• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 12
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 91
  • 91
  • 40
  • 24
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Main chain liquid crystalline polyethers based on conformational isomerism

Zuber, Mohammad January 1992 (has links)
No description available.
22

X-ray structure analysis of liquid crystalline copoly(ester carbonates)

Schneider, Andrea-Ingrid January 1991 (has links)
No description available.
23

Dielectric relaxations in side-chain liquid crystalline polymers

Zhong, Zhengzhong January 1993 (has links)
No description available.
24

Design of Functional Polyesters for Electronic and Biological Applications

Nelson, Ashley M. 12 August 2015 (has links)
Melt polymerization and novel monomers enabled the synthesis of polyesters for electronic and biological applications. Inspiration from nature and a passion for environmental preservation instigated an emphasis on the incorporation of renewable resources into polymeric materials. Critical analysis of current research surrounding bisphenol-A replacements and ioncontaining segmented polyurethanes aided in identifying benchmark polymers, including limitations, challenges, and future needs. Structure-property-morphology relationships were investigated to evaluate the polymers for success in the proposed applications as well as to improve understanding of polyester compositions to further design and develop sophisticated polymers for emerging applications. Aiming to utilize the reported [2 + 2] cycloaddition of the known mesogen 4,4’-dimethyltrans-stilbene dicarboxylate (SDE) to overcome ultraviolet (UV) induced degradation issues in electronic encasings, the synthesis of copolyesters containing SDE ensued. 1,6-Hexanediol (HD) and 1,4-butanediol comonomers in varying weight ratios readily copolymerized with SDE under melt transesterification conditions to afford a systematic series of copolyesters. Differential scanning calorimetry revealed all copolyesters exhibited liquid crystalline transitions and melting temperatures ranged from 196 °C – 317 °C. Additionally, melt rheology displayed shear thinning to facilitate melt processing. Compression molded films exhibited high storage moduli, a glassy plateau until the onset of flow, and tensile testing revealed a Young’s iii modulus of ~900 MPa for poly(SDE-HD). These properties enable a wide range of working temperatures and environments for electronic applications. Adding complexity to linear liquid crystalline copolyesters, copolymerization with oligomeric hydroxyl-functionalized polyethers afforded segmented liquid crystalline copolyesters. 4,4’-Biphenyl dicarboxylate (BDE), commercially available diols containing 4, 5, 6, 8, or 10 methylene units, and introducing poly(tetramethylene oxide) or a Pluronic® triblock oligoethers in varying weight % were used to synthesize multiple series of segmented copolyesters. Comparing melting transitions as a function of methylene spacer length elucidated the expected even-odd effect and melting temperatures ranged from 150 °C to 300 °C. Furthermore, incorporating the flexible soft segment did not prevent formation of a liquid crystalline morphology. Complementary findings between differential scanning calorimetry and small-angle X-ray scattering confirmed a microphase-separated morphology. Thermomechanical analysis revealed tunable plateau moduli and temperature windows based on both soft segment content and methylene spacer length, and tensile testing showed the strain at break doubled from 75 weight % to 50 weight % hard segment content. The same compositions Young’s moduli decreased from 107 ± 12 MPa at 75 weight % hard segment to 19 ± 1 MPa with 50 weight % hard segment, demonstrating the mechanical trade-off and range of properties possible with small compositional changes. These segmented copolyesters could find use in high-performance applications including electronic and aerospace industries. A two-step synthesis transformed caffeine into a novel caffeine-containing methacrylate (CMA). Conventional free radical copolymerization with a comonomer known to provide a low glass transition temperature (Tg), 2-ethylhexyl methacrylate (EHMA), allowed the investigation of the effect of small amounts of pendant caffeine on polymer properties. Thermal and iv thermomechanical testing indicated CMA incorporation dramatically increased the storage modulus, however, a microphase-separated morphology was not attained. Association of the pendant caffeine groups through non-covalent π-π stacking could present opportunities for novel thermoplastics and it is proposed that placing the pendant group further from the backbone, and potentially increasing the concentration, could aid in promoting microphase-separation. Alkenes are reactive sites for placing functional groups, particularly those required for polyester synthesis. Methyl 9-decenoate (9-DAME), a plant-based fatty acid, provided a platform for novel biodegradable, renewable, polyesters. A formic acid hydration reaction generated an isomeric mixture of AB hydroxyester or AB hydroxyacid monomers for melt polymerization. Thermal analysis elucidated the plant-based polyesters exhibited a single transition, a Tg of about -60 °C. Aliphatic polyesters commonly crystallize, thus the isomeric mixture of secondary alcohols seemed to introduce enough irregularity to prevent crystallization. These polyesters offer an amorphous, biodegradable, sustainable replacement for applications currently using semi-crystalline poly(ε-caprolactone), which is not obtained from renewable monomers and also exhibits a -60 °C Tg. Additional applications requiring low-Tg polymers such as pressure sensitive adhesives or thermoplastic elastomers could also benefit from these novel polyesters. 9-DAME also was transformed into an ABB’ monomer after an epoxidation and subsequent hydrolysis. Successful gelation under melt transesterification conditions provided evidence that the multifunctional monomer could perform as a renewable, biodegradable, branching and/or crosslinking agent. Novel copolyesters comprised of a bromomethyl imidazolium diol and adipic acid demonstrated potential as non-viral gene delivery vectors. Melt polycondensation produced water dispersible polyesters which bound deoxyribonucleic acid at low N/P ratios. The v polyplexes showed stability in water over 24 h and no cytotoxic effect on human cervical cancer cells (HeLa). A luciferase transfection assay revealed the copolyesters successfully underwent endocytosis and released the nucleic acid better than controls. The copolyesters with pendant imidazolium functionality also provided tunable Tgs, -41 °C to 40 °C, and the ability to electrospin into fibers upon blending with poly(ethylene oxide). These additional properties furthered potential applications to include pressure sensitive adhesives and biocompatible antibacterial bandages. / Ph. D.
25

