• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 15
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 112
  • 112
  • 51
  • 14
  • 13
  • 12
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Elucidando as interações e reações levando à permeabilização fotoinduzida de membranas / Shedding light on interactions and reactions leading to photoinduced membrane permeabilization

Bacellar, Isabel de Oliveira Lima 28 August 2017 (has links)
A oxidação de membranas lipídicas pode ser benéfica (p.ex. sinalização celular) ou prejudicial, sendo a permeabilização de membranas uma de suas consequências citotóxicas. A permeabilização fotoinduzida de membranas é parte essencial do mecanismo da terapia fotodinâmica (PDT), uma modalidade clínica em que fotossensibilizadores, luz e oxigênio são combinados para oxidar biomoléculas e consequentemente danificar células indesejadas. Neste trabalho, buscamos entender molecularmente quais fatores levam à permeabilização fotoinduzida de membranas. Enfatizamos os papéis do oxigênio, do status da membrana e de reações específicas do fotossensibilizador em contato com a membrana. Simulações de dinâmica molecular foram usadas para obter a distribuição de oxigênio em membranas em função da temperatura nas fases fluida ou gel. Procedimentos específicos de análise de cinéticas de luminescência de oxigênio singlete foram desenvolvidos para calcular tempos de vida de estado excitado triplete compatíveis com as variações da distribuição de oxigênio em membranas. Caracterizamos um derivado fluorogênico do α-tocoferol como uma sonda para oxigênio singlete em experimentos com lipossomos, possibilitando comparar qualitativamente os níveis de oxigênio singlete atingindo a membrana quando produzido por fotossensibilizadores hidrossolúveis ou lipossolúveis. Experimentos em vesículas unilamelares gigantes (GUVs) nos permitiram comparar a ativação da sonda com o aumento de área superficial da membrana, e estimar a constante de velocidade da reação do oxigênio singlete com lipídeos insaturados como 6 x 104 M-1 s-1. Estreitando nosso foco para a permeabilização fotoinduzida de membranas, inicialmente caracterizamos quatro fotossensibilizadores fenotiazínicos em relação a suas interações com membranas e suas capacidades de promover o vazamento de uma sonda fluorescente. Fotossensibilizadores que se particionaram mais em membranas (e não os geradores de oxigênio singlete mais eficientes) danificaram a membrana de lipossomos mais eficientemente. A ligação à membrana também afetou as vias de decaimento dos estados excitados triplete. Com esse estudo, selecionamos o fotossensibilizador hidrofílico azul de metileno (MB) e o fotossensibilizador mais hidrofóbico DO15 para as investigações subsequentes. Os efeitos de ambos os fotossensibilizadores em GUVs foram caracterizados e observamos que as cinéticas de permeabilização indicaram diferentes taxas de produção de lipídeos formadores de poros para MB e DO15, o que deve depender de interações específicas com a membrana. Para melhor compreender o papel de interações fotossensibilizador/membrana, caracterizamos a oxidação de lipídeos por ambos os fotossensibilizadores, em uma condição em que DO15 permeabilizava membranas 70 vezes mais eficientemente que MB. Observamos principalmente a formação de hidroperóxidos lipídicos para MB, enquanto que para DO15, além desses mesmos produtos, observamos a formação de álcoois, cetonas e aldeídos fosfolipídicos de cadeia truncada, esses últimos tendo sido relacionados a condições em que se observou a permeabilização de membranas. Embora já fosse sabido que aldeídos fosfolipídicos aumentam a permeabilidade da membrana, esse fenômeno nunca havia sido demonstrado para a formação de aldeídos in situ. A fotooxidação lipídica foi acompanhada por aumento do