• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 12
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 91
  • 91
  • 40
  • 24
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Equilibrium and dynamic properties of side-chain liquid-crystalline polymers in dilute nematic solutions

Smith, Steven Richard January 1995 (has links)
No description available.
52

A new class of polyelectrolytes, poly(phenylene sulfonic acids) and its copolymers as proton exchange membranes for PEMFC’s

Granados-Focil, Sergio January 2006 (has links)
No description available.
53

Structure-Property Relationships in Main-Chain Liquid Crystalline Networks

Burke, Kelly Anne 04 May 2010 (has links)
No description available.
54

Generation of Recyclable Liquid Crystalline Polymer Reinforced Composites for Use in Conventional and Additive Manufacturing Processes

Chen, Tianran 21 May 2021 (has links)
The application of glass fiber reinforced composites has grown rapidly due to their high strength-to-weight ratio, low cost, and chemical resistance. However, the increasing demand for fiber reinforced composites results in the generation of more composite wastes. Mechanical recycling is a cost-effective and environmentally-friendly recycling method, but the loss in the quality of recycled glass or carbon fiber composite hinders the wide-spread use of this recycling method. It is important to develop novel composite materials with higher recyclability. Thermotropic liquid crystalline polymers (TLCPs) are high-performance engineering thermoplastics, which have comparable mechanical performance to that of glass fiber. The TLCP reinforced composites, called in situ composites, can form the reinforcing TLCP fibrils during processing avoiding the fiber breakage problem. The first part of this dissertation is to study the influence of mechanical recycling on the properties of injection molded TLCP and glass fiber (GF) reinforced polypropylene (PP). The processing temperature of the injection molding process was optimized using a differential scanning calorimeter (DSC) and a rheometer to minimize the thermal degradation of PP. The TLCP and GF reinforced PP materials were mechanically recycled up to three times by repeated injection molding and grinding. The mechanical recycling had almost no influence on the mechanical, thermal, and thermo-mechanical properties of TLCP/PP because of the regeneration of TLCP fibrils during the mold filling process. On the other hand, glass fiber/PP composites decreased 30% in tensile strength and 5% in tensile modulus after three reprocessing cycles. The micro-mechanical modeling demonstrated the deterioration in mechanical properties of GF/PP was mainly attributed to the fiber breakage that occurred during compounding and grinding. The second part of this dissertation is concerned with the development of recyclable and light weight hybrid composites through the use of TLCP and glass fiber. Rheological tests were used to determine the optimal processing temperature of the injection molding process. At this processing temperature, the thermal degradation of matrix material was mitigated and the processability of the hybrid composite was improved. The best formulation of TLCP and glass fiber in the composite was determined giving rise to the generation of a recyclable hybrid composite with low melt viscosity, low mechanical anisotropy, and improved mechanical properties. Finally, TLCP reinforced polyamide composites were utilized in an additive manufacturing application. The method of selecting the processing temperature to blend TLCP and polyamide in the dual extrusion process was devised using rheological analyses to take advantage of the supercooling behavior of TLCP and minimize the thermal degradation of the matrix polymer. The composite filament prepared by dual extrusion was printed and the printing temperature of the composite filament that led to the highest mechanical properties was determined. Although the tensile strength of the TLCP composite was lower than the glass fiber or carbon fiber composites, the tensile modulus of 3D printed 60 wt% TLCP reinforced polyamide was comparable to traditional glass or carbon fiber reinforced composites in 3D printing. / Doctor of Philosophy / The large demand for high performance and light weight composite materials in various industries (e.g., automotive, aerospace, and construction) has resulted in accumulation of composite wastes in the environment. Reuse and recycling of fiber reinforced composites are beneficial from the environmental and economical point of view. However, mechanical recycling deteriorates the quality of traditional fiber reinforced composite (e.g., glass fiber and carbon fiber). There is a need to develop novel composites with greater recyclability and high-performance. Thermotropic liquid crystalline polymers (TLCP) are attractive high performance materials because of their excellent mechanical properties and light weight. The goal of this work is to generate recyclable thermotropic liquid crystalline polymer (TLCP) reinforced composites for use in injection molding and 3D printing. In the first part of this work, a novel recyclable TLCP reinforced composite was generated using the grinding and injection molding. Recycled TLCP composites were as strong as the virgin TLCP composites, and the mechanical properties of TLCP composites were found to be competitive with the glass fiber reinforced counterparts. In the second part, a hybrid TLCP and glass fiber reinforced composite with great recyclability and excellent processability was developed. The processing conditions of injection molding were optimized by rheological tests to mitigate fiber breakage and improve the processability. Finally, a high performance and light weight TLCP reinforced composite filament was generated using the dual extrusion process which allowed the processing of two polymers with different processing temperatures. This composite filament could be directly 3D printed using a benchtop 3D printer. The mechanical properties of 3D printed TLCP composites could rival 3D printed traditional fiber composites but with the potential to have a wider range of processing shapes.
55