Linking the Rheological Behavior to the Processing of Thermotropic Liquid Crystalline Polymers in the Super-cooled State

Qian, Chen 01 June 2016 (has links)
Thermotropic liquid crystalline polymers (TLCPs) have attracted great interest because of the combination of their promising properties, which includes high stiffness and strength, excellent processability, and outstanding chemical resistance. TLCPs exhibit inherently low viscosity relative to many other conventional thermoplastics. The low melt viscosity is detrimental to processes requiring high melt strength, such as extrusion blow molding, film blowing, thermoforming and multilayer coextrusion. Our laboratory has developed a unique method to increase the viscosity of TLCPs by first raising the temperature above the melting point (Tm) to exclude all solid crystalline structure, and then lowering the temperature below Tm to super cool the materials. Additionally, the super-cooling behavior of TLCPs allows them to be blended with other thermoplastics possessing lower processing temperatures. The initial focus of this dissertation is to investigate the processing temperature of a representative TLCP in the super-cooled state, using the methods of small amplitude oscillatory shear (SAOS), the startup of shear flow and differential scanning calorimetry (DSC). The TLCP used in this work is synthesized from 4-hydroxybenzoic acid (HBA), terephthalic acid (TA), hydroquinone (HQ) and hydroquinone derivatives (HQ-derivatives). The TLCP of HBA/TA/HQ/HQ-derivatives has a melting point, Tm, of around 280 oC. Once melted, the TLCP can be cooled 30 oC below the Tm while still maintaining its processability. As the TLCP was cooled to 250 oC, a one order magnitude increase in viscosity was obtained at a shear rate of 0.1 s- 1. Additionally, super cooling the TLCP did not significantly affect the relaxation of shear stress after preshearing. However, the recovery of the transient shear stress in the interrupted shear measurements was suppressed to a great extent in the super-cooled state. The second part of this work is concerned with the extrusion blow molding of polymeric blends containing the TLCP of HBA/TA/HQ/HQ-derivatives and high density polyethylene (HDPE), using a single screw extruder. The blends were processed at a temperature of 260 oC which is 20 oC below Tm of the TLCP such that the thermal degradation of HDPE was minimized. Bottles were successfully produced from the blends containing 10, 20 and 50 wt% TLCP. The TLCP/HDPE blend bottles exhibited an enhanced modulus relative to pure HDPE. However, the improvement in tensile strength was marginal. At 10 and 20 wt% TLCP contents, the TLCP phase existed as platelets, which aligned along the machine direction. A co-continuous morphology was observed for the blend containing 50 wt% TLCP. The preliminary effectiveness of maleic anhydride grafted HDPE (MA-g-HDPE) as a compatibilizer for the TLCP/HDPE system was also studied. The injection molded ternary TLCP/HDPE/MA-g-HDPE blends demonstrated superior mechanical properties over the binary TLCP/HDPE blends, especially in tensile strength. Consequently, it is promising to apply the ternary blends of TLCP/HDPE/MA-g-HDPE in the blow molding process for improved mechanical properties. Finally, this work tends to determine how the isothermal crystallization behavior of a TLCP can be adjusted by blending it with another TLCP of lower melting point. One TLCP (Tm~350 oC) used is a copolyester of HBA/TA/HQ/HQ-derivatives with high HBA content. The other TLCP (Tm~280 oC) is a copolyesteramide of 60 mol% hydroxynaphthoic acid, 20 mol% terephthalic acid and 20 mol% 4-aminophenol. The TLCP/TLCP blends and neat TLCPs were first melted well above their melting points, then cooled to the predetermined temperatures below the melting temperatures at 10 oC/min to monitor the isothermal crystallization. As the content of the low melting TLCP increased in the blends, the temperature at which isothermal crystallization occurred decreased. Comparing with neat TLCPs, the blend of 75% low melting TLCP crystallized at a lower temperature than the pure matrices, and the blend remained as a stable super-cooled fluid in the temperature range from 220 to 280 oC. Under isothermal conditions, differential scanning calorimetry (DSC) was not capable of reliably detecting the the low energy released in the initial stage of crystallization. In contrast, small amplitude oscillatory shear (SAOS) was more sensitive to detecting isothermal crystallization than DSC. / Ph. D.
26