fotobranqueamento de DO15 e pela formação de radicais lipídicos oxigenados, indicando a ocorrência de reações diretas entre lipídeos e fotossensibilizadores. O mapeamento dos fatores que levam à permeabilização fotoinduzida em membranas, focando em reações e interações moleculares, é o maior produto desse trabalho / Oxidation of lipid membranes can be beneficial (e.g., cell signaling) or detrimental, with membrane permeabilization representing one of its cytotoxic outcomes. Photoinduced membrane permeabilization is key to the mechanism of photodynamic therapy (PDT), a clinical modality in which photosensitizers, light and oxygen are combined to oxidize biomolecules and consequently damage diseased cells. In this work, we aimed to understand at the molecular level which factors lead to photoinduced membrane permeabilization. We emphasized the roles of oxygen, membrane status and specific reactions of the photosensitizer in contact with the membrane. Molecular dynamics simulations were used to assess oxygen distribution in membranes as a function of temperature within membranes in gel or liquid phases. Special fitting procedures of singlet oxygen luminescence kinetics were devised to allow the calculation of triplet excited state lifetimes compatible with variable oxygen distributions in membranes. We characterized a fluorogenic α-tocopherol probe as a singlet oxygen trapping molecule in experiments with liposomes, and were able to qualitatively compare the amount of singlet oxygen molecules reaching the membrane after being generated by water soluble or membrane bound photosensitizers. Experiments performed in giant unilamellar vesicles (GUVs) allowed us to compare the activation of the probe with the observed membrane surface area increase and estimate the reaction rate of singlet oxygen with unsaturated lipids to be 6 x 104 M-1 s-1. We then narrowed our focus to photoinduced membrane permeabilization, initially characterizing four phenothiazinium photosensitizers with respect to their interactions with membranes and their capability to promote leakage of a fluorescent probe. Photosensitizers that bound to membranes to a larger extent (and not the most efficient singlet oxygen generators) were the most efficient ones to damage liposomal membranes. Membrane binding also affected triplet excited state deactivation pathways. From this study, we selected the hydrophilic photosensitizer methylene blue (MB) and the more hydrophobic photosensitizer DO15 for subsequent investigations. We characterized the effects of both photosensitizers in GUVs and observed that the kinetics of membrane permeabilization implied different rates of generation of pore-forming lipids for MB and DO15, which should depend on specific interactions with membranes. To further understand the role of photosensitizer/membrane interactions, we characterized the oxidized lipids formed by both photosensitizers in a condition in which the membrane permeabilization efficiency of DO15 was 70 times higher than that of MB. We observed mainly formation of lipid hydroperoxides by MB, while DO15 not only led to these same products, but also to alcohols, ketones and phospholipid truncated aldehydes, the latter being related to conditions in which membrane permeabilization was observed. Although aldehydes were already known to increase membrane permeability, this phenomenon had never before been demonstrated for aldehyde formation in situ. Lipid photooxidation was accompanied by increased photobleaching of DO15 and by formation of lipid oxygenated radicals, indicating the occurrence of direct reactions between lipids and photosensitizers. A roadmap of the factors leading to photoinduced membrane permeabilization focusing on molecular interactions and reactions is the major achievement of this work.
92

