• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 16
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 63
  • 63
  • 63
  • 23
  • 18
  • 16
  • 13
  • 13
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Numerical simulation of pollutant emission and flame extinction in lean premixed systems

Eggenspieler, Gilles. January 2005 (has links)
Thesis (Ph. D.)--Aerospace Engineering, Georgia Institute of Technology, 2006. / Yedidia Neumeier, Committee Member ; Jerry Seitzman, Committee Member ; Fotis Sotiropoulos, Committee Member ; Tim Lieuwen, Committee Member ; suresh menon, Committee Chair.
12

Modelling and exergy analysis of the natural gas to hydrocarbon liquids (GTL) process

Venter, Johann Adriaan 30 August 2007 (has links)
Please read the abstract (Synopsis) in the section 00front of this document / Dissertation (M Eng (Chemical Engineering))--University of Pretoria, 2007. / Chemical Engineering / MEng / unrestricted
13

Análise energética e exergética da cadeia do gás natural líquido e a integração do processo de regaseificação com ciclos combinados de potência

Stradioto, Diogo Ângelo January 2011 (has links)
Este trabalho estuda a cadeia do Gás Natural Líquido (GNL) e propõe utilizações para a recuperação da energia do processo de regaseificação em ciclos de potência acoplados. Primeiramente, aborda a cadeia de abastecimento do GNL, identificando e quantificando os pontos consumidores de energia, destruidores de exergia e a reevaporação de massa ocorrida quando o metano esta na fase líquida. Posteriormente, avaliam-se as possibilidades do aproveitamento energético do processo de regaseificação, que ocorre no final dessa cadeia. Trata-se da busca por ciclos térmicos mais eficientes e aumentar o aproveitamento do trabalho reversível dos sistemas, abordando três alternativas de plantas de potência para operarem acopladas ao fornecimento de GNL, com benefício mútuo para ambos os processos: promoção da regaseificação do GNL sem energia auxiliar e aumento da eficiência da planta de potência. O ciclo selecionado para a integração entre as plantas foi o (CHP) Brayton-Rankine com três formas diferentes de acoplamento. Os resultados obtidos mostram que 14,81% da energia contida no combustível na entrada da planta de liquefação é perdida ou consumida nos processos que envolvem a cadeia. Quando essa cadeia é acoplada a um ciclo de potência, obteve-se uma recuperação da energia gasta no processo de regaseificação que reduz a perda de energia para 12,65%. Pelo lado da planta de potência, a eficiência energética de um ciclo combinado operando sem estar acoplado à regaseificação do GNL é de 49,68%, com destruição de exergia de 1078,0 kJ/kg. Dependendo do tipo de acoplamento proposto, o rendimento subiu para até 61,53%, com conseqüente redução de destruição de exergia. / This work studies the chain of Liquefied Natural Gas (LNG) and suggests its use for recovery energy in the process of regasification connected with cycles of power. First, it approaches the chain of supply chain of the LNG, identifies and quantifies the energy demand points, destruction of exergy and the reevaporation of mass occurred when the methane is liquid phase. After, the possibilities of the energy recovery of the regasification process are evaluated, that occurs in the end of this chain. The work searches for more efficient thermal cycles and the increase the recovery of the reversible work of the systems. Three alternatives are evaluated of power plants to operate connected to the LNG regasification, with mutual benefit for both the processes: promotion of the regasification of the LNG without energy auxiliary and increase the efficiency of the power plant. The cycle selected for the integration between the plants was (CHP) Brayton-Rankine with three different forms of coupling. The results show that 14.81% of the energy contained in the fuel in the entrance of the liquefaction plant are lost or consumed in the processes that involve the chain. When this chain is connected to a power cycle, the recovery of the energy spent in the regasification process reduces the loss of energy for 12,65%. For the side of the power plant, the energy efficiency of the combined cycle operating without connected to the regasification of the LNG is 49,68%, with destruction of exergy of 1078,0 kJ/kg. Depending on the type of considered coupling, the energy efficiency is 61,53%, with consequent reduction of destruction exergy.
14