Designing Functionality into Step-Growth Polymers from Liquid Crystallinity to Additive Manufacturing

Heifferon, Katherine Valentine 20 June 2019 (has links)
Step-growth polymerization facilitates the synthesis of a wide range of industrially applicable polymers, such as polyesters and polysulfones. The choice of backbone and end group structure within these polymers drastically impacts the final material properties and processability emphasizing the necessity for thorough understanding of structure-property relationships. Seemingly simple changes, such as exchanging a monomer for its regioisomer, affects the polymers fundamental packing structure triggering a domino effect ultimately influencing the morphological, thermal, mechanical and barrier properties. In conjunction, end groups provide a means by which tunable mechanical properties and application into unique processing methods can be achieved. Synthesizing polyesters with bibenzoate based monomers generates a large range of morphologies. Linear, 4,4' bibenzoate (4,4'BB), is widely considered a mesogenic monomer due to its ability to impart a liquid crystalline (LC) morphology on semi-aromatic polyesters with linear aliphatic spacers. In this body of work, semi-aromatic polyesters using one of 4,4'BB's regioisomers, either 3,4'BB or 3,3'BB, largely resulted in amorphous or semi-crystalline polymers depending on the selection of aliphatic diol. Incorporation of the meta isomer (3,4'BB) into traditionally LC polymers, such as poly(diethylene glycol 4,4'-bibenzoate) and poly(butylene 4,4'-bibenzoate), through copolymerization afforded two polymer series with tunable LC properties. The 3,4'BB exhibited selective disruption of crystalline domains over the LC phase generating a number of polymers with LC glass morphologies. The application of 3,4'BB to a fully-aromatic polyester enabled the synthesis of a novel melt-processable homopolyester with high thermal stability, poly(p-phenylene 3,4' bibenzoate). This structure afforded a nematic LC morphology which revealed beneficial shear-thinning properties similar to industrial standards. The unique LC morphology of this homopolyester inspired further characterization of the range of achievable properties using the basic structure, poly(phenylene bibenzoate), with all the possible regioisomers. This study afforded six polymers systematically varied in chain linearity from a completely meta to a completely para backbone configuration. A range of morphologies were achieved from high Tg amorphous polymers for the meta configurations to semi-crystalline or LC in the polymers with greater linearity. End group functionalization generates influence on polymer properties while limiting the impact on beneficial properties achieved through the backbone structure and packing. Post-polymerization reactions or the addition of a monofunctional endcapper to the polymerization both achieve end group control. In this dissertation, the addition of a monofunctional diester with a sulfonate moiety to a semi-aromatic LC polyester synthesis resulted in a telechelic ