and transported into the cellulose rich cell wall. The primary goal of this thesis is to understand the mechanism(s) of monolignol deposition during xylogenesis. The currently accepted theory is that monolignols are exported by Golgi-mediated vesicle delivery to the secondary cell wall. When this theory was re-examined using cryofixed developing pine, quantitative autoradiography showed that monolignols did not accumulate in Golgi but were rapidly translocated from cytosol to cell wall. This suggests alternative mechanisms, such as membrane transporters, work in monolignol export. ATP binding cassette (ABC) transporters were chosen because they transport other secondary metabolites and some ABC transporter encoding genes are highly expressed in lignifying cells. Four candidate ABC transporters were selected in Arabidopsis (ABCB11, ABCB14, ABCB15 from the ABCB/MDR subfamily and ABCG33 from the ABCG/PDR subfamily) and shown to have overlapping, high vasculature expression patterns. Mutants with T-DNA insertions in single ABC transporter genes had no change in lignification of inflorescence stems. However, a reduced polar auxin transport phenotype was detected in mutants of ABCB11, ABCB14 and ABCB15. An additional approach was the use of inhibitors of ABC transporters. A new assay, which was developed to quantify lignification in primary xylem of Arabidopsis roots, demonstrated that ABC inhibitors did not change lignin deposition.
Monolignols are exported and polymerized in the polysaccharide matrix of the cell wall, which includes hemicelluloses that may organize monolignols during polymerization. Since diverse lignified cell types are enriched in either G- or S-lignin, I hypothesized that this pattern could reflect different hemicellulose distributions, which was examined using antibody labeling of xylans or mannans in hybrid poplar xylem. While xylans were generally distributed in all secondary cell walls, mannans were enriched in fibers but not in the ray and vessel walls. In summary, during secondary cell wall deposition, monolignols are exported by unknown transporter(s) rather than Golgi vesicles. In developing poplar wood, the monolignols are deposited into diverse hemicellulose domains in different cell types.
|
Page generated in 0.0348 seconds