• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vibration Analysis of Non-uniform Beams Using the Differential Quadrature Method

Hsu, Ming-Hung 16 January 2003 (has links)
Abstract The dynamic models for different linear or nonlinear beam structures are proposed in this dissertation. The proposed mathematical model for a turbo-disk, which is valid for whatever isotropic or orthotropic turbo-blades with or without shrouds, accounts for the geometric pretwist and taper angles, and considers coupling effect among bending and torsion effect as well. The Kelvin-Voigt internal and external damping effects have been included in the formulation. The effect of fiber orientation on the natural frequencies of a fiber-reinforced orthotropic turbo-blade has also been investigated. The eigenvalue problems of a single pre-twisted taper-blade or a shrouded turbo-blade group are formulated by employing the differential quadrature method (DQM). The DQM is used to convert the partial differential equations of a tapered pre-twisted beam system into a discrete eigenvalue problem. The Chebyshev-Gauss- Lobatto sample point equation is used to select the sample points in these analyses. The effect of the number of sample points on the accuracy of the calculated natural frequencies has also been studied. The integrity and computational efficiency of the DQM in this problem will be demonstrated through a number of case studies. The effects of design parameters, i.e. Kelvin-Voigt internal and linear external damping coefficients, the fiber orientation, and the rotation speed on the dynamic behavior for a pretwisted turbo-blade are investigated. The dynamic response of a nonlinear electrode actuator used in the MEMS has also been formulated and analyzed by employing the proposed DQM algorithm. The transitional responses of the derived nonlinear systems are calculated by using the Wilson¡V method. Results indicated the curve shape of the electrode and the cantilever actuator may affect the pull-in behavior and the residual vibration of the electrostatic actuators significantly. Numerical results demonstrated the validity and the efficiency of the DQM in solving different type beam problems.
2

Differential Quadrature Method For Time-dependent Diffusion Equation

Akman, Makbule 01 November 2003 (has links) (PDF)
This thesis presents the Differential Quadrature Method (DQM) for solving time-dependent or heat conduction problem. DQM discretizes the space derivatives giving a system of ordinary differential equations with respect to time and the fourth order Runge Kutta Method (RKM) is employed for solving this system. Stabilities of the ordinary differential equations system and RKM are considered and step sizes are arranged accordingly. The procedure is applied to several time dependent diffusion problems and the solutions are presented in terms of graphics comparing with the exact solutions. This method exhibits high accuracy and efficiency comparing to the other numerical methods.
3

Large eddy simulation of TiO₂ nanoparticle evolution in turbulent flames

Sung, Yonduck 03 February 2012 (has links)
Flame based synthesis is a major manufacturing process of commercially valuable nanoparticles for large-scale production. However, this important industrial process has been advanced mostly by trial-and-error based evolutionary studies owing to the fact that it involves tightly coupled multiphysics flow phenomena. For large scale synthesis of nanoparticles, different physical and chemical processes exist, including turbulence, fuel combustion, precursor oxidation, and nanoparticle dynamics exist. A reliable and predictive computational model based on fundamental physics and chemistry can provide tremendous insight. Development of such comprehensive computational models faces challenges as they must provide accurate descriptions not only of the individual physical processes but also of the strongly coupled, nonlinear interactions among them. In this work, a multiscale computational model for flame synthesis of TiO2 nanoparticles in a turbulent flame reactor is presented. The model is based on the large-eddy simulation (LES) methodology and incorporates detailed gas phase combustion and precursor oxidation chemistry as well as a comprehensive nanoparticle evolution model. A flamelet-based model is used to model turbulence-chemistry interactions. In particular, the transformation of TiCl4 to the solid primary nucleating TiO2 nanoparticles is represented us- ing an unsteady kinetic model considering 30 species and 70 reactions in order to accurately describe the critical nanoparticle nucleation process. The evolution of the TiO2 number density function is tracked using the quadrature method of moments (QMOM) for univariate particle number density function and conditional quadrature method of moments (CQMOM) for bivariate density distribution function. For validation purposes, the detailed computational model is compared against experimental data obtained from a canonical flame- based titania synthesis configuration, and reasonable agreement is obtained. / text
4

Numerical and analytical investigation into the plastic buckling paradox for metal cylinders

