• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 9
  • 4
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 68
  • 68
  • 16
  • 15
  • 14
  • 14
  • 14
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Hochohmige porenüberspannende Lipidmembranen: Elektrochemische Untersuchungen zur Aktivität von Gramicidin und Bacteriorhodpsin / Highly insulating pore-spanning membranes: electrochemical investigations on the activity of gramicidin and bacteriorhodopsin

Schmitt, Eva Katharina 28 April 2009 (has links)
No description available.
52

Role segmentu 400-500 v biologické aktivitě adenylát cyklázového toxinu bakterie Bordetella pertussis / Role of the segment 400-500 in biological activity of Bordetella pertussis adenylate cyclase toxin

Suková, Anna January 2017 (has links)
The adenylate cyclase toxin-hemolysin (CyaA) plays a key role in virulence of the whooping cough agent Bordetella pertussis. It translocates an AC enzyme into cytosol of CD11b+ phagocytes and subverts their bactericidal functions by unregulated conversion of ATP to cAMP. In parallel, CyaA permeabilizes cellular membrane by forming cation-selective pores. The goal of my diploma thesis was an analysis of the mechanism of interaction of the segment linking the invasive adenylate cyclase domain and the RTX hemolysin moiety of CyaA with target membrane. Our data show that the segment linking the AC to the hydrophobic domain of CyaA is directly involved in the interaction of the toxin with the membrane and controls the formation of small cationt-selective pores. Our results generate new knowledge that will be of relevance to the entire field of toxin biology and will enable the design of improved CyaA- based vaccines. Keywords: Bordetella pertussis, adenylate cyclase toxin, membrane translocation, pore- forming activity, black lipid bilayers, liposomes
53

Membranes biomimétiques fluides ancrées sur électrodes ultra-planes / Fluid biomimetic membranes tethered on ultra plan electrodes

Squillace, Ophélie 13 January 2016 (has links)
Les bicouches lipidiques constituent l’architecture socle des membranes biologiques et l’environnement bidimensionnel de leurs protéines. Ancrées sur une interface hydrophile hydratée, ces systèmes conservent leur fluidité et sont localisés durablement près d’un substrat. Dans ce domaine, nous avons développé une stratégie de fonctionnalisation rapide, peu coûteuse et versatile, permettant la formation d’une membrane biomimétique fluide, ancrée sur des substrats conducteurs spécifiquement conçus pour son étude structurale et dynamique. La chimie de surface proposée forme une liaison covalente forte entre le substrat et des molécules commerciales amphiphiles (Brij, etc), utilisées comme système ancre-harpon. L’extrémité hydrophile (coté ancre) possédant un alcool primaire peu réactif est engagée sur une première couche organique par substitution nucléophile. L’autre extrémité hydrophobe (l’harpon) peut s’insérer dans la membrane et la stabiliser. Un mélange adapté, de ces molécules ancre-harpon avec d’autres purement hydrophiles (PEG, etc), apporte l’hydratation et la densité d’ancres nécessaire à l’interface pour maintenir la membrane éloignée du substrat, permettant ainsi l’intégration de protéines et le transport ionique à travers la membrane. Grâce au support conducteur, la dynamique des ions face aux membranes peut être étudiée par spectroscopie d’impédance électrochimique. Sa faible rugosité et semi-transparence permettent aussi l’utilisation de nombreuses autres techniques dont les microscopies optiques, exaltées ou de fluorescence. Localisées sur une électrode, ces bicouches ancrées s’ouvrent également aux applications biotechnologiques. / Lipid bilayers are the structural backbone of biological membranes and provide a two-dimensional environment for proteins. Tethered on a hydrophilic substrate, these biomimetic models are fluid, long-term stable and localized. In this regard, we propose a direct, cheap and versatile strategy of surface functionalization to tether membranes on a substrate adapted to their structural and dynamics study. The process is based on the functionalization of any flat metal thin film by the covalent binding of commercial surfactant molecules (Brij, …) as “anchor-harpoons”-like systems. Most of these molecules possess unresponsive –OH terminated groups on their hydrophilic moiety (anchor) that can bind a first organic layer by nucleophilic substitution. The opposite hydrophobic tail (harpoon) of the molecule can insert into the membrane and make it stable. An ideal mixing ratio of anchor-harpoons molecules with purely hydrophilic ones (PEG, …), provides the required hydration and density of anchors to the interface for tethering fluid membranes away from the substrate. A few nanometers distance enable ionic flows through the membrane and protein inclusion. The substrate conductivity enables studying ion dynamics facing the membrane by means of electrochemical impedance spectroscopy. Flatness and semi-transparency of the conductor opens the route to many other techniques’ including exalted light microscopy or fluorescence. Localized on electrodes, tethered bilayers further provide a biomimetic model and a support for biotechnology applications.
54