Análise energética e exergética da cadeia do gás natural líquido e a integração do processo de regaseificação com ciclos combinados de potência

Stradioto, Diogo Ângelo January 2011 (has links)
Este trabalho estuda a cadeia do Gás Natural Líquido (GNL) e propõe utilizações para a recuperação da energia do processo de regaseificação em ciclos de potência acoplados. Primeiramente, aborda a cadeia de abastecimento do GNL, identificando e quantificando os pontos consumidores de energia, destruidores de exergia e a reevaporação de massa ocorrida quando o metano esta na fase líquida. Posteriormente, avaliam-se as possibilidades do aproveitamento energético do processo de regaseificação, que ocorre no final dessa cadeia. Trata-se da busca por ciclos térmicos mais eficientes e aumentar o aproveitamento do trabalho reversível dos sistemas, abordando três alternativas de plantas de potência para operarem acopladas ao fornecimento de GNL, com benefício mútuo para ambos os processos: promoção da regaseificação do GNL sem energia auxiliar e aumento da eficiência da planta de potência. O ciclo selecionado para a integração entre as plantas foi o (CHP) Brayton-Rankine com três formas diferentes de acoplamento. Os resultados obtidos mostram que 14,81% da energia contida no combustível na entrada da planta de liquefação é perdida ou consumida nos processos que envolvem a cadeia. Quando essa cadeia é acoplada a um ciclo de potência, obteve-se uma recuperação da energia gasta no processo de regaseificação que reduz a perda de energia para 12,65%. Pelo lado da planta de potência, a eficiência energética de um ciclo combinado operando sem estar acoplado à regaseificação do GNL é de 49,68%, com destruição de exergia de 1078,0 kJ/kg. Dependendo do tipo de acoplamento proposto, o rendimento subiu para até 61,53%, com conseqüente redução de destruição de exergia. / This work studies the chain of Liquefied Natural Gas (LNG) and suggests its use for recovery energy in the process of regasification connected with cycles of power. First, it approaches the chain of supply chain of the LNG, identifies and quantifies the energy demand points, destruction of exergy and the reevaporation of mass occurred when the methane is liquid phase. After, the possibilities of the energy recovery of the regasification process are evaluated, that occurs in the end of this chain. The work searches for more efficient thermal cycles and the increase the recovery of the reversible work of the systems. Three alternatives are evaluated of power plants to operate connected to the LNG regasification, with mutual benefit for both the processes: promotion of the regasification of the LNG without energy auxiliary and increase the efficiency of the power plant. The cycle selected for the integration between the plants was (CHP) Brayton-Rankine with three different forms of coupling. The results show that 14.81% of the energy contained in the fuel in the entrance of the liquefaction plant are lost or consumed in the processes that involve the chain. When this chain is connected to a power cycle, the recovery of the energy spent in the regasification process reduces the loss of energy for 12,65%. For the side of the power plant, the energy efficiency of the combined cycle operating without connected to the regasification of the LNG is 49,68%, with destruction of exergy of 1078,0 kJ/kg. Depending on the type of considered coupling, the energy efficiency is 61,53%, with consequent reduction of destruction exergy.
15

Análise energética e exergética da cadeia do gás natural líquido e a integração do processo de regaseificação com ciclos combinados de potência

Stradioto, Diogo Ângelo January 2011 (has links)
Este trabalho estuda a cadeia do Gás Natural Líquido (GNL) e propõe utilizações para a recuperação da energia do processo de regaseificação em ciclos de potência acoplados. Primeiramente, aborda a cadeia de abastecimento do GNL, identificando e quantificando os pontos consumidores de energia, destruidores de exergia e a reevaporação de massa ocorrida quando o metano esta na fase líquida. Posteriormente, avaliam-se as possibilidades do aproveitamento energético do processo de regaseificação, que ocorre no final dessa cadeia. Trata-se da busca por ciclos térmicos mais eficientes e aumentar o aproveitamento do trabalho reversível dos sistemas, abordando três alternativas de plantas de potência para operarem acopladas ao fornecimento de GNL, com benefício mútuo para ambos os processos: promoção da regaseificação do GNL sem energia auxiliar e aumento da eficiência da planta de potência. O ciclo selecionado para a integração entre as plantas foi o (CHP) Brayton-Rankine com três formas diferentes de acoplamento. Os resultados obtidos mostram que 14,81% da energia contida no combustível na entrada da planta de liquefação é perdida ou consumida nos processos que envolvem a cadeia. Quando essa cadeia é acoplada a um ciclo de potência, obteve-se uma recuperação da energia gasta no processo de regaseificação que reduz a perda de energia para 12,65%. Pelo lado da planta de potência, a eficiência energética de um ciclo combinado operando sem estar acoplado à regaseificação do GNL é de 49,68%, com destruição de exergia de 1078,0 kJ/kg. Dependendo do tipo de acoplamento proposto, o rendimento subiu para até 61,53%, com conseqüente redução de destruição de exergia. / This work studies the chain of Liquefied Natural Gas (LNG) and suggests its use for recovery energy in the process of regasification connected with cycles of power. First, it approaches the chain of supply chain of the LNG, identifies and quantifies the energy demand points, destruction of exergy and the reevaporation of mass occurred when the methane is liquid phase. After, the possibilities of the energy recovery of the regasification process are evaluated, that occurs in the end of this chain. The work searches for more efficient thermal cycles and the increase the recovery of the reversible work of the systems. Three alternatives are evaluated of power plants to operate connected to the LNG regasification, with mutual benefit for both the processes: promotion of the regasification of the LNG without energy auxiliary and increase the efficiency of the power plant. The cycle selected for the integration between the plants was (CHP) Brayton-Rankine with three different forms of coupling. The results show that 14.81% of the energy contained in the fuel in the entrance of the liquefaction plant are lost or consumed in the processes that involve the chain. When this chain is connected to a power cycle, the recovery of the energy spent in the regasification process reduces the loss of energy for 12,65%. For the side of the power plant, the energy efficiency of the combined cycle operating without connected to the regasification of the LNG is 49,68%, with destruction of exergy of 1078,0 kJ/kg. Depending on the type of considered coupling, the energy efficiency is 61,53%, with consequent reduction of destruction exergy.
16

Význam zkapalněného zemního plynu pro energetickou bilanci evropského prostoru / The Role of the Liquefied Natural Gas for Energy balance of the European Space

Kebrdlová, Helena January 2010 (has links)
The aim of the Master's thesis is to map the importance and role of liquefied natural gas in Europe and to assess its significance for future energy security of the EU. Working with the general characteristics of natural gas and LNG dedicated to LNG infrastructure and LNG position in the gas market in Europe. The fundamental part of the thesis analyzes the importance of LNG for energy security of European countries. Theoretical framework of the thesis comprises the concept of energy security of Daniel Yergin, which is followed by an approximation of EU energy policy. The end of thesis describes an European project North-South Energy Corridor that will significantly strengthen the energy security of Central European countries.
17

Desenvolvimento de um método para diagnose de falhas na operação de navios transportadores de gás natural liquefeito através de redes bayesianas. / Development of a method for fault diagnosis in liquefied natural gas carrier ships using bayesian networks.