Investigations Of Polymer Grafted Lipid Bilayers Using Dissipative Particle Dynamics

Manubhai, Thakkar Foram 12 1900 (has links)
Lipid molecules are amphiphilic in nature consisting of a hydrophilic head group and hydrophobic hydrocarbon tails. The lipid bilayer consists of two layers of lipid molecules arranged with their hydrophobic tails facing each other and their hydrophilic head groups solvated by water. Lipid bilayers with hydrophilic polymer chains grafted onto the head groups have applications in various fields, such as stabilization of liposomes designed for targeted drug delivery, synthesis of supported bilayers for biomaterial applications, surface modification of implanted medical devices to prevent biological fouling and design of in vitro biosensors. The focus of this thesis lies in understanding the effects of polymer grafting on the thermodynamics and mechanical properties of lipid bilayers. Dissipative particle dynamics (DPD) has evolved as a promising method to study complex soft matter systems. The basic DPD algorithm, and its implementation are discussed in Chapter 2 of this thesis. It is important to achieve a tensionless state while studying phase transitions and deducing the mechanical properties of the bilayer. We proposed a modification of the Andersen barostat which can be incorporated in a DPD simulation to achieve the tensionless state as well as carry out simulations at a prescribed tension. In Chapter 3 of this thesis the effect of polymer grafting on single tailed lipid bilayers is studied. Simulations are carried out by varying the grafting fraction, Gf, defined as the ratio of the number of polymer molecules to the number of lipid molecules. At lowGf, the bilayer shows a sharp transition from the gel (Lβ) to the liquid crystalline (Lα) phase. This main melting transition temperature is lowered as Gf is increased. Corresponding to this, an increase in the area per head group is also observed. Above a critical value of Gf the interdigitated, LβI phase is observed prior to the main transition for the longer lipid tails. The analysis for two tailed lipids as a function of polymer chain length is extensively studied in Chapter 5. For the case of two tailed lipids, an intermediate interdigitated phase was not observed and the decrease in the melting temperature is more pronounced as the length of the polymer chain is increased. The scaling for fractional change in the area per head group, as well as the decrease in transition temperature as a function of polymer grafting are in good agreement with mean field theory predictions. The bending modulus (k) and area stretch modulus (kA) are essential for determining the shape and the mechanical stability of biological cells or lipid based vesicles. In simulations, the bending modulus k is evaluated from the Fourier transform of the out-of-plane fluctuations of the bilayer mid-plane. In Chapter 4 of this thesis, we illustrate that a surface representation based on Delanuay triangulation provides a robust parameter free representation of the bilayer surface. By evaluating the bending modulus for single tail lipids of different tail lengths, the continuum scaling relation d2 is verified. To our knowledge this is the first systematic investigation and verification of this scaling relationship using computer simulations. Using the continuum relation, =kAd2/ we find that α depends weakly on the tail lengths of the bilayer. Nevertheless we illustrate that a value of α=130 can be used to reliably estimate the bending modulus from the area stretch modulus for polymer free bilayers. Using our method, we are also able to capture the low q scalings and obtain the bending modulus of the gel (Lβ) phase. Grafted polymer was found to increase the value of the bending modulus for single tail lipids. Although the presence of polymer directly increases the area per head group, the suppressed height fluctuations dominate and the bending modulus increases for the single tail lipids. For two tail lipids a small decrease in the bending modulus was observed at low grafting fractions and short polymer chains. For large polymer lengths the bending modulus was found to increase monotonically.
93

Directing macromolecular assemblies by tailored surface functionalizations of nanoporous alumina

Lazzara, Thomas Dominic 16 May 2011 (has links)
No description available.
94

Theoretical and experimental study of protein-lipid interactions / Theoretische und experimentelle Untersuchung von Protein-Lipid Wechselwirkungen

Ivanova, Vesselka Petrova 01 November 2000 (has links)
No description available.
95

Meeting at the Membrane – Confined Water at Cationic Lipids & Neuronal Growth on Fluid Lipid Bilayers