Příprava modelových membrán pro studium jejich interakcí s biopolymery pomocí fluorescenční korelační spektroskopie / Preparation of model membranes to study their interactions with biopolymers using fluorescence correlation spectroscopy

Adamcová, Zuzana January 2015 (has links)
This diploma thesis is focused on preparation and characterization of supported lipid bilayers as simplified models of cell membranes. The bilayers were prepared from source system of lecithin liposomes in phosphate buffer using the vesicle fusion method on a cover glass sufrace hydrophilized by plasma. Three fluorescent probes – Nile red, Oregon Green DHPE and DiO – were utilized to characterize diffusion within the bilayer using fluorescence correlation spectroscopy. For this purpose Z-scan FCS, which is a method developed specially for planar samples, was used. After the process of preparation and characterization of supported lipid bilayer was optimalized, interaction between this artificial membrane and solution of hyaluronic acid in phosphate buffer was studied. It was found out, that addition of this biopolymer causes slowing the diffusion of the fluorescent probe within the bilayer.
55

Min-Protein Waves on Geometrically Structured Artificial Membranes

Schweizer, Jakob 06 February 2013 (has links)
Das stäbchenförmige Bakterium Escherichia coli teilt sich in zwei gleich große Tochterzellen. Dies ist nur möglich, wenn sich die Zelle in der Mitte teilt. Bei E. coli wird die Zellteilung durch den Zusammenschluss der FtsZ-Proteine an der Membran zum Z-Ring eingeleitet. Topologische Regulierung des Z-Ringes erfolgt durch räumlich-zeitliche Oszillationen von Min-Proteinen zwischen den beiden Zellpolen. MinC, MinD und MinE binden an und lösen sich von der Membran unter Hydrolyse von ATP und in antagonistischer Art und Weise, was zu einer alternierenden Ansammlung von MinC und MinD an den Zellpolen führt. Gemittelt über die Zeit ergibt sich somit ein MinD-Verteilungsprofil, das maximale Konzentration an den Zellpolen und ein Minimum in der Zellmitte aufweist. MinC bindet an MinD und folgt somit seiner Verteilung. Der Zusammenschluss von FtsZ-Proteinen wird durch MinC unterbunden, und somit kann sich der Z-ring nur an einer Position herausbilden, die ein Minimum an MinC aufweist - der Zellmitte. Das Min-system wurde in der Vergangenheit auch mit einem in-vitro-Ansatz untersucht, indem Min-Proteine in künstliche, aufliegende Lipiddoppelschichten (supported lipid bilayers, SLB) rekonstitutiert wurden. Dabei bildeten die Min-Proteine kein oszillierendes Muster aus, sondern organisierten sich vielmehr in parallelen und propagierenden Wellen (Loose, 2008, Science, 320). In diesen in-vitro-Experimenten war das Membransubstrat wesentlich größer als die Wellenlänge der Min-Proteinwellen. In vivo hingegen ist die Länge der Zelle in der gleichen Größenordnung wie die charakteristische Länge des Oszillationsmusters der Min-Proteine. Daher war es das Ziel dieser Arbeit, den Einfluß einer beschränkten Fläche und geometrischer Formgebung der künstlichen Lipiddoppelschichten auf die Wellenpropagation der Min-Protein zu untersuchen. Flächige Beschränkung künstlicher Membranen erfolgte durch Mikrostrukturtechnologie. Deckglässchen wurden mit einer Goldschicht und mikroskopischen Aussparungen unterschiedlicher geometrischer Formen strukturiert. Funktionale SLBs bildeten sich nur auf Glasflächen ohne Goldbeschichtung aus. Nach der Rekonstitution der Min-Proteine, organisierten sich diese auf den Membranstücken in parallele Wellen. Dabei bestimmte die flächige Beschränkung der künstlichen Membranen die Ausbreitungsrichtung der Min-Proteinwellen. Min-Proteinwellen konnten entlang gekrümmter Membranstreifen, in Ring- und sogar in Slalomstrukturen geleitet werden. In geraden, länglichen Strukturen richteten sich die Wellen entlang der längsten Achse aus. Kopplung von Proteinwellen auf räumlich getrennten Membranstücken in Abhängigkeit des Abstandes und des sogenannten Molecular Crowdings in der wässrigen Lösung konnte ebenfalls beobachtet werden. Diese Kopplung ist ein Indiz für inhomogene Proteinverteilungen