• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Line Detection and Lane Following for an Autonomous Mobile Robot

Bacha, Andrew Reed 30 June 2005 (has links)
The Autonomous Challenge component of the Intelligent Ground Vehicle Competition (IGVC) requires robots to autonomously navigate a complex obstacle course. The roadway-type course is bounded by solid and broken white and yellow lines. Along the course, the vehicle encounters obstacles, painted potholes, a ramp and a sand pit. The success of the robot is usually determined by the software controlling it. Johnny-5 was one of three vehicles entered in the 2004 competition by Virginia Tech. This paper presents the vision processing software created for Johnny-5. Using a single digital camera, the software must find the lines painted in the grass, and determine which direction the robot should move. The outdoor environment can make this task difficult, as the software must cope with changes in both lighting and grass appearance. The vision software on Johnny-5 starts by applying a brightest pixel threshold to reduce the image to points most likely to be part of a line. A Hough Transform is used to find the most dominant lines in the image and classify the orientation and quality of the lines. Once the lines have been extracted, the software applies a set of behavioral rules to the line information and passes a suggested heading to the obstacle avoidance software. The effectiveness of this behavior-based approach was demonstrated in many successful tests culminating with a first place finish in the Autonomous Challenge event and the $10,000 overall grand prize in the 2004 IGVC. / Master of Science
2

Recognition of off-line handwritten cursive text

Abuhaiba, Ibrahim S. I. January 1996 (has links)
The author presents novel algorithms to design unconstrained handwriting recognition systems organized in three parts: In Part One, novel algorithms are presented for processing of Arabic text prior to recognition. Algorithms are described to convert a thinned image of a stroke to a straight line approximation. Novel heuristic algorithms and novel theorems are presented to determine start and end vertices of an off-line image of a stroke. A straight line approximation of an off-line stroke is converted to a one-dimensional representation by a novel algorithm which aims to recover the original sequence of writing. The resulting ordering of the stroke segments is a suitable preprocessed representation for subsequent handwriting recognition algorithms as it helps to segment the stroke. The algorithm was tested against one data set of isolated handwritten characters and another data set of cursive handwriting, each provided by 20 subjects, and has been 91.9% and 91.8% successful for these two data sets, respectively. In Part Two, an entirely novel fuzzy set-sequential machine character recognition system is presented. Fuzzy sequential machines are defined to work as recognizers of handwritten strokes. An algorithm to obtain a deterministic fuzzy sequential machine from a stroke representation, that is capable of recognizing that stroke and its variants, is presented. An algorithm is developed to merge two fuzzy machines into one machine. The learning algorithm is a combination of many described algorithms. The system was tested against isolated handwritten characters provided by 20 subjects resulting in 95.8% recognition rate which is encouraging and shows that the system is highly flexible in dealing with shape and size variations. In Part Three, also an entirely novel text recognition system, capable of recognizing off-line handwritten Arabic cursive text having a high variability is presented. This system is an extension of the above recognition system. Tokens are extracted from a onedimensional representation of a stroke. Fuzzy sequential machines are defined to work as recognizers of tokens. It is shown how to obtain a deterministic fuzzy sequential machine from a token representation that is capable'of recognizing that token and its variants. An algorithm for token learning is presented. The tokens of a stroke are re-combined to meaningful strings of tokens. Algorithms to recognize and learn token strings are described. The. recognition stage uses algorithms of the learning stage. The process of extracting the best set of basic shapes which represent the best set of token strings that constitute an unknown stroke is described. A method is developed to extract lines from pages of handwritten text, arrange main strokes of extracted lines in the same order as they were written, and present secondary strokes to main strokes. Presented secondary strokes are combined with basic shapes to obtain the final characters by formulating and solving assignment problems for this purpose. Some secondary strokes which remain unassigned are individually manipulated. The system was tested against the handwritings of 20 subjects yielding overall subword and character recognition rates of 55.4% and 51.1%, respectively.
3

Using Color and Shape Analysis for Boundary Line Extraction in Autonomous Vehicle Applications

Gopinath, Sudhir 15 September 2003 (has links)
Autonomous vehicles are the subject of intense research because they are a safe and convenient alternative to present-day vehicles. Human drivers base their navigational decisions primarily on visual information and researchers have been attempting to use computers to do the same. The current challenge in using computer vision lies not in the collection or transmission of visual data, but in the perception of visual data to extract from it useful information. The focus of this thesis is on the use of computer vision to navigate an autonomous vehicle that will participate in the Intelligent Ground Vehicle Competition (IGVC.) This document starts with a description of the IGVC and the software design of an autonomous vehicle. This thesis then focuses on the weakest link in the system - the computer vision module. Vehicles at the IGVC are expected to autonomously navigate an obstacle course. Competing vehicles need to recognize and stay between lines painted on grass or pavement. The research presented in this document describes two methods used for boundary line extraction: color-based object extraction, and shape analysis for line recognition. This is the first time a combination of these methods is being applied to the problem of line recognition in the context of the IGVC. The most significant contribution of this work is a method for extracting lines in a binary image even when the line is attached to a shape that is not a line. Novel methods have been used to simplify camera calibration, and for perspective correction of the image. The results give promise of vastly improved autonomous vehicle performance. / Master of Science
4

利用生理感測資料之線上情緒辨識系統 / On-line Emotion Recognition System by Physiological Signals

陳建家, Chen, Jian Jia Unknown Date (has links)
貼心的智慧型生活環境,必須能在不同的情緒狀態提供適當服務,因此我們希望能開發出一個情緒辨識系統,透過對於形於外的生理感測資料的變化來觀察形於內的情緒狀態。 首先我們採用國際情緒圖庫系統(IAPS: International Affective Picture System) 及維度式分析方法,透過心理實驗的操弄,收集了20位的受測者生理數值與主觀評定情緒的強度與正負向。我們提出了一個情緒辨識學習演算法,經由交叉驗證訓練出每個情緒的特徵,並藉由即時測試資料來修正情緒特徵的個人化,經由學習趨勢的評估,準確率有明顯提升。其次,我們更進一步引用了維度式與類別式情緒的轉換概念來驗證受測者主觀評定的結果。相較於相關研究實驗結果,我們在維度式上的強度與正負向辨識率有較高的表現,在類別式上的驗證我們也達到明顯區分效果。 更重要的是,我們所實作出的系統,是搭載了無線生理感測器,使用時更具行動性,而且可即時反映情緒,提供線上智慧型服務。 / A living smart environment should be able to provide thoughtful services by considering different states of emotions. The goal of our research is to develop an emotion recognition system which can detect the internal emotion states from external varieties of physiological data. First we applied the dimensional analysis approach and adopted IAPS (International Affective Picture System) to manipulate psychological experiments. We collected physiological data and subjective ratings for arousal and valence from 20 subjects. We proposed an emotion recognition learning algorithm. It would extract each pattern of emotions from cross validation training and can further learn adaptively by feeding personalized testing data. We measured the learning trend of each subject. The recognition rate reveals incremental enhancement. Furthermore, we adopted a dimensional to discrete emotion transforming concept for validating the subjective rating. Compared to the experiment results of related works, our system outperforms both in dimensional and discrete analyses. Most importantly, the system is implemented based on wireless physiological sensors for mobile usage. This system can reflect the image of emotion states in order to provide on-line smart services.
5

Development and Evaluation of a Road Marking Recognition Algorithm implemented on Neuromorphic Hardware / Utveckling och utvärdering av en algoritm för att läsa av vägbanan, som implementeras på neuromorfisk hårdvara