Woiterski, Lydia 03 February 2014 (has links) (PDF)
Die Zellmembran dient der Zelle nicht nur als äußere Hülle, sondern ist auch an einer Vielzahl von lebenswichtigen Prozessen wie Signaltransduktion oder Zelladhäsion beteiligt. Wasser als integraler Bestandteil von Zellen und der extrazellulären Matrix hat sowohl einen großen Einfluss auf die Struktur von Biomolekülen, als auch selbst besondere Merkmale in eingschränkter Geometrie. Im Rahmen dieser Arbeit wurden zwei Effekte an Modellmembranen untersucht: Erstens der Einfluss des Gegenions an kationischen Lipiden (DODAX, X = F, Cl, Br, I) auf die Eigenschaften des Grenzflächenwassers und zweitens das Vermögen durch Viskositätsänderungen das Wachstum von Nervenzellen anzuregen sowie die einzelnen Stadien der Bildung von neuronalen Netzwerken und deren Optimierung zu charakterisieren. Lipidmultischichten und darin adsorbiertes Grenzflächenwasser wurden mittels Infrarotspektroskopie mit abgeschwächter Totalreflexion untersucht. Nach Charakterisierung von Phasenverhalten und Wasserkapazität der Lipide wurden die Eigenschaften des Wassers durch kontrollierte Hydratisierung bei einem Wassergehalt von einem Wassermolekül pro Lipid verglichen. Durch die geringe Wasserkapazität können in diesem besonderen System direkte Wechselwirkungen zwischen Lipiden und Wasser aus der ersten Hydratationsschale beobachtet werden. Bemerkenswert strukturierte OH-Streckschwingungsbanden in Abhängigkeit des Anions und niedrige IR-Ordnungsparameter zeigen, dass stark geordnete, in ihrer Mobilität eingeschränkte Wassermoleküle an DODAX in verschiedenen Populationen mit unterschiedlich starken Wasserstoffbrückenbindungen existieren und sich vermutlich in kleinen Clustern anordnen. Die zweite Fragestellung hatte zum Ziel, das Wachstum von Nervenzellen auf Membranen zu beleuchten. Auf der Ebene einzelner Zellen wurde untersucht, ob sich in Analogie zu den bisher verwendeten elastischen Substraten, die Viskosität von Membranen als neuartiger physikalischer Stimulus dafür eignet, das mechanosensitive Verhalten von Neuronen zu modulieren. Das Wachstum der Neuronen wurde auf substrat- und polymergestützten Lipiddoppelschichten mittels Phasenkontrastmikroskopie beobachtet. Die Quantifizierung der Neuritenlängen, -auswuchsgeschwindigkeiten und -verzweigungen zeigten kaum signifikante Unterschiede. Diffusionsmessungen (FRAP) ergaben, dass entgegen der Erwartungen, die Substrate sehr ähnliche Fluiditäten aufweisen. Die Betrachtung der zeitlichen Entwicklung des kollektiven Neuronenwachstums, also der Bildung von komplexen Netzwerken, offenbarte robuste „Kleine-Welt“-Eigenschaften und darüber hinaus unterschiedliche Stadien. Diese wurden durch graphentheoretische Analyse beschrieben, um anhand typischer Größen wie dem Clusterkoeffizienten und der kürzesten Pfadlänge zu zeigen, wie sich die Neuronen in einem frühen Stadium vernetzen, im Verlauf eine maximale Komplexität erreichen und letztlich das Netzwerk durch effiziente Umstrukturierung hinsichtlich kurzer Pfadlängen optimiert wird.
96

Characterization of nano-mechanical properties of biological lipid membranes with circular mode atomic force microscopy / Caractérisation des propriétés nanomécaniques des membranes lipidiques biologiques avec microscopie à force atomique mode circulaire