in der Lösung oberhalb der Membran. Desweiteren konnten Min-Proteinwellen auch in diversen dreidimensionalen künstlichen Membranen rekonstitituiert werden. Im Wildtyp von E. coli ähneln die Min-Proteindynamiken der einer Oszillation mit einer charakteristischen Länge von 5 µm. Auf SLBs, bilden Min-Proteine Wellen mit einer Wellenlänge aus, die ca. zehnmal größer ist als in vivo. Dieser Unterschied zwischen der in-vivo- und der in-vitro-Welt wurde untersucht und diskutiert. In vitro konnte die Wellenlänge um 50 % durch Erhöhung des Molecular Crowding in der Lösung sowie um 33 % durch Temperaturerhöhung verkleinert werden. Das oszillierende Muster könnte dahingegen eine Folge der Kompartimentierung sein. Erste Versuche, das Min-System in geschlossene Membrankompartimente zu rekonstitutieren, wurden getestet. / Escherichia coli, a rod-like bacterium, divides by binary fission. Cell division into two daughter cells of equal size requires that fission takes place at a midcell position. In E. coli, cell division is initiated by assembly of the FtsZ-proteins at the inner membrane to the Z-ring. Topological regulation of the Z-ring is achieved by spatiotemporal pole-to-pole oscillations of Min-proteins. MinC, MinD and MinE bind to and detach from - under hydrolysis of ATP - the membrane in an antagonistic manner leading to an alternating accumulation of MinC and MinD at the cell poles. Averaged over time, the distribution profile of MinD exhibits maximal concentration at the cell poles and a minimum at the cell center. MinC binds to MinD and thus follows its distribution. FtsZ assembly is inhibited by MinC and therefore the Z-ring can only form at a cell position low in MinC - at the cell center. In the past, the Min-system was also investigated in an in vitro approach by reconstitution of Min-proteins into a supported lipid bilayer (SLB). Here, Min-proteins did not self-organize into an oscillatory pattern but into parallel and propagating waves (Loose, 2008, Science, 320). In this in vitro assay, the membrane substrate was infinitely large compared to the wavelength. However, in vivo, the cell length is on the same order of magnitude as the respective length scale of the oscillatory pattern of Min-proteins. Therefore, we wished to investigate the effect of lateral confinement and geometric structuring of artificial lipid bilayers on the Min-protein wave propagation. Lateral confinement of artificial membranes was achieved by microfabrication technology. Glass slides were patterned by a gold coating with microscopic windows of different geometries, and functional SLBs were only formed on uncoated areas. Upon reconstitution, Min-proteins organized into parallel waves on the geometric membrane patches. Confinement of the artificial membranes determined the direction of propagation of Min-protein waves. Min-protein waves could be guided along curved membrane stripes, in rings and even along slalom-geometries. In elongated membrane structures, the protein waves always propagate along the longest axis. Coupling of protein waves across spatially separated membrane patches was observed, dependent on gap size and level of molecular crowding of the aqueous media above the bilayer. This indicates the existence of an inhomogeneous and dynamic protein gradient in the solution above the membrane. Furthermore, reconstitution of Min-protein waves in various three-dimensional artificial membranes was achieved. In wild-type E. coli, Min-protein dynamics resemble that of an oscillation with a characteristic length scale of 5 µm. On supported lipid bilayers, Min-proteins self-organize into waves with a wavelength approximately 10-fold larger than in vivo. These discrepancies between the in vivo and in vitro world were investigated and discussed. In vitro, the wavelength could be decreased by a factor of 50 % by increase of the molecular crowding in solution and by 33 % through temperature increase. The oscillatory pattern is thought to be a consequence of compartmentalization and first attempts to encapsulate the Min-system in closed bilayer compartments are presented.
56

