• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximation Spaces in the Numerical Analysis of Cauchy Singular Integral Equations

Luther, Uwe 01 August 2005 (has links) (PDF)
The paper is devoted to the foundation of approximation methods for integral equations of the form (aI+SbI+K)f=g, where S is the Cauchy singular integral operator on (-1,1) and K is a weakly singular integral operator. Here a,b,g are given functions on (-1,1) and the unknown function f on (-1,1) is looked for. It is assumed that a and b are real-valued and Hölder continuous functions on [-1,1] without common zeros and that g belongs to some weighted space of Hölder continuous functions. In particular, g may have a finite number of singularities. Based on known spectral properties of Cauchy singular integral operators approximation methods for the numerical solution of the above equation are constructed, where both aspects the theoretical convergence and the numerical practicability are taken into account. The weighted uniform convergence of these methods is studied using a general approach based on the theory of approximation spaces. With the help of this approach it is possible to prove simultaneously the stability, the convergence and results on the order of convergence of the approximation methods under consideration.
2

Approximation Spaces in the Numerical Analysis of Cauchy Singular Integral Equations

Luther, Uwe 16 June 2005 (has links)
The paper is devoted to the foundation of approximation methods for integral equations of the form (aI+SbI+K)f=g, where S is the Cauchy singular integral operator on (-1,1) and K is a weakly singular integral operator. Here a,b,g are given functions on (-1,1) and the unknown function f on (-1,1) is looked for. It is assumed that a and b are real-valued and Hölder continuous functions on [-1,1] without common zeros and that g belongs to some weighted space of Hölder continuous functions. In particular, g may have a finite number of singularities. Based on known spectral properties of Cauchy singular integral operators approximation methods for the numerical solution of the above equation are constructed, where both aspects the theoretical convergence and the numerical practicability are taken into account. The weighted uniform convergence of these methods is studied using a general approach based on the theory of approximation spaces. With the help of this approach it is possible to prove simultaneously the stability, the convergence and results on the order of convergence of the approximation methods under consideration.

Page generated in 0.0881 seconds