Bou Betran, Santiago January 2022 (has links)
Driving is one of the most common and preferred forms of transport used in our actual society. However, according to studies, it is also one of the most dangerous. One solution to increase safety on the road is applying technology to automate and prevent avoidable human errors. Nevertheless, despite the efforts to obtain reliable systems, we have yet to find a reliable and safe enough solution for solving autonomous driving. One of the reasons is that many drives are done in conditions far from the ideal, with variable lighting conditions and fast-paced, unpredictable environments. This project develops and evaluates an algorithm that takes the input of dynamic vision sensors (DVS) and runs on neuromorphic spiking neural networks (SNN) to obtain a robust road lane tracking system. We present quantitative and qualitative metrics that evaluate the performance of lane recognition in low light conditions against conventional algorithms. This project is motivated by the main advantages of neuromorphic vision sensors: recognizing a high dynamic range and allowing a high-speed image capture. Another improvement of this system is the computational speed and power efficiency that characterize neuromorphic hardware based on spiking neural networks. The results obtained show a similar accuracy of this new algorithm compared to previous implementations on conventional hardware platforms. Most importantly, it accomplishes the proposed task with lower latency and computing power requirements than previous algorithms. / Att köra bil är ett av de vanligaste och mest populära transportsätten i vårt samhälle. Enligt forskningen är det också ett av de farligaste. En lösning för att öka säkerheten på vägarna är att med teknikens hjälp automatisera bilkörningen och på så sätt förebygga misstag som beror på den mänskliga faktorn. Trots ansträngningarna för att få fram tillförlitliga system har man dock ännu inte hittat en tillräckligt tillförlitlig och säker lösning för självkörande bilar. En av orsakerna till det är att många körningar sker under förhållanden som är långt ifrån idealiska, med varierande ljusförhållanden och oförutsägbara miljöer i höga hastigheter. I det här projektet utvecklar och utvärderar vi en algoritm som tar emot indata från dynamiska synsensorer (Dynamic Vision Sensors, DVS) och kör datan på neuromorfiska pulserande neuronnät (Spiking Neural Networks, SNN) för att skapa ett robust system för att läsa av vägbanan. Vi presenterar en kvantitativ och kvalitativ utvärdering av hur väl systemet läser av körbanans linjer i svagt ljus, och jämför därefter resultaten med dem för tidigare algoritmer. Detta projekt motiveras av de viktigaste fördelarna med neuromorfiska synsensorer: brett dynamiskt omfång och hög bildtagningshastighet. En annan fördel hos detta system är den korta beräkningstiden och den energieffektivitet som kännetecknar neuromorfisk hårdvara baserad på pulserande neuronnät. De resultat som erhållits visar att den nya algoritmen har en liknande noggrannhet som tidigare algoritmer på traditionella hårdvaruplattformar. I jämförelse med den traditionella tekniken, utför algoritmen i den föreliggande studien sin uppgift med kortare latenstid och lägre krav på processorkraft. / La conducción es una de las formas de transporte más comunes y preferidas en la actualidad. Sin embargo, diferentes estudios muestran que también es una de las más peligrosas. Una solución para aumentar la seguridad en la carretera es aplicar la tecnología para automatizar y prevenir los evitables errores humanos. No obstante, a pesar de los esfuerzos por conseguir sistemas fiables, todavía no hemos encontrado una solución suficientemente fiable y segura para resolver este reto. Una de las razones es el entorno de la conducción, en situaciones que distan mucho de las ideales, con condiciones de iluminación variables y entornos rápidos e imprevisibles. Este proyecto desarrolla y evalúa un algoritmo que toma la entrada de sensores de visión dinámicos (DVS) y ejecuta su computación en redes neuronales neuromórficas (SNN) para obtener un sistema robusto de seguimiento de carriles en carretera. Presentamos métricas cuantitativas y cualitativas que evalúan el rendimiento del reconocimiento de carriles en condiciones de poca luz, frente a algoritmos convencionales. Este proyecto está motivado por la validación de las ventajas de los sensores de visión neuromórficos: el reconocimiento de un alto rango dinámico y la captura de imágenes de alta velocidad. Otra de las mejoras que se espera de este sistema es la velocidad de procesamiento y la eficiencia energética que caracterizan al hardware neuromórfico basado en redes neuronales de impulsos. Los resultados obtenidos muestran una precisión similar entre el nuevo algoritmo en comparación con implementaciones anteriores en plataformas convencionales. Y lo que es más importante, realiza la tarea propuesta con menor latencia y requisitos de potencia de cálculo.

Page generated in 0.0674 seconds