Shamass, Rabee January 2017 (has links)
It is widely accepted that, for many buckling problems of plates and shells in the plastic range, the flow theory of plasticity either fails to predict buckling or significantly overestimates buckling stresses and strains, while the deformation theory, which fails to capture important aspects of the underlying physics of plastic deformation, provides results that are more in line with experimental findings and is therefore generally recommended for use in practical applications. This thesis aims to contribute further understanding of the reasons behind the seeming differences between the predictions provided by these two theories, and therefore provide some explanation of this so-called ‘plastic buckling paradox’. The study focuses on circular cylindrical shells subjected to either axial compression or non-proportional loading, the latter consisting of combined axial tensile stress and increasing external pressure. In these two cases, geometrically nonlinear finite-element (FE) analyses for perfect and imperfect cylinders are conducted using both the flow and the deformation theories of plasticity, and the numerical results are compared with data from widely cited physical tests and with analytical results. The plastic buckling pressures for cylinders subjected to non-proportional loading, with various combinations of boundary conditions, tensile stresses, material properties and cylinder’s geometries, are also obtained with the help of the differential quadrature method (DQM). These results are compared with those obtained using the code BOSOR5 and with nonlinear FE results obtained using both the flow and deformation theories of plasticity. It is found that, contrary to common belief, by using a geometrically nonlinear FE formulation with carefully determined and validated constitutive laws, very good agreement between numerical and test results can be obtained in the case of the physically more sound flow theory of plasticity. The reason for the ‘plastic buckling paradox’ appears to be the over-constrained kinematics assumed in many analytical and numerical treatments, such as BOSOR5 and NAPAS, whereby a harmonic buckling shape in the circumferential direction is prescribed.
5

Alternate Stable States in Ecological Systems

Sasi, Sarath 11 August 2012 (has links)
In this thesis we study two reaction-diffusion models that have been used to analyze the existence of alternate stable states in ecosystems. The first model describes the steady states of a logistic growth model with grazing in a spatially homogeneous ecosystem. It also describes the dynamics of the fish population with natural predation. The second model describes phosphorus cycling in stratified lakes. The same equation has also been used to describe the colonization of barren soils in drylands by vegetation. In this study we discuss the existence of multiple positive solutions, leading to the occurrence of S-shaped bifurcation curves. We were able to show that both the models have alternate stable states for certain ranges of parameter values. We also introduce a constant yield harvesting term to the first model and discuss the existence of positive solutions including the occurrence of a Sigma-shaped bifurcation curve in the case of a one-dimensional model. Again we were able to establish that for certain ranges of parameter values the model has alternate stable states. Thus we establish analytically that the above models are capable of describing the phenomena of alternate stable states in ecological systems. We prove our results by the method of sub-super solutions and quadrature method.
6

Nonlinear Dynamics of Tapping Mode Atomic Force Microscopy

Bahrami, Arash 05 September 2012 (has links)
A mathematical model is developed to investigate the grazing dynamics of tapping mode atomic force microscopes (AFM) subjected to a base harmonic excitation. The nonlinear dynamics of the AFM microcantilever are studied in both of the monostable and bistable phases with the microcantilever tip being, respectively, located in the monostable and bistable regions of the static bifurcation diagram in the reference configuration. Free-vibration responses of the AFM probes, including the microcantilever natural frequencies and mode shapes, are determined. It is found that, for the parameters used in a practical operation of an AFM, the natural frequencies and mode shapes of the AFM microcantilever are almost the same as those of a free-end microcantilever with the same geometry and made of an identical material. A multimode Galerkin approximation is utilized to discretize the nonlinear partial-differential equation of motion and associated boundary conditions governing the cantilever response and obtain a set of nonlinearly coupled ordinary-differential equations (ODE) governing the time evolution of the system dynamics. The corresponding nonlinear ODE set is then solved using numerical integration schemes. A comprehensive numerical analysis is performed for a wide range of the excitation amplitude and frequency. The tip oscillations are examined using nonlinear dynamic tools through several examples. The non-smoothness in the tip/sample interaction model is treated rigorously. A higher-mode Galerkin analysis indicates that period doubling bifurcations and chaotic vibrations are possible in tapping mode microscopy for certain operating parameters. It is also found that a single-mode Galerkin approximation, which accurately predicts the tip nonlinear responses far from the sample, is not adequate for predicting all of the nonlinear phenomena exhibited by an AFM, such as grazing bifurcations, and leads to both quantitative and qualitative errors. A point-mass model is also developed based on the single-mode Galerkin procedure to compare with the present distributed-parameter model. In addition, a reduced-order model based on a differential quadrature method (DQM) is employed to explore the dynamics of the AFM probe in the bistable phase where the multimode Galerkin procedure is computationally expensive. We found that the DQM with a few grid points accurately predicts the static bifurcation diagram. Moreover, we found that the DQM is capable of precise prediction of the lowest natural frequencies of the microcantilever with only a few grid points. For the higher natural frequencies, however, a large number of grid points is required. We also found that the natural frequencies and mode shapes of the microcantilever about non-contact equilibrium positions are almost the same as those of the free-end microcantilever. On the other hand, free-vibration responses of the microcantilever about contact equilibrium positions are quite different from those of the free-end microcantilever. Moreover, we used the DQM to discretize the partial-differential equation governing the microcantilever motion and a finite-difference method (FDM) to calculate limit-cycle responses of the AFM tip. It is shown that a combination of the DQM and FDM applied, respectively, to discretize the spatial and temporal derivatives provides an efficient, accurate procedure to address the complicated dynamic behavior exhibited by the AFM probe. The procedure was, therefore, utilized to study the response of the microcantilever to a base harmonic excitation through several numerical examples. We found that the dynamics of the AFM probe in the bistable region is totally different from those in the monostable region. / Ph. D.
7