Melani, Arthur Henrique de Andrade 18 August 2015 (has links)
O Gás Natural Liquefeito (GNL) tem, aos poucos, se tornado uma importante opção para a diversificação da matriz energética brasileira. Os navios metaneiros são os responsáveis pelo transporte do GNL desde as plantas de liquefação até as de regaseificação. Dada a importância, bem como a periculosidade, das operações de transporte e de carga e descarga de navios metaneiros, torna-se necessário não só um bom plano de manutenção como também um sistema de detecção de falhas que podem ocorrer durante estes processos. Este trabalho apresenta um método de diagnose de falhas para a operação de carga e descarga de navios transportadores de GNL através da utilização de Redes Bayesianas em conjunto com técnicas de análise de confiabilidade, como a Análise de Modos e Efeitos de Falhas (FMEA) e a Análise de Árvores de Falhas (FTA). O método proposto indica, através da leitura de sensores presentes no sistema de carga e descarga, quais os componentes que mais provavelmente estão em falha. O método fornece uma abordagem bem estruturada para a construção das Redes Bayesianas utilizadas na diagnose de falhas do sistema. / Liquefied Natural Gas (LNG) has gradually become an important option for the diversification of the Brazilian energy matrix. LNG carriers are responsible for LNG transportation from the liquefaction plant to the regaseification plant. Given the importance, as well as the risk, of transportation and loading/unloading operations of LNG carriers, not only a good maintenance plan is needed, but also a failure detection system that localizes the origin of a failure that may occur during these processes. This research presents a fault diagnosis method for the loading and unloading operations of LNG carriers through the use of Bayesian networks together with reliability analysis techniques, such as Failure Modes and Effects Analysis (FMEA ) and Fault Tree Analysis (FTA). The proposed method indicates, by reading sensors present in the loading and unloading system, which components are most likely faulty. The method provides a well-structured approach for the development of Bayesian networks used in the diagnosis of system failures.
18

Control of Vapor Dispersion and Pool Fire of Liquefied Natural Gas (LNG) with Expansion Foam

Yun, Geun Woong 2010 August 1900 (has links)
Liquefied Natural Gas (LNG) is flammable when it forms a 5 – 15 percent volumetric concentration mixture with air at atmospheric conditions. When the LNG vapor comes in contact with an ignition source, it may result in fire and/or explosion. Because of flammable characteristics and dense gas behaviors, expansion foam has been recommended as one of the safety provisions for mitigating accidental LNG releases. However, the effectiveness of foam in achieving this objective has not been sufficiently reported in outdoor field tests. Thus, this research focused on experimental determination of the effect of expansion foam application on LNG vapor dispersion and pool fire. Specifically, for evaluating the use of foam to control the vapor hazard from spilled LNG, this study aimed to obtain key parameters, such as the temperature changes of methane and foam and the extent reduction of vapor concentration. This study also focused on identifying the effectiveness of foam and thermal exclusion zone by investigating temperature changes of foam and fire, profiles of radiant heat flux, and fire height changes by foam. Additionally, a schematic model of LNG-foam system for theoretical modeling and better understanding of underlying mechanism of foam was developed. Results showed that expansion foam was effective in increasing the buoyancy of LNG vapor by raising the temperature of the vapor permeated through the foam layer and ultimately decreasing the methane concentrations in the downwind direction. It was also found that expansion foam has positive effects on reducing fire height and radiant heat fluxes by decreasing fire heat feedback to the LNG pool, thus resulting in reduction in the safe separation distance. Through the extensive data analysis, several key parameters, such as minimum effective foam depth and mass evaporation rate of LNG with foam, were identified. However, caution must be taken to ensure that foam application can result in initial adverse effects on vapor and fire control. Finally, based on these findings, several recommendations were made for improving foam delivery methods which can be used for controlling the hazard of spilled LNG.
19

How to handle boil-off gases from LNG trucks

Gunnarsson, Linda, Helander, Erik January 2015 (has links)
This master thesis project aims to investigate the circumstances of boil-off for heavy vehicle transports, using LNG as fuel, and suggest possible ways of handling these gases otherwise released into the atmosphere. LNG, Liquefied Natural Gas, is when natural gas is cooled below its vaporisation point, turning it into liquid phase which is a much more dense way of storing and transporting the fuel. Trucks running on LNG store their fuel in super insulated tanks, but some heat are transferred to the fuel anyway, causing it to vaporise at a steady rate. During driving of these trucks, this vaporised gas is consumed and the pressure are kept at a certain level of 10 bar. Once the truck is turned off, consumption stops and the pressure starts to increase. After a period of standstill, normally several days, the pressure within the tank has increased to 16 bar where a valve opens to release gas from the tank. This is a safety feature, causing the pressure not to increase further creating hazards. While natural gas, mostly containing methane, is released, fuel is lost and an environmentally unfriendly substance is let out into the atmosphere. This should be avoided, to improve the environmental aspects of using LNG as a fuel for trucks, which most likely will be regulated by laws yet to come. Since the release of boil-off gases rarely should happen during the regular use of these trucks, but a system handling these gases should work at any time and place, a cheap and lightweight unit are to be fitted to these trucks. Equipment already on the truck should be used as much as possible, keeping additional costs and weight low. The only practical way of storing this gas, which is the most resource efficient way of handling these boil-off gases, is to re-liquefy it and transferring it back to the usual LNG tank on the vehicle. The second best option is to consume the gas, making it less environmentally unfriendly. While consuming the gas, as much as possible of its energy should be utilised as electricity and heat. Preferably, electricity should be produced as much as possible, charging the batteries on the truck, decreasing the fuel consumption while running and increasing the lifespan of the batteries. The most efficient way of managing the heat generated is to distribute it to the coolant system on the truck, providing it to the engine and several other components. Distributing the energy is also a matter of safety, as very hot areas otherwise might cause risks of fire. The most simple concept, that is easiest to implement in the near future, is to use a burner similar to the auxiliary diesel heaters fitted to some trucks today. This consumes fuel, generating heat to the coolant system. An additional cooler is needed, to cool of excess heat from the system keeping the temperatures to a certain level. Using this system for an extensive period of time needs an external power supply, since no electricity is generated from consuming the gas. Other technologies that could be used in the future, also generating electricity, is thermoelectric generators and solid oxide fuel cells. These are technologies now being further developed and adapted to the industry of vehicles. These technologies are especially interesting when they are implemented to these trucks for use within other systems as well, for instance utilisation of the heat within exhaust gases. A small scale re-liquefaction unit mounted to the truck is however seen as the most resource efficient solution, making it possible to keep using the gas for it intended purpose of propelling the trucks forward. This technology has to be made more compact, adapting it to the use on a truck.
20

Meso-Scale Model for Simulations of Concrete Subjected to Cryogenic Temperatures

Masad, Noor Ahmad 16 December 2013 (has links)
Liquefied natural gas (LNG) is stored at a cryogenic temperatures ≤ -160°C and around atmospheric pressure to insure the minimum storage volume in tanks. The demand for LNG has been increasing as a primary source of energy. Therefore, there is significant interest in the construction of LNG tanks to achieve low cost and safe storage. Three systems are typically used to store LNG: single containment, double containment, and full containment. Concrete is used in these containment systems, and consequently, understanding concrete behavior and properties at cryogenic temperatures is important. The research documented in this thesis deals with computational analysis of the behavior of concrete subjected to cryogenic temperatures. The analysis focuses on the effect of aggregate sizes, coefficient of thermal expansion, volume fraction, and the shape of aggregate on damage of concrete subjected to cryogenic temperatures. The analysis is performed by developing a computational model using the finite element software ABAQUS. In this model, concrete is considered as a 3- phase composite material in a meso-scale structure: mortar matrix, aggregate, and interfacial transmission zone (ITZ). The Concrete Damage Plasticity model in ABAQUS is used to represent the mortar and ITZ phases of concrete. This model has the advantage of accounting for the effect of temperature on material properties. The aggregate phase is modeled as a linear-elastic material. The model parameters are selected based on comprehensive literature review of material properties at different temperatures. The finite element results provide very useful insight on the effects of concrete mixture design and properties on resistance to damage. The most important factor that affected damage development was the difference in the coefficient of thermal expansion between the mortar and aggregates. Models in which the mortar and aggregate had close values of positive coefficients experienced less damage. The model with irregular shape particles experienced more localized damage than the model with circular shape particles. The model was successful in demonstrating the effect of using air entrained concrete in reducing damage. The damage results predicted by the model for air entrained and non-air entrained concrete are validated by comparing them with experimental data from the literature. The analysis validated the capabilities of the mode in simulating the effect of reduction in temperature on damage. The modeling results and the findings from the literature review were used to put forward recommendations regarding the characteristics of concrete used in LNG storage.

Page generated in 0.065 seconds