Applications of droplet interface bilayers : specific capacitance measurements and membrane protein corralling

Gross, Linda C. M. January 2011 (has links)
Droplet Interface Bilayers (DIBs) have a number of attributes that distinguish them from conventional artificial lipid bilayers. In particular, the ability to manipulate bilayers mechanically is explored in this thesis. Directed bilayer area changes are used to make precise measurements of the specific capacitance of DIBs and to control the two dimensional concentration of a membrane protein reconstituted in the bilayer. Chapter 1 provides a general introduction to the role of the lipid membrane en- vironment in the function of biological membranes and their integral proteins. An overview of model lipid bilayer systems is given. Chapter 2 introduces work carried out in this laboratory previously and illustrates the experimental setup of DIBs. Some important bilayer biophysical concepts are covered to provide the theoretical background to experiments in this and in later chapters. Results from the characterisation of DIBs are reported, and an account of the development of methods to manipulate the bilayer by mechanical means is given. Chapter 3 describes experiments that apply bilayer area manipulation in DIBs to achieve precise measurement of specific capacitance in a range of lipid systems. Chapter 4 reports results from experiments investigating the response of bilayer specific capacitance to an applied potential. Chapter 5 covers the background and experimental setup for total internal fluo- rescence microscopy experiments in DIBs and describes the expression, purification and characterisation of the bacterial β-barrel membrane protein pore α-Hemolysin. Chapter 6 describes experiments that apply the mechanical manipulation of bilayer area in DIBs to the corralling and control of the surface density of α-Hemolysin.
57

Mode d’action moléculaire de la toxine anti-tumorale : PS1Aa2 du bacille de Thuringe

Narvaez, Gabriel 01 1900 (has links)
Les parasporines sont des toxines Cry du bacille de Thuringe actives contre des cellules tumorales. Ce travail montre que la parasporine PS1Aa2 (Cry31Aa2) forme des pores dans des membranes artificielles, comme de nombreuses toxines Cry. Ceux-ci ont plusieurs niveaux de conductance dont les plus fréquents étaient de 11, 16 et 21 pS dans une solution de 150 mM KCl. Nos résultats de microspectrofluorométrie avec la sonde Fura-2 montrent que la présence de la PS1Aa2 peut produire des augmentations du calcium intracellulaire, la plupart du temps sous la forme d’oscillations calciques et parfois des augmentations soutenues. Ces réponses ont été observées en présence et en absence de calcium extracellulaire, dans les lignées tumorales HeLa et HepG2 et dans la lignée non tumorale HEK 293. Bien que quelques études aient montré que le calcium semble intervenir dans leur mode d’action, de telles oscillations calciques n’ont jamais été décrites auparavant pour des toxines Cry. Les expériences ont dû être faites à des concentrations beaucoup plus élevées de toxine que prévues sur la base des résultats publiés de cytotoxicité. Malgré la présence des fragments identifiés auparavant comme actifs, sa faible efficacité semble liée à la présence d’ADN dans les préparations qui entraîne la précipitation de la protéine. Les travaux futurs sur cette toxine seraient donc grandement facilités par une amélioration de sa méthode de préparation. / Parasporins are Cry toxins from Bacillus thuringiensis that are active against tumor cells. This work shows that parasporin PS1Aa2 (Cry31Aa2) forms pores in artificial membranes like many Cry toxins. These pores have several levels of conductance; the most frequently seen in 150 mM KCl solutions were of 11, 16 and 21 pS. Our microspectrofluorometric results with the Fura-2 probe showed that the presence of PS1Aa2 can induce changes in intracellular calcium levels, most often in the form of calcium oscillations and sometimes as sustained increases. Such responses were observed in the presence and absence of extracellular calcium, with the tumor cell lines HeLa and HepG2, and with the non-tumorous cell line HEK 293. Calcium oscillations have not been described previously for Cry toxins even though some studies have shown that calcium appears to be involved in their mode of action. Our experiments required the use of much higher concentrations of toxin than suggested from the published cytotoxicity results. Despite the presence of fragments previously identified as active, its low efficacy appears to be related to the presence of DNA in the preparations causing the protein to precipitate. Future work on this toxin would therefore be greatly facilitated by an improvement in its method of preparation.
58

