Spelling suggestions: "subject:"lipid signalling"" "subject:"iipid signalling""
1 |
Defining the molecular mechanisms mediating class IA phosphoinositide 3-kinase (PI3K) regulation and their role in human diseaseDornan, Gillian Leigh 24 June 2019 (has links)
The phosphoinositide species phosphatidylinositol 3,4,5, trisphosphate (PIP3) is an essential mediator of many vital cellular processes involved in cell growth, survival, and metabolism. The class I PI3Ks are responsible for production of PIP3, and their activity is tightly controlled through interactions with regulatory proteins and activating stimuli. The class IA PI3Ks are composed of three distinct p110 catalytic subunits (p110, p110, p110) and they play different roles in specific tissues due to disparities in both expression and engagement downstream of cell surface receptors. Disruption of PI3K regulation is a frequent driver of numerous human diseases. Growth of all cell types is dependent on PI3K signalling, and development of immune cells relies on a precise balance of PIP3 production. Activating mutations in the genes encoding the catalytic and regulatory subunits of PI3K lead to cancer and immunodeficiencies. The PIK3CA gene encoding the p110 catalytic subunit of class IA PI3K is one of the most frequently mutated genes in cancer, and mutations in the PIK3CD gene encoding the p110 catalytic subunit lead to primary immunodeficiency. All class IA p110 subunits interact with p85 regulatory subunits, and mutations/deletions in different p85 regulatory subunits (PIK3R1, PIK3R2, PIK3R3) have been identified in both cancer and primary immunodeficiencies. By asking how these mutations mediate activation and disease phenotypes, we can identify the natural regulatory molecular mechanisms of class IA PI3Ks. Fundamentally understanding how mutations in PI3K subunits mediate human disease will expand our knowledge of PI3K biology and is essential to the development of novel therapeutics.
To identify the molecular mechanisms of class IA PI3K activating mutations, I employed a sophisticated combination of hydrogen-deuterium eXchange mass spectrometry (HDX-MS) with biochemical activity assays to probe the regulatory mechanisms of PI3Ks. HDX-MS measures the exchange rate of amide hydrogens in solution, which in turn can provide information on protein conformation and conformational changes between different states. By comparing PI3K mutants identified in primary immunodeficiency and cancer patients to wild-type enzymes, I have identified dynamic conformational changes induced by activating mutations. Biochemical and biophysical analysis of these mutants led us to generate a panel of engineered mutations to further characterise molecular mechanisms by which class IA PI3Ks are regulated. This thesis will consist of an introduction to class IA PI3K signalling and an introduction to the method of HDX-MS, followed by two data chapters wherein I investigate the mechanisms of activating mutations in PIK3CD followed by an investigation into activating mutations in PIK3R1. A conclusion and discussion of future directions will be presented in the final chapter. This work provides novel insight into the complex regulatory mechanisms of the class IA PI3Ks, which may lead to better understanding of human diseases that activate these enzymes. / Graduate / 2020-04-06
|
2 |
Control of PI4P 5-kinases by reversible phosphorylation in Arabidopsis thalianaLerche, Jennifer 10 April 2013 (has links)
No description available.
|
3 |
Endocannabinoid-Like Lipids in PlantsChilufya, Jedaidah Y., Devaiah, Shivakumar P., Sante, Richard R., Kilaru, Aruna 15 October 2015 (has links)
Classically, endogenous fatty acid ethanolamides and their derivatives that bind to the cannabinoid receptors and trigger a signalling pathway are referred to as endocannabinoids. Although derivatives of arachidonic acid, including arachidonylethanolamine or anandamide, are the known endogenous ligands for cannabinoid receptors, other fatty acid ethanolamides or N-acylethanolamines (NAE) that vary in carbon chain length and saturation occur ubiquitously in eukaryotic organisms and play an important role in their physiology and development. The metabolic pathway for NAEs is highly conserved among eukaryotes and well characterised in mammalian systems. Although NAE pathway is only partly elucidated in plants, significant progress has been made in the past 20 years in understanding the implications of the metabolism of saturated and unsaturated endocannabinoid-like molecules in plant development and growth. The latest advancements in the field of plant endocannabinoid research are reviewed. Key Concepts Endocannabinoids are endogenous ligands of cannabinoid receptors in mammalian systems. Endocannabinoids belong to a class of small bioactive lipid molecules that are derivatives of fatty acids including their ethanolamides, referred to as N-acylethanolamines. N-Acylethanolamines are ubiquitous and their metabolic pathway is highly conserved among eukaryotes. In higher plants, only 12–18C N-acylethanolamines have been identified and their metabolic pathway is partly elucidated. The endocannabinoid-like lipids play an important role in seed germination, seedling development, flowering and cellular organisation. In plants, N-acylethanolamines also participate in mediating responses to biotic and abiotic stress.