Baiti, Risa Nurin 28 November 2017 (has links)
Les membranes cellulaires sont impliquées dans de nombreux processus cellulaires : la diffusion des médicaments et des ions, la transduction des signaux, la génération d'énergie, le développement cellulaire (fusion et fission). Les bicouches phospholipides sont les principaux composants des membranes cellulaires, elles constituent une barrière dynamique protégeant les réactions biochimiques cellulaires. La détermination des propriétés biochimiques et mécaniques des bicouches lipidiques et leur évolution avec les conditions environnementales est nécessaire pour étudier la nature des processus cellulaires et l'influence des agents externes (résistance mécanique, perméabilité et réponse biologique). Pour mener de telles caractérisations, des modèles simplifiés de membrane biomimétique, tels que des bicouches lipidiques supportées (SLB), ont été développés. Parmi les techniques de caractérisation disponibles, la microscopie à force atomique (AFM) a été largement utilisée pour étudier l'organisation nanométrique des SLB dans des conditions physiologiques. AFM peut produire des images à la haute résolution et peut également être utilisé pour quantifier la résistance mécanique des SLB au moyen d'expériences de perforation. Pendant 30 ans, AFM a traversé de nombreux développements. Très récemment, le Mode circulaire AFM (CM-AFM) a été développé à l'Université de Technologie de Compiègne. CM-AFM est capable de générer un mouvement de glissement de la pointe AFM sur l'échantillon à une vitesse élevée, constante et continue et de mesurer les forces de frottement latéral rapidement et exactement simultanément avec les forces verticales. Pour la première fois, le CM-AFM sert à caractériser les échantillons biologiques dans des conditions physiologiques, ce qui permet de mesurer simultanément les forces de poinçonnage et de frottement en fonction de la vitesse de glissement. Il offre pour la première fois la capacité de décrire le comportement de friction des SLB en complément de la force de perforation. En raison du besoin important de mesure quantitative, l'optimisation du protocole CM-AFM a été effectuée en premier. Le protocole d'étalonnage du scanner a été établi avec succès pour assurer la précision de la vitesse de glissement. En outre, le protocole d'étalonnage des pointes, basé sur la méthode de Wedge et un échantillon rayé, est également conçu pour déterminer la constante d'étalonnage de la force latérale. Nous avons utilisé CM-AFM pour mesurer les propriétés tribologiques des échantillons solides pour améliorer l'équipement sous milieu liquide. Ensuite, les propriétés mécaniques (forces de poinçonnage et de frottement) des SLB ont été mesurées en fonction de la vitesse de glissement. Les SLB purs et mixtes ont été préparés par la méthode de fusion des vésicules. Différents médias ont également été utilisés pour étudier l'effet des cations monovalents sur les propriétés mécaniques des SLB. Dans tous les cas, la force de frottement augmente linéairement avec la vitesse de glissement, ce qui nous permet de déduire le coefficient visqueux de frottement. Comme prévu, la force de poinçonnage et le coefficient visqueux de frottement sont influencés par la composition des mélanges de lipides, par la nature des cations en milieu liquide et par la longueur des chaînes hydrocarbonées mais pas de manière similaire. L'interprétation de l'évolution du coefficient de force de frottement visqueux avec le système étudié est particulièrement délicate car la force de frottement pourrait être influencée par les propriétés d'interface ou de volume. Cette problématique sera le défi pour les prochaines études. Néanmoins, nos résultats illustrent la puissance de la technique CM-AFM et ouvre de nombreuses possibilités pour caractériser d'autres échantillons biologiques (cellules et tissus) afin de mieux comprendre les mécanismes élémentaires de friction. / Cell membranes are involved in many cellular processes: drugs and ions diffusion, signal transduction, energy generation, cell development (fusion and fission). Phospholipid bilayers are the main components of cell membranes, they act as a dynamic barrier protecting cellular biochemical reactions. The determination of biochemical and mechanical properties of lipid bilayers and their evolution with environmental conditions is necessary to study the nature of cellular processes and the influence of external agents (mechanical resistance, permeability, and biological response). To conduct such characterizations, simplified biomimetic membrane models, such as supported lipid bilayers (SLBs), were developed. Among the available characterization techniques, atomic force microscopy (AFM) has been widely used to study the nanoscale organization of SLBs under physiological conditions. AFM can yield high resolution images and it can also be used to quantify the mechanical resistance of SLBs by means of punch through experiments. For 30 years, AFM has been through many developments. Very recently, the Circular Mode AFM (CM-AFM) has been developed at the Université de Technologie de Compiègne. CM-AFM is able to generate a sliding movement of the AFM tip on the sample at high, constant and continuous velocity and to measure the lateral friction forces fast and accurately simultaneously with the vertical forces. For the first time CM-AFM is used to characterize biological samples under physiological conditions, allowing the simultaneous measurement of both the punch-through and the friction forces as a function of the sliding velocity. It offers for the first time the ability to describe the friction behavior of SLBs in complement of the punch-through force. Due to the important need for quantitative measurement, optimization of the CM-AFM protocol has been done first. Protocol of scanner calibration has been successfully established to ensure the accuracy of sliding velocity. Besides, the protocol for tip calibration, based on wedge method and a scratched sample, is also made to determine the lateral force calibration constant. We have employed CM-AFM to measure the tribological properties of solid samples to improve the equipment under liquid medium. Then, the mechanical properties (punchthrough and friction forces) of SLBs were measured as function of the sliding velocity. Pure and mixed SLBs were prepared by the vesicle fusion method. Various media were also used to study the effect of monovalent cations to the mechanical properties of SLBs. In all cases, the friction force increases linearly with the sliding velocity allowing us to deduce the friction viscous coefficient. As expected both the punchthrough force and the friction viscous coefficient are influenced by the composition of lipid mixtures, by the nature of cations in liquid medium, and by the length of hydrocarbon chains but not in a similar fashion. The interpretation of the evolution of the viscous friction force coefficient with the studied system is particularly tricky as the friction force could be influenced by interface or volume properties. This problematic will be the challenge for the next studies. Nevertheless, our results illustrate how powerful the CM-AFM technique is and it opens wide opportunities to characterize other biological samples (cells and tissues) to gain a better understanding of the elementary mechanisms of friction.
97

Polarization resolved nonlinear multimodal microscopy in lipids : from model membranes to myelin in tissues / Microscopie multimodale non-linéaire résolue en polarisation pour l'étude des lipides : modèles membranes à la myéline dans les tissus

Gąsecka, Paulina 11 December 2015 (has links)
La microscopie non-linéaire résolue en polarisation est un outil puissant pour accéder à des informations structurelles dans les assemblages biomoléculaires. Les interactions non-linéaires entre matière et lumière induisent des processus complexes où des champs électromagnétiques cohérents interagissent avec les dipôles de transitions moléculaires. Le contrôle de la polarisation des champs électromagnétiques excitateurs et l’étude des réponses non-linéaires induites procurent de riches informations sur la distribution angulaire des molécules présentes dans le volume focal de l’objectif du microscope. Dans cette thèse, nous appliquons cette sensibilité à la polarisation à plusieurs modalités de microscopie cohérentes sans marquage (diffusion cohérente Raman anti-Stokes (CARS), diffusion Cohérente stimulée (SRS)) et à la fluorescence à deux photons (2PEF) afin d’obtenir des informations quantitatives sur la forme de la distribution moléculaire et l’orientation des lipides dans les membranes artificielles, ainsi que dans les membranes biologiques telles que la myéline des tissus de la moelle épinière. Avec cette technique, nous adressons une question fondamentale sur le comportement des ensembles lipidiques dans les membranes et sur l’effet d’autres molécules telles que le cholestérol et les marqueurs fluorescents. Nous démontrons que le CARS résolu en polarisation permet d’accéder à de fines informations sur l’organisation des lipides dans les membranes de la myéline, en deçà de la limite de diffraction. / Polarization resolved nonlinear microscopy is a powerful tool to image structural information in biomolecular assemblies. Nonlinear interaction between light and matter lead to complex processes where coherent combinations of optical fields couple to assemblies of molecular transition dipoles. Controlling polarized optical fields and monitoring nonlinear induced signals in a medium can nevertheless bring rich information on molecular orientational organization within the focal spot of a microscope objective. In this PhD thesis we apply this polarization sensitivity to different label-free optical coherent techniques (coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS)) and to two-photon fluorescence (2PEF) to retrieve quantitative information on the static molecular distribution shape and orientation of lipids in model membranes and biological membranes such as myelin sheaths in spinal cord tissues. With this technique, we address fundamental questions about lipid packing behavior in membranes, and how it can be affected by other molecules such as cholesterol and the insertion of fluorescent lipid probes. We demonstrate that polarization resolved CARS give access to fine details on lipids arrangement in myelin sheaths, at a sub-diffraction scale. In the context of experimental autoimmune encephalomyelitis disease (EAE) we show, that even at the stage of disruption of the myelin envelope during the demyelination process, lipids multilayers reveal strong capability to preserve their macroscopic self-assembly into highly organized structures, with a degree of disorganization occurring only at the molecular scale.
98

The influence of membrane bound proteins on phase separation and coarsening in cell membranes

Witkowski, Thomas, Backofen, Rainer, Voigt, Axel January 2012 (has links)
A theoretical explanation of the existence of lipid rafts in cell membranes remains a topic of lively debate. Large, micrometer sized rafts are readily observed in artificial membranes and can be explained using thermodynamic models for phase separation and coarsening. In live cells such domains are not observed and various models are proposed to describe why the systems do not coarsen. We review these attempts critically and show within a phase field approach that membrane bound proteins have the potential to explain the different behaviour observed in vitro and in vivo. Large scale simulations are performed to compute scaling laws and size distribution functions under the influence of membrane bound proteins and to observe a significant slow down of the domain coarsening at longer times and a breakdown of the self-similarity of the size-distribution function. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
99