Large-eddy simulations of scramjet engines

Koo, Heeseok 20 June 2011 (has links)
The main objective of this dissertation is to develop large-eddy simulation (LES) based computational tools for supersonic inlet and combustor design. In the recent past, LES methodology has emerged as a viable tool for modeling turbulent combustion. LES computes the large scale mixing process accurately, thereby providing a better starting point for small-scale models that describe the combustion process. In fact, combustion models developed in the context of Reynolds-averaged Navier Stokes (RANS) equations exhibit better predictive capability when used in the LES framework. The development of a predictive computational tool based on LES will provide a significant boost to the design of scramjet engines. Although LES has been used widely in the simulation of subsonic turbulent flows, its application to high-speed flows has been hampered by a variety of modeling and numerical issues. In this work, we develop a comprehensive LES methodology for supersonic flows, focusing on the simulation of scramjet engine components. This work is divided into three sections. First, a robust compressible flow solver for a generalized high-speed flow configuration is developed. By using carefully designed numerical schemes, dissipative errors associated with discretization methods for high-speed flows are minimized. Multiblock and immersed boundary method are used to handle scramjet-specific geometries. Second, a new combustion model for compressible reactive flows is developed. Subsonic combustion models are not directly applicable in high-speed flows due to the coupling between the energy and velocity fields. Here, a probability density function (PDF) approach is developed for high-speed combustion. This method requires solution to a high dimensional PDF transport equation, which is achieved through a novel direct quadrature method of moments (DQMOM). The combustion model is validated using experiments on supersonic reacting flows. Finally, the LES methodology is used to study the inlet-isolator component of a dual-mode scramjet. The isolator is a critical component that maintains the compression shock structures required for stable combustor operation in ramjet mode. We simulate unsteady dynamics inside an experimental isolator, including the propagation of an unstart event that leads to loss of compression. Using a suite of simulations, the sensitivity of the results to LES models and numerical implementation is studied. / text
8

Solution Of Helmholtz Type Equations By Differential Quadarature Method

Kurus, Gulay 01 September 2000 (has links) (PDF)
This thesis presents the Differential Quadrature Method (DQM) for solving Helmholtz, modified Helmholtz and Helmholtz eigenvalue-eigenvector equations. The equations are discretized by using Polynomial-based and Fourier-based differential quadrature technique wich use basically polynomial interpolation for the solution of differential equation.
9

Approximation Spaces in the Numerical Analysis of Cauchy Singular Integral Equations

Luther, Uwe 01 August 2005 (has links) (PDF)
The paper is devoted to the foundation of approximation methods for integral equations of the form (aI+SbI+K)f=g, where S is the Cauchy singular integral operator on (-1,1) and K is a weakly singular integral operator. Here a,b,g are given functions on (-1,1) and the unknown function f on (-1,1) is looked for. It is assumed that a and b are real-valued and Hölder continuous functions on [-1,1] without common zeros and that g belongs to some weighted space of Hölder continuous functions. In particular, g may have a finite number of singularities. Based on known spectral properties of Cauchy singular integral operators approximation methods for the numerical solution of the above equation are constructed, where both aspects the theoretical convergence and the numerical practicability are taken into account. The weighted uniform convergence of these methods is studied using a general approach based on the theory of approximation spaces. With the help of this approach it is possible to prove simultaneously the stability, the convergence and results on the order of convergence of the approximation methods under consideration.
10

Approximation Spaces in the Numerical Analysis of Cauchy Singular Integral Equations

Luther, Uwe 16 June 2005 (has links)
The paper is devoted to the foundation of approximation methods for integral equations of the form (aI+SbI+K)f=g, where S is the Cauchy singular integral operator on (-1,1) and K is a weakly singular integral operator. Here a,b,g are given functions on (-1,1) and the unknown function f on (-1,1) is looked for. It is assumed that a and b are real-valued and Hölder continuous functions on [-1,1] without common zeros and that g belongs to some weighted space of Hölder continuous functions. In particular, g may have a finite number of singularities. Based on known spectral properties of Cauchy singular integral operators approximation methods for the numerical solution of the above equation are constructed, where both aspects the theoretical convergence and the numerical practicability are taken into account. The weighted uniform convergence of these methods is studied using a general approach based on the theory of approximation spaces. With the help of this approach it is possible to prove simultaneously the stability, the convergence and results on the order of convergence of the approximation methods under consideration.

Page generated in 0.0538 seconds