|
4 |
Role de la signalisation lipidique chez les plantes en réponse aux contraintes de l'environnement et lors du développement / Deciphering the role of lipid signalling in plant response to environmental stresses and developmental cuesKalachova, Tetiana 09 June 2017 (has links)
La thèse est consacrée à l'étude de la signalisation lipidique comme un mécanisme universel de médiation des réponses cellulaires à phytohormones et élicitors jouant ainsi un rôle clé dans la réorganisation de métabolisme cellulaire pendant l'adaptation de la plante aux changements environnementaux.Phospholipase D (PLD) et son produit acide phosphatidic (PA) ont étés impliqués au cascades de signalisation induites par l’acide salicylique (SA) dans les cellules de garde de Arabidopsis thaliana. On a trouvé une activation de PLD et la production de PA dans les feuilles des plantes après le traitement par SA. En utilisant le marquage radioactif des phospholipides, l'analyse histochimique, les inhibiteurs de la signalisation lipidique et des lignées transgénique des plantes, nous avons montré la participation de la PLD et la NADPH-oxidase RbohD à la formation du superoxyde dans les tissues d’Arabidopsis et à la fermeture des stomates induite par SA.La cooperation entre le SA et l’acide abscisic (ABA) dans la réorganisation de transcriptome induite par ces hormones a été examinée dans la culture de la suspension cellulaire. Tant SA que l'ABA ont inhibé l'activité basale in vivo de phospholipase C dépendante de phosphatidylinositol (PI-PLC), tandis que SA (mais pas ABA) a incité aussi le phosphorylation de phosphatidylinositols. Les transcriptomes de cellules après le traitement par SA ou ABA ont été comparé à ceux obtenus aprés le traitement avec U73122 ou wortmannin. Nous avons trouvé des groupes de gènes, pour qui l'effet d'ABA et des inhibiteurs était semblable; des gènes dependants du SA via l'équilibre des phosphoinositides et des gènes dependants du SA via l’activité de PLD. Basé sur l'analyse bioinformatique de toutes les groupes de gènes choisis, nous proposons le règlement du niveaux des phosphoinositides comme un facteur important dans la regulation du transcriptome basal et également dans les changements du profile transcriptomique induits par l'effet du SA ou d'ABA.L'effet du peptide bactérien flg22 sur l’équilibre des phospholipides a été détecté tant dans des cellules de suspension que dans des plantules. Flg22 a induit l'accumulation de PA par l'activation de PI-PLC couplée a la diacylglycerolkinase 5 (DGK5), et egalement la diminution de niveau de phosphatidylinositol-4,5-biphosphate, qui est un substrat de PI-PLC. L'analyse des effects des inhibiteurs a révélé la participation des DGK et PI-PLC dans la production des espèces d'oxygène réactive (ROS) induite par flg22. La production du PA a été placée dans la cascade de la signalisation en aval de la reconnaissance du flg22 par le complexe de récepteur FLS2-BAK1, mais aprés la formation du ROS par NADPH-oxydase RbohD. Le rôle de DGK5 a été caractérisé dans la regulation du transcriptome; dans l’accumulation du callose induite par flg22 dans l’apoplast et dans la résistance au pathogène biotrophique Pseudomonas syringae pv tomato DC3000. Finalement, nous avons proposé un nouveau modèle de perception du flagellin qui inclut PI-PLC et DGK5.Le rôle de phosphoinositides dans les cascades de la signalisation d’auxin et cytokinin a été révélé dans la morphogenesis racinaire dans le mutant d'Arabidopsis pi4kb1b2 (muté dans deux isoformes de PI4K) et pi4kb1b2sid2 (contient la mutation supplémentaire de l'enzyme de biosynthèse du SA, permettant de séparer les effets du mutation en PI4K qui dependent du SA). Nous avons analysé l'anatomie de la meristem des racines, l'allongement de cellules corticales, la réponse gravitropic, les réponses aux hormones exogènes et nous avons montré la connexion entre l'activité PI4K avec les