Structure and Dynamics of Interfacial Molecular Membranes

Bhattacharya, Rupak January 2013 (has links) (PDF)
This thesis describes the study on structure and dynamics of various kinds of molecular membranes in general. We have studied the morphological transition of colloidal as well as biologically relevant membranes and qualitatively argued regarding the interplay between structure and dynamics. Systematic measurements have been performed to address the issue of ambiguous behavior of molecules under stress when its confined at the interface. The structural and dynamical effect on interfacial membranes have been studied for soft colloidal free standing langmuir monolayer as well as for the quasi two dimensional lipid membranes on solid supports. For organic nanoparticle monolayer we have observed a correlation between the nanoparticle raft dynamics and the underlying morphological transition. In this study we have also found a non-monotonic behavior of dynamical heterogeneity with time which is unusual for a colloidal system in common and beyond the prediction of Mode Coupling Theory. In the case of lipid membrane, we have given an experimental evidence of lipid molecular rearrangement process at molecular level when its perturbed by foreign entities. Using sophisticated X-Ray scattering techniques, we were able to capture the subtle changes happening in the assembly of lipid molecules in a planar bilayer structure when it interacts with molecules having biological relevance. In the next level we have used lipid membranes as an active plat-form to study the physical interaction with several kinds of nanoparticles and explored the mechanism of active participation of lipid molecules in self assembly process. Besides with the help of Fluorescence Correlation Spectroscopy, we have also studied the effect of nanoparticles assemblies on the dynamics of lipid molecules itself. In Chapter 1, we have provided the background along with a brief review of the existing literature for understanding the results represented in the subsequent chapters. This includes discussion on the various physical properties of our systems of interest, including dynamic behavior of colloidal particles in different concentration regime and a detailed theoretical understanding regarding the glass transition and jamming transition for a highly dense colloidal packing. In this section we have also discussed the advantages of interfacial microrheology technique over conventional bulk rheology in terms of efficiency and sensitivity. Here we have also pointed out the formulation of the multi-particle tracking method for achieving different parameters which are correlated in space and time for a given system. Followed by that the Dynamical Susceptibility and the anomaly in Van Hove correlation function, for a heterogeneous system has been argued thoroughly. Towards the end we have discussed about the general features of another type of two dimensional membrane i.e. the lipid membrane at interface. Using raft theory we have also tried to give a plausible explanation of the dynamical heterogeneity of the real cell membrane which is mimicked by the model supported lipid membrane. Here we have argued about the structural six fold symmetry of a compact monolayer. Finally in the last part we have summarized the theoretical aspects of the lipid molecule mediated self assembly process and the how the lipid diffusion plays a vital role in it. Chapter 2 deals with the aspect of measuring the morphological transition and its effect on the dynamics for a two dimensional membrane at air/water interface. It starts with the discussion on the synthesis method for various types of organic molecule grafted nanoparticles like Cadmium Selenide(CdSe Quantum Dots) and Gold Nanoparticle(Au NPs) of different size and properties and followed by a preparation method of 2D film at air/water interface and on solid substrate using Langmuir-Blodgett method. In this chapter we have discussed about the basic principles of several experimental tools like Brewster Angle Microscopy(BAM), Laser Scanning Confocal Microscopy(LSCM), Atomic Force Microscopy(AFM), Thermogravimetric Analysis(TGA), X Ray Reflectivity(XRR), Grazing Incidence Diffraction(GID), Fluorescence Correlation Spectroscopy(FCS) etc. Chapter 3 explains the main aspects of the microscopic dynamics in dense amorphous nanoparticle monolayer at the air-water interface. In this study we have found a transition in mechanical properties, tracked down through the systematic variation of isothermal compressibility(�) with increasing two dimensional packing fraction of nanoparticle rafts up to the area fraction of Φ∼0.82 using Laser Scanning Confocal Microscope. Here we have used multi particle tracking method for a close packed gold monolayer with CdSe tracer to estimate different dynamical properties like Mean Square Displacement(MSD), Dynamical Heterogeneity etc. These calculations indeed point out the non-monotonic variation of the amplitude in the four-point dynamic susceptibility (χ4), a signature of spatio-temporal extension of correlated domains. Along with that we have also observed the anomaly in trend for the inherent relaxation time τ∗with increasing area fraction(Φ). Interestingly the variation in χ4exactly follows the systematic we found for the isothermal compressibility( �) with increasing Φ and that indicates the connection between the observed macroscopic transitions in mechanical properties and the microscopic dynamical phase transitions. Finally we have given a possible explanation of these kind of events in terms of the interaction between this sterically stabilized nanoparticle domains with the help of interpenetration of the capping long chain polymers of the neighboring nanoparticle. Chapter 4 opens up the possibilities of probing the hidden features of biomembranes at molecular scale with the help of very precise techniques based on synchrotron X ray diffraction. Here we have studied the rearrangement of the lipid molecules of an artificial membrane on a solid support as an effect of ad-sorption of organic branched molecules. In this work we have used non toxic PETIM dendrimers of two different generations, i.e. G3and G4which differs a lot in terms of size, no of termination groups, molecular weights and protonation states. Our initial measurements shows quantitatively the in-plane and out of plane symmetry breaking of the lipid bilayer as a result of the interaction with these two types of molecules. The molecular adsorption effect was quantified in terms of thickness reduction and the change in the scattering length density(SLD) or the electron density of the top layer in out of plane reflectivity model. Interestingly both the dendrimers showed different behavior and the interaction reflected in terms of membrane penetration was found stronger for higher generation. On the other hand the GID measurement indicates an enhancement of the in plane unit cell dimension and associated parameters of the arrangement of lipid molecules as a result of interaction with dendrimers. The combined XRR and GID measurements indicate a local fluidization of lipid packing as an outcome of charged branched molecules adsorption on the membrane surface. Chapter 5 is summarizes the lipid mediated self assembly process of nanoparticles on a bilayer and how the interaction changes the local properties of the bilayer represented by the molecular diffusivity. In this study we have used particles of wide variety of features in terms of size, charge, functionality, polarity etc and found a quite dramatic effect in the nanoparticle adsorption event on a solid supported Lαphased DMPC lipid bilayer. We have also seen that de-pending on the concentration and amount of surface charge the nanoparticles form two dimensional regular self assembled patterns on the bilayer surface. In FCS measurement, we have also found a second group of dynamics ( distribution of diffusivity) along with the normal bilayer diffusion which has been identified as the diffusion of the lipid molecules where nanoparticles are adsorbed. The inherent increment in diffusivity supports the argument of local fluidization in lipid membrane in presence of charged nanoparticle as we have observed in our XRR and GID data described in chapter 4. Chapter 6 contains the summary and the future perspective of the work presented here.
100

