Spelling suggestions: "subject:"limit heorem"" "subject:"limit atheorem""
21 |
Cohomologia e propriedades estocásticas de transformações expansoras e observáveis lipschitzianos / Cohomology and stochastics properties of expanding maps and lipschitzians observablesLima, Amanda de 20 March 2007 (has links)
Provamos o Teorema do Limite Central para transformações expansoras por pedaços em um intervalo e observáveis com variação limitada. Utilizamos a abordagem desenvolvida por R. Rousseau-Egele, como apresentada por A. Broise. O método da demonstração se baseia no estudo de pertubações do operador de transferência de Ruelle-Perron-Frobenius. Uma contribuição original é dada no último capítulo, onde provamos que, para transformações markovianas expansoras, todos os observáveis não constantes, contínuos e com variação limitada não são infinitamente cohomólogos à zero, generalizando um resultado de Bamón, Rivera-Letelier, Urzúa and Kiwi para observáveis lipschitzianos e transformações \'z POT. n\' . A demonstração se baseia na teoria dos operadores de Ruelle-Perron-Frobenius desenvolvida nos capítulos anteriores / We prove the Central Limit Theorem for piecewise expanding interval transformations and observables with bounded variation, using the approach of J.Rousseau-Egele as described by A. Broise. This approach makes use of pertubations of the so-called Ruelle-Perron-Frobenius transfer operator. An original contribution is given in the last chapter, where we prove that for Markovian expanding interval maps all observables which are non constant, continuous and have bounded variation are not infinitely cohomologous with zero, generalizing a result by Bamón, Rivera-Letelier, Urzúa and Kiwi for Lipschitzian observables and the transformations \'z POT. n\' . Our demosntration uses the theory of Ruelle-Perron-Frobenius operators developed in the previos chapters
|
22 |
Periodic Little's lawZhang, Xiaopei January 2019 (has links)
In this dissertation, we develop the theory of the periodic Little's law (PLL) as well as discussing one of its applications. As extensions of the famous Little's law, the PLL applies to the queueing systems where the underlying processes are strictly or asymptotically periodic. We give a sample-path version, a steady-state stochastic version and a central-limit-theorem version of the PLL in the first part. We also discuss closely related issues such as sufficient conditions for the central-limit-theorem version of the PLL and the weak convergence in countably infinite dimensional vector space which is unconventional in queueing theory.
The PLL provides a way to estimate the occupancy level indirectly. We show how to construct a real-time predictor for the occupancy level inspired by the PLL as an example of its applications, which has better forecasting performance than the direct estimators.
|
23 |
Edgeworthův rozvoj / Edgeworth expansionDzurilla, Matúš January 2019 (has links)
This thesis is focused around Edgeworth's expansion for approximation of distribution for parameter estimation. Aim of the thesis is to introduce term Edgeworth's expansion, its assumptions and terminology associated with it. Afterwards demonstrate process of deducting first term of Edgeworth's expansion. In the end demonstrate this deduction on examples and compare it with different approximations (mainly central limit theorem), and show strong and weak points of Edgeworth's expansion.
|
24 |
Renormalization and central limit theorem for critical dynamical systems with weak external random noiseDíaz Espinosa, Oliver Rodolfo, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
|
25 |
Computation of moment generating and characteristic functions with MathematicaShiao, Z-C 24 July 2003 (has links)
Mathematica is an extremely powerful and flexible symbolic
computer algebra system that enables the user to deal with
complicated algebraic tasks. It can also easily handle the
numerical and graphical sides. One such task is the derivation of
moment generating functions (MGF) and characteristic functions
(CF), demonstrably effective tools to characterize a distribution.
In this paper, we define some rules in Mathematica to help in
computing the MGF and CF for linear combination of independent
random variables. These commands utilizes pattern-matching code
that enhances Mathematica's ability to simplify expressions
involving the product of algebraic terms. This enhancement to
Mathematica's functionality can be of particular benefit for MGF
and CF. Applications of these rules to determine mean, variance
and distribution are illustrated for various independent random
variables.
|
26 |
Renormalization and central limit theorem for critical dynamical systems with weak external random noiseDíaz Espinosa, Oliver Rodolfo 28 August 2008 (has links)
Not available / text
|
27 |
Asimptotiniai skleidiniai didžiųjų nuokrypių zonose / Asymptotic expansions in the large deviation zonesDeltuvienė, Dovilė 11 January 2005 (has links)
The novelty and originality of the work consists in the fact that in order to obtain asymptotic expansions with optimal values of the remainder terms in the zone of large deviations, along with the cumulant method the classical method of characteristic functions has to be used. In addition, when solving the problems stated in the work, other than the well known results in the problems of limit theorems of the probability theory and mathematical statistics, we have to estimate constants. Technically it is frequently rather a complicated task. The results obtained in the work have good opportunities to be applied in probability theory, mathematical statistics, econometric, etc. That is illustrated in the last section of the work in which theorems of large deviations are proved in the summation of weighted random variables with weights as well as discounted limit theorems.
|
28 |
Ribinė teorema su svoriu Hurvico dzeta funkcijai su algebriniu iracionaliuoju parametru / Limit theorem with weight for the Hurwitz zeta-function with an algebraic irrational parameterVaičiūtė, Aušra 30 July 2013 (has links)
Darbe įrodyta, kad Hurvico dzeta funkcijai su algebriniu parametru yra teisinga ribinė teorema su svoriu kompleksinėje plokštumoje. Pagrindinis šio darbo rezultatas yra suformuluotas teorema. / Proof of limit theorem with weight for the Hurwitz zeta-function with an algebraic irrational parameter. The rezult formulated by theorem.
|
29 |
Ribinė teorema Rymano dzeta funkcijos Melino transformacijai / A limit theorem for the Mellin transform of the Riemann zeta-functionRemeikaitė, Solveiga 02 August 2011 (has links)
Darbe pateikta funkcijų tyrimo apžvalga, svarbiausi žinomi rezultatai, suformuluota problema. Pagrindinė ribinė teorema įrodoma, taikant tikimybinius metodus, analizinių funkcijų savybes, aproksimavimo absoliučiai konvertuojančiu integralu principą. / The main limit theorem is proved using probabilistic methods, the analytical functions of the properties.
|
30 |
Exploring functional asymptotic confidence intervals for a population meanTuzov, Ekaterina 10 April 2014 (has links)
We take a Student process that is based on independent copies of a random variable X and has trajectories in the function space D[0,1]. As a consequence of a functional central limit theorem for this process, with X in the domain of attraction of the normal law, we consider convergence in distribution of several functionals of this process and derive respective asymptotic confidence intervals for the mean of X. We explore the expected lengths and finite-sample coverage probabilities of these confidence intervals and the one obtained from the asymptotic normality of the Student t-statistic, thus concluding some alternatives to the latter confidence interval that are shorter and/or have at least as high coverage probabilities.
|
Page generated in 0.0472 seconds