effets d’auxin et de cytokinin pendant le morphogenesis racinaire et gravitropism. Nos résultats élargissent la connaissance de la nature de la signalisation phytohormonale dans les plantes et peuvent être utilisés comme une base pour augmenter la résistance de céréales agricolement importantes aux contraintes de l’environnement / Thesis is devoted to the investigation of lipid signaling processes as a universal mechanism mediating cellular responses to phytohormones and elicitors thus playing a key role in cell metabolism remodeling during plant adaptation to environmental changes. Phospholipase D (PLD) and its product phosphatidic acid (PA) were found to be involved to the SA-induced signaling cascades in Arabidopsis thaliana guard cells. Using radioactive labeling of phospholipids we found an activation of PLD and production of PA in leaves of 4-week old plants after salicylic acid (SA) treatment. Using histochemical assay, inhibitor assay and transgenic lines knock-out by different isoforms of NADPH-oxidases, we showed the involvement of PLD and NADPH-oxidase RbohD to PA-mediated superoxide formation in Arabidopsis tissues infiltrated by SA and SA-induced stomatal closure. SA- crosstalk with abscisic acid (ABA) in transcriptome remodeling induced by these hormones was investigated in suspension cell culture. Both SA and ABA inhibited basal activity of phosphatidylinositol dependent phospholipase C (PI-PLC) in vivo, while SA (but not ABA) also induced the phosphorylation of phosphatidylinositols. Total transcriptomes of suspension cells after SA or ABA treatment were compared to those obtained from suspension cells treated with U73122 (PI-PLC inhibitor) or wortmannin (inhibitor of phosphatidylinositol-4-kinases (PI4K) that provide the substrate for PI-PLC catalyzed reactions). We found a specific gene clusters, for those the effect of ABA and inhibitors was similar; SA-dependent genes, regulated via the balance of phosphoinositides, and SA-dependent genes, regulated via PLD-mediated pathway. Based on the bioinformatic analysis of the promoters of all selected gene sets, we claim a phosphoinositides level regulation to be an important factor mediating basal cell transcriptome and expression changes induced by SA and ABA.The effect of bacterial peptide flg22 on phospholipid turnover was detected in both suspension cells and seedlings. Flg22 induced accumulation of PA by the activation of PI-PLC coupled with diacylglycerolkinase (DGK) and a corresponding parallel increase of phosphatidylinositol-4,5-biphosphate content, that is a substrate of PI-PLC. Inhibitor analysis revealed the involvement of Ca2+ ions in lipid signaling enzymes reaction to flagellin treatment. We showed the role of DGK and PI-PLC in production of reactive oxygen species (ROS) induced by flg22. PA-production was placed in signaling cascade downstream of flagellin recognition by FLS2-BAK1 receptor complex receptor, but upstream or ROS formation by NADPH-oxidase RbohD. DGK5 was found to be the main source of the detected PA. The role of DGK5 was characterized in basal transcriptome regulation and its flagellin-induced remodeling; in flg22-induced callose accumulation in apoplast and resistance to biotrophic pathogen Pseudomonas syringae pv tomato DC3000. We proposed a new model of flagellin perception that includes PI-PLC and DGK5. Role of phosphoinositides in auxin and cytokinin signaling cascades was revealed studying root morphogenesis in Arabidopsis mutant pi4kb1b2 deficient for two PI4K genes, and pi4kb1b2sid2 that had additional mutation it key enzyme of SA biosynthesis, thus allowing us to separate SA-dependent and independent effects of the PI4K deficiency. pi4kb1b2 mutant plants exhibit the dwarf phenotype both in leaf and root parts, while pi4kb1b2sid2 show the normal rosette growth compared to WT, but still shorter roots. We analyzed root meristem anatomy, cortical cells elongation, gravitropic response, responses to exogenic hormones and firstly showed the connection of PI4K activity with auxin and cytokinin effects during root morphogenesis and gravitropism. Our results broaden the knowledge about the nature of plant phytohormonal signaling and can be used as a basis for increasing the resistance of agriculturally important crop plants to environmental stresses