Generation of Thermotropic Liquid Crystalline Polymer (TLCP)-Thermoplastic Composite Filaments and Their Processing in Fused Filament Fabrication (FFF)

Ansari, Mubashir Qamar 11 March 2019 (has links)
One of the major limitations in Fused Filament Fabrication (FFF), a form of additive manufacturing, is the lack of composites with superior mechanical properties. Traditionally, carbon and glass fibers are widely used to improve the physical properties of polymeric matrices. However, the blending methods lead to fiber breakage, preventing generation of long fiber reinforced filaments essential for printing load-bearing components. Our approach to improve tensile properties of the printed parts was to use in-situ composites to avoid fiber breakage during filament generation. In the filaments generated, we used thermotropic liquid crystalline polymers (TLCPs) to reinforce acrylonitrile butadiene styrene (ABS) and a high performance thermoplastic, polyphenylene sulfide (PPS). The TLCPs are composed of rod-like monomers which are highly aligned under extensional kinematics imparting excellent one-dimensional tensile properties. The tensile strength and modulus of the 40 wt.% TLCP/ABS filaments was improved by 7 and 20 times, respectively. On the other hand, the 67 wt.% TLCP/PPS filament tensile strength and modulus were improved by 2 and 12 times, respectively. The filaments were generated using dual extrusion technology to produce nearly continuously reinforced filaments and to avoid matrix degradation. Rheological tests were taken advantage of to determine the processing conditions. Dual extrusion technology allowed plasticating the matrix and the reinforcing polymer separately in different extruders. Then continuous streams of TLCP were injected below the TLCP melting temperature into the matrix polymer to avoid matrix degradation. The blend was then passed through a series of static mixers, subdividing the layers into finer streams, eventually leading to nearly continuous fibrils which were an order of magnitude lower in diameter than those of the carbon and glass fibers. The composite filaments were printed below the melting temperature of the TLCPs, and the conditions were determined to avoid the relaxation of the order in the TLCPs. On printing, a matrix-like printing performance was obtained, such that the printer was able to take sharp turns in comparison with the traditionally used fibers. Moreover, the filaments led to a significant improvement in the tensile properties on using in FFF and other conventional technologies such as injection and compression molding. / Doctor of Philosophy / In this work two thermoplastic matrices, acrylonitrile butadiene styrene (ABS) and polyphenylene sulfide (PPS), were reinforced with higher melting thermoplastics of superior properties called thermotropic liquid crystalline polymers (TLCPs). This was done so that the resulting filaments could be 3D-printed without melting the TLCPs. The goal of this work was to generate nearly continuous reinforcement in the filaments and to avoid matrix degradation, and, hence, a technology called dual extrusion technology was used for the filament generation. The temperatures required for filament generation were determined using rheology, which involves the study of flow behavior of complex fluids. Dual extrusion technology allows processing of the constituent polymers separately at different temperatures, followed by a continuous injection of multiple TLCP-streams into the matrix polymers. In addition, the use of static mixers (metallic components kept in the path of flow to striate incoming streams) leads to further divisions of the TLCP-streams which are eventually drawn by pulling to orient the TLCP phase. The resulting filaments exhibited specific properties (normalized tensile properties) higher than aluminum and contained fibers that were nearly continuous, highly oriented, and an order in magnitude lower in diameter than those of carbon and glass fiber, which are commonly used reinforcements. High alignment and lower fiber diameter are essential for printing smoother printed parts. The filaments were intended to be printed without melting the TLCPs. However, previous studies involving the use of TLCP reinforced composites in conventional technologies have reported the occurrence of orientation relaxation on postprocessing, which decreases their tensile v properties. Therefore, temperatures required for 3D printing were determined using compression molding to retain filament properties on printing to the maximum extent. On printing using an unmodified 3D printer, parts were printed by taking 180º turns during material deposition. Contrarily, the use of continuous carbon fibers required a modified 3D printer to allow impregnation during 3D printing. Moreover, the performance comparison showed that the continuous carbon fibers could not be deposited in tighter loops. The properties of the printed parts were higher than those obtained on using short fibers and approaching those of the continuous fiber composites.
56