Effects of carbon nanotubes on barrier epithelial cells via effects on lipid bilayers

Lewis, Shanta January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Carbon nanotubes (CNTs) are one of the most common nanoparticles (NP) found in workplace air. Therefore, there is a strong chance that these NP will enter the human body. They have similar physical properties to asbestos, a known toxic material, yet there is limited evidence showing that CNTs may be hazardous to human barrier epithelia. In previous studies done in our laboratory, the effects of CNTs on the barrier function in the human airway epithelial cell line (Calu-3) were measured. Measurements were done using electrophysiology, a technique which measures both transepithelial electrical resistance (TEER), a measure of monolayer integrity, and short circuit current (SCC) which is a measure of vectorial ion transport across the cell monolayer. The research findings showed that select physiologically relevant concentrations of long single-wall (SW) and multi-wall (MW) CNTs significantly decreased the stimulated SCC of the Calu-3 cells compared to untreated cultures. Calu-3 cells showed decreases in TEER when incubated for 48 hours (h) with concentrations of MWCNT ranging from 4µg/cm2 to 0.4ng/cm2 and SWCNT ranging from 4µg/cm2 to 0.04ng/cm2. The impaired cellular function, despite sustained cell viability, led us to investigate the mechanism by which the CNTs were affecting the cell membrane. We investigated the interaction of short MWCNTs with model lipid membranes using an ion channel amplifier, Planar Bilayer Workstation. Membranes were synthesized using neutral diphytanoylphosphatidylcholine (DPhPC) and negatively charged diphytanoylphosphatidylserine (DPhPS) lipids. Gramicidin A (GA), an ion channel reporter protein, was used to measure changes in ion channel conductance due to CNT exposures. Synthetic membranes exposed to CNTs allowed bursts of currents to cross the membrane when they were added to the membrane buffer system. When added to the membrane in the presence of GA, they distorted channel formation and reduced membrane stability.

Page generated in 0.0427 seconds