Incorporation de protéines membranaires produites par un système d'expression protéique acellulaire dans des bicouches lipidiques planes / Incorporation of membrane proteins produced by a cell-free expression system into planar lipid lilayers

Coutable, Angelique 14 March 2014 (has links)
Les protéines membranaires intégrales jouent un rôle essentiel dans le maintien de l’intégrité cellulaire (transports d’ions et de nutriments, transduction de signal, interaction cellule-cellule). Afin de les étudier, ces protéines doivent être produites in vitro. La production classique de ces protéines membranaires intégrales dans des microorganismes présente de nombreuses difficultés liées à leur structure complexe mais aussi à des problèmes de toxicité, empêchant la production de nombre d’entre elles. En outre, pour être produites efficacement, ces protéines ont besoin d’un environnement amphiphile. Dans cette thèse, afin de pallier à ces difficultés, nous avons d’une part utilisé un système d’expression protéique acellulaire, non affecté par la physiologie des cellules vivantes. En outre, nous avons choisi de les intégrer dans des bicouches lipidiques planes reconstituées artificiellement. Dans une première partie, nous avons mis au point l’intégration d’une protéine membranaire intégrale formant un pore, l’alpha hémolysine, dans une bicouche lipidique supportée. Certaines protéines nécessitant un espace plus important de part etd’autre de la membrane, nous avons, dans une seconde partie, développé une bicouche lipidique espacée et ancrée par fusion de liposomes sur des surfaces d’or. Nous démontrons qu’il est possible d’y incorporer des protéines membranaires de type Aquaporine Z sous certaines conditions. Dans une troisième partie, dédiée à la formation de membranes biomimétiques utilisant des molécules lipidiques provenant d’Escherichia coli, nous montrons que la modification de la composition membranaire ne semble pas avoir d’incidence sur l’incorporation de protéines. Enfin, dans une dernière partie, nous avons réalisé des premiers essais d’insertion de protéines membranaires, de type alpha hémolysine, dans des bicouches suspendues afin de montrer que ces protéines produites par le système d’expression acellulaire sont fonctionnelles. / Integral membrane proteins play an essential role in the cell integrity preservation (transport of nutrients and ions, signal transduction, cell-cell interaction). In order to study these proteins, they have to be produced in vitro. Classical production of integral membrane proteins in microorganisms present many difficulties associated with their complex structure and also toxicity problems, preventing production of many of them. Moreover, to be efficiently produced, these proteins require an amphiphilic environment. In order to overcome these difficulties, we used a cell-free protein expression system, unaffected by the physiology ofliving cells. In addition, we chose to integrate them into artificial planar lipid bilayers. In a first part, we have developed the integration of an integral membrane protein forming a pore, the alpha hemolysin, in a supported lipid bilayer. Some proteins require more space on each side of the membrane, therefore in a second part, we have developed a tethered lipid bilayer membrane by liposome fusion on gold surfaces. We demonstrate that it is possible to incorporate membrane protein Aquaporin Z under certain conditions. The third part is dedicated to the formation of biomimetic membranes using lipid molecules from Escherichiacoli, we show that the membrane composition do not affect the protein incorporation. Finally, we have tested alpha hemolysin membrane proteins insertion in suspended lipid bilayers membranes to show that these proteins produced by the cell-free expression system are functional.
59

Combinatorial Microscopy of Molecular Interactions at Membrane Interfaces

Oreopoulos, John 13 June 2011 (has links)
Biological membranes are heterogeneous two-dimensional fluids composed of lipids, sterols and proteins that act as complex gateways and define the cell boundary. The functions of these interfaces are diverse and specific to individual organisms, cell types, and tissues. Membranes must take up nutrients and small molecules, release waste products, bind ligands, transmit signals, convert energy, sense the environment, maintain cell adhesion, control cell migration, and much more while forming a tight barrier around the cell. The molecular mechanisms and structural details responsible for this diverse set of functions of biological membranes are still poorly understood, however. Developing new tools capable of probing and determining the local molecular organization, structure, and dynamics of membranes and their components is critical for furthering our knowledge about these important cellular processes that are often linked to health and diseases. Combinatorial microscopy takes advantage of the rich properties of light (intensity, wavelength, polarization, etc.) to create new forms of imaging that quantify the motions, orientations, and binding kinetics of the sample’s biomolecular constituents. These new optical imaging modalities can also be further combined with other types of microscopy to produce spatially correlated micrographs that provide complementary pieces of information about the sample under investigation that would otherwise remain hidden from the observer if the two imaging techniques were applied independently. The first part of this thesis provides a detailed account of the construction of a specialized hybrid microscopy platform that combines polarized total internal reflection fluorescence microscopy (pTIRFM) with atomic force microscopy (AFM) for the purpose of studying fundamental sterol-lipid and antimicrobial peptide-lipid interactions in model membranes. The second half describes a combined pTIRFM and Förster resonance energy transfer (FRET) imaging method to elucidate the oligomeric state and spatial distribution of carcinoembryonic-antigen-related cell-adhesion molecules (CEACAMs) in the membranes of living cells.
60

Combinatorial Microscopy of Molecular Interactions at Membrane Interfaces

Oreopoulos, John 13 June 2011 (has links)
Biological membranes are heterogeneous two-dimensional fluids composed of lipids, sterols and proteins that act as complex gateways and define the cell boundary. The functions of these interfaces are diverse and specific to individual organisms, cell types, and tissues. Membranes must take up nutrients and small molecules, release waste products, bind ligands, transmit signals, convert energy, sense the environment, maintain cell adhesion, control cell migration, and much more while forming a tight barrier around the cell. The molecular mechanisms and structural details responsible for this diverse set of functions of biological membranes are still poorly understood, however. Developing new tools capable of probing and determining the local molecular organization, structure, and dynamics of membranes and their components is critical for furthering our knowledge about these important cellular processes that are often linked to health and diseases. Combinatorial microscopy takes advantage of the rich properties of light (intensity, wavelength, polarization, etc.) to create new forms of imaging that quantify the motions, orientations, and binding kinetics of the sample’s biomolecular constituents. These new optical imaging modalities can also be further combined with other types of microscopy to produce spatially correlated micrographs that provide complementary pieces of information about the sample under investigation that would otherwise remain hidden from the observer if the two imaging techniques were applied independently. The first part of this thesis provides a detailed account of the construction of a specialized hybrid microscopy platform that combines polarized total internal reflection fluorescence microscopy (pTIRFM) with atomic force microscopy (AFM) for the purpose of studying fundamental sterol-lipid and antimicrobial peptide-lipid interactions in model membranes. The second half describes a combined pTIRFM and Förster resonance energy transfer (FRET) imaging method to elucidate the oligomeric state and spatial distribution of carcinoembryonic-antigen-related cell-adhesion molecules (CEACAMs) in the membranes of living cells.

Page generated in 0.0582 seconds