|
5 |
A dissection of class I phosphoinositide 3-kinase signalling in mouse embryonic fibroblasts and prostate organoidsSadiq, Barzan A. January 2018 (has links)
Class I PI3Ks are a family (α, β, δ and γ) of ubiquitous lipid kinases that can be activated by cell surface receptors to 3-phosphorylate PI(4,5)P2 (phosphatidylinositol(4,5)-bisphosphate) and generate the signalling lipid PI(3,4,5)P3. The PI(3,4,5)P3 signal then activates a diverse collection of effector proteins involved in regulation of cell migration, metabolism and growth. The importance of this network is evidenced by the relatively high frequency with which cancers acquire gain-of-function mutations in this pathway and huge efforts to make PI3K inhibitors to treat cancer. The canonical model describing these events suggests class I PI3Ks are activated at the plasma membrane and generate PI(3,4,5)P3 in the inner leaflet of the plasma membrane where its effectors are activated. The PI(3,4,5)P3 signal can be terminated directly, by the tumour-suppressor and PI(3,4,5)P3-3-phosphatase PTEN, or modified to a distinct PI(3,4)P2 signal, by SHIP-family 5-phosphatases. The PI(3,4)P2 is removed by INPP4-family 4-phosphatases. Published work has shown that PI(3,4,5)P3 signalling can also occur in endosomes and nuclei, however, there is very little data defining the intracellular distribution of endogenous class I PI3Ks that supports these ideas; this is as a result of technical problems such as; their very low abundance, poor antibody-based tools and artefacts generated by overexpression of PI3Ks. Past work has indicated that, in PTEN-null mouse models of prostate tumour progression, either PI3Kβ or PI3Ks α and β, have important roles. Furthermore, the cell types and mechanism involved remained unclear. Recent published work in the host laboratory had indicated that there is an unexpectedly large accumulation of PI(3,4)P2 in PTEN-null cells that might be an important part of its status as a major tumour suppressor. The explanation and prevalence of this observation was unclear but potentially a result of PTEN also acting as a PI(3,4)P2 3-phosphatase in vivo. MEFs were derived from genetically-modified mice expressing endogenous, AviTagged class I PI3K subunits and used in experiments to define the subcellular localisation of class I PI3Ks. We found that following stimulation with PDGF, class IA PI3K subunits were unexpectedly depleted from the adherent basal membrane, in contrast, p85α and p110α, but not p85β and p110β, accumulated transiently in the nucleus. Interestingly, p110β, but none of the other subunits, was constitutively localised in the nucleus. These results support the idea that class I PI3K and PI(3,4,5)P3 signalling occurs in the nucleus. In organoids derived from WT, PI3Kγ-null or PTEN-null mouse prostate, application of PI3K-selective inhibitors revealed that PI3Kα had a dominant role in generating PI(3,4,5)P3 in prostate epithelial cells. The levels of PI(3,4)P2 were also elevated substantially in PTEN-null, compared to WT prostate organoids, use of PI3K-selective inhibitors suggested that it was also generated by PI3Kα. These data were consistent with the idea that PTEN can act as a PI(3,4)P2 3-phosphatase. Surprisingly, raising the pH of the organoids medium dramatically increased accumulation of PI(3,4,5)P3 and PI(3,4)P2, although the cause of this effect was unclear, we hypothesised the pH of the local environment may influence signalling via class I PI3Ks.
|
Page generated in 0.081 seconds