Designing supramolecular liquid-crystalline hybrids from pyrenyl-containing dendrimers and arene ruthenium metallacycles

Pitto-Barry, Anaïs, Barry, Nicolas P.E., Russo, V., Heinrich, B., Donnio, B., Therrien, B., Deschenaux, R. 24 November 2014 (has links)
Yes / The association of the arene ruthenium metallacycle [Ru4(p-cymene)4(bpe)2(donq)2][DOS]4 (bpe = 1,2-bis(4-pyridyl)ethylene, donq = 5,8-dioxydo-1,4-naphtoquinonato, DOS = dodecyl sulfate) with pyrenyl-functionalized poly(arylester) dendrimers bearing cyanobiphenyl end-groups is reported. The supramolecular dendritic systems display mesomorphic properties as revealed by polarized optical microscopy, differential scanning calorimetry and small-angle X-ray scattering measurements. The multicomponent nature of the dendrimers and of the corresponding host–guest supramolecules (i.e., end-group mesogens, dendritic core, pyrene unit, aliphatic spacers, and metallacycle) leads to the formation of highly segregated mesophases with a complex multilayered structure due to the tendency of the various constitutive building-blocks to separate in different organized zones. The pyrenyl dendrimers exhibit a multilayered smectic A-like phase, thereafter referred to as LamSmA phase to emphasize this unaccustomed morphology. As for the corresponding Ru4–metallacycle adducts, they self-organize into a multicontinuous thermotropic cubic phase with the Im3̅m space group symmetry. This represents a unique example of liquid-crystalline behavior observed for such large and complex supramolecular host–guest assemblies. Models of their supramolecular organizations within both mesophases are proposed. / R.D. thanks the Swiss National Science Foundation (Grant No 200020-140298) for financial support.
57

Sistemas líquido cristalinos de geleificação in situ de administração intratumoral para liberação localizada de siRNA na terapia do câncer de pele / In situ gelling liquid crystalline system for intratumoral and localized delivery of siRNA for skin cancer therapy

Cardoso, Livia Neves Borgheti 07 July 2016 (has links)
O mecanismo de interferência por RNA (RNAi) é um evento de silenciamento gênico através da degradação do RNA mensageiro. Desta forma, a administração de siRNA (molécula efetora do RNAi) é uma terapia promissora para o tratamento de diversas doenças como o câncer. Porém, para a sua efetiva aplicação terapêutica é necessário o desenvolvimento de sistemas de liberação capazes de liberar o siRNA nas células alvo, promover a sua internalização celular e evitar a sua degradação. Dentre os sistemas de liberação, os de liberação localizada, como os sistemas de geleificação in situ, apresentam vantagens sobre administração sistêmica. Formulações fluidas precursoras (FFP) que formam sistemas líquido cristalinos viscosos in situ podem ser obtidas a partir de lipídeos anfifílicos que absorvem água do meio e se rearranjam. Neste contexto, a presente pesquisa teve como objetivo avaliar o gel formado in situ a partir da FFP (G-FFP), composta por monoglicerídeos (MO), polietilenoimina (PEI), propilenoglicol (PG) e tampão tris, como sistema de liberação localizada de siRNA na terapia do câncer de pele. Os resultados mostraram que o G-FFP é uma mistura de fase cúbica e fase hexagonal. O G-FFP liberou o siRNA de maneira sustentada e complexado ao PEI. A FFP pode ser esterilizada por filtração em membrana e foi capaz de complexar altas concentrações de siRNA (15 mM) e de proteger o siRNA da degradação. A citotoxicidade foi dependente da concentração de FFP e esta quando complexada com siRNA teve a toxicidade diminuída. O siRNA liberado do G-FFP foi internalizado pelas células A431, FaDu, HeLa, A549, WM35/DLC2-GFP e MCF-7/DLC2-GFP. Além disto, siRNAs específicos liberados pelo G-FFP foram capazes de reduzir a expressão da proteína Firefly luciferase em células HeLa e FaDu, pórem não foram capazes de reduzir a expressão do receptor do fator de crescimento epidérmico (EGFR) nas células A431, HeLa, A549 e FaDu. A redução da expressão de EGFR em células A549 foi observado quando a terapia com siRNA foi combinada com internalização fotoquímica. Destes resultados, pode-se inferir que a transfecção celular do siRNA e o silenciamento gênico promovido por ele foi dependente tanto do tipo de linhagem celular como do alvo desejado. Os estudos in vivo mostraram que ocorre a formação de gel intratumoral e após 3 dias da administração intratumoral da FFP contendo siRNA específico para EGFR houve redução de 30% no tamanho dos tumores comparados aos tumores tratados com FFP sem siRNA. Diante destes resultados, pode-se concluir que o sistema desenvolvido tem potencial como sistema de liberação localizada de siRNA quando aplicado subcutaneamente ou intratumoral, uma vez que complexa o siRNA, promove a sua internalização celular e o siRNA liberado no citoplasma das células pode reduzir a expressão de proteínas de interesse. / RNA interference (RNAi) is a mechanism in which small interfering RNA molecules (siRNA) inhibit gene expression, by causing the messenger RNA degradation. Thus, siRNA is a promising therapy for the treatment of several diseases such as cancer. However, the development of delivery systems able to protect the siRNA from degradation and promote its cell uptake is essential for therapeutic use of siRNA. Among the delivery systems, the localized delivery system such as in situ gelling delivery system, have advantages over systemic administration. Precursor fluid formulations (FFP), which forms in situ viscous liquid crystalline systems, can be obtained from amphiphilic lipids that absorb water from the environment and self-assembling. In this context, the present study aimed to evaluate the in situ gel formed from the FFP (G-FFP), composed of monoglycerides (MO), polyethyleneimine (PEI), propylene glycol (PG) and Tris buffer, as localized delivery system for siRNA in skin cancer therapy. The results showed that the G-FFP is a mixture of cubic and hexagonal phase. The G-FFP sustained release of siRNA and the siRNA is released complexed with PEI. The FFP can be sterilized by membrane filtration at 0.22 ?m. FFP was able to complex high siRNA concentration (15 mM) and protect the siRNA from degradation. The cytotoxicity was dependent on the FFP concentration, when FFP was complexed with siRNA it was observed a decreased in toxicity. The siRNA released from G-FFP was uptake by A431, FaDu, HeLa, A549, WM35/DLC2-GFP and MCF-7/DLC2-GFP cells. In addition, specific siRNAs released from G-FFP were able to reduce the expression of Firefly luciferase in HeLa and FaDu cells, but they were unable to reduce the expression of the epidermal growth factor receptor (EGFR) in A431, HeLa, A549 and FaDu cells. The reduction of expression of EGFR in A549 cells was observed when siRNA therapy was combined with photochemical internalization. From these results, can be inferred that the efficiency of siRNA transfection and knockdown was dependent on both the type of cell line and the desired target protein. In vivo studies showed that the gel was formed in situ after intratumoral injection. 3 days after intratumoral administration of FFP containing EGFR specific siRNA, 30% of reduction in the tumors size compared to tumors treated with FFP without siRNA was observed. Based on these results, could be concluded that the developed system is a potential siRNA delivery system when administered subcutaneously and intratumoral, because it was able to complex siRNA, promoted its cell uptake and the siRNA released into the cytoplasm of the cell may reduce the expression of target proteins
58

Reconfigurable Antennas Using Liquid Crystalline Elastomers

Gibson, John 29 March 2018 (has links)
This dissertation demonstrates the design of reversibly self-morphing novel liquid crystalline elastomer (LCE) antennas that can dynamically change electromagnetic performance in response to temperature. This change in performance can be achieved by programming the shape change of stimuli-responsive (i.e., temperature-responsive) LCEs, and using these materials as substrates for reconfigurable antennas. Existing reconfigurable antennas rely on external circuitry such as Micro-Electro-Mechanical-Systems (MEMS) switches, pin diodes, and shape memory alloys (SMAs) to reconfigure their performance. Antennas using MEMS or diodes exhibit low efficiency due to the losses from these components. Also, antennas based on SMAs can change their performance only once as SMAs response to the stimuli and is not reversible. Flexible electronics are capable of morphing from one shape to another using various techniques, such as liquid metals, hydrogels, and shape memory polymers. LCE antennas can reconfigure their electromagnetic performance, (e.g., frequency of operation, polarization, and radiation pattern) and enable passive (i.e., battery-less) temperature sensing and monitoring applications, such as passive radio frequency identification device (RFID) sensing tags. Limited previous work has been performed on shape-changing antenna structures based on LCEs. To date, self-morphing flexible electronics, including antennas, which rely on stimuli-responsive LCEs that reversibly change shape in response to temperature changes, have not been previously explored. Here, LCE antennas will be studied and developed. Also, the metallization of LCEs with different metal conductors and their fabrication process, by either electron beam (E-Beam) evaporation or optical gluing of the metal film will be observed. The LCE material can have a significant impact on sensing applications due to its reversible actuation that can enable a sensor to work repeatedly. This interdisciplinary research (material polymer science and electrical engineering) is expected to contribute to the development of morphing electronics, including sensors, passive antennas, arrays, and frequency selective surfaces (FSS).
59

Barrier Properties of Liquid Crystalline Polymers and their Blends with PE and PETP

Flodberg, Göran January 2002 (has links)
No description available.
60

Design of Baluns and Low Noise Amplifiers in Integrated Mixed-Signal Organic Substrates

Govind, Vinu 19 July 2005 (has links)
The integration of mixed-signal systems has long been a problem in the semiconductor industry. CMOS System-on-Chip (SOC), the traditional means for integration, fails mixed-signal systems on two fronts; the lack of on-chip passives with high quality (Q) factors inhibits the design of completely integrated wireless circuits, and the noise coupling from digital to analog circuitry through the conductive silicon substrate degrades the performance of the analog circuits. Advancements in semiconductor packaging have resulted in a second option for integration, the System-On-Package (SOP) approach. Unlike SOC where the package exists just for the thermal and mechanical protection of the ICs, SOP provides for an increase in the functionality of the IC package by supporting multiple chips and embedded passives. However, integration at the package level also comes with its set of hurdles, with significant research required in areas like design of circuits using embedded passives and isolation of noise between analog and digital sub-systems. A novel multiband balun topology has been developed, providing concurrent operation at multiple frequency bands. The design of compact wideband baluns has been proposed as an extension of this theory. As proof-of-concept devices, both singleband and wideband baluns have been fabricated on Liquid Crystalline Polymer (LCP) based organic substrates. A novel passive-Q based optimization methodology has been developed for chip-package co-design of CMOS Low Noise Amplifiers (LNA). To implement these LNAs in a mixed-signal environment, a novel Electromagnetic Band Gap (EBG) based isolation scheme has also been employed. The key contributions of this work are thus the development of novel RF circuit topologies utilizing embedded passives, and an advancement in the understanding and suppression of signal coupling mechanisms in mixed-signal SOP-based systems. The former will result in compact and highly integrated solutions for RF front-ends, while the latter is expected to have a significant impact in the integration of these communication devices with high performance computing.

Page generated in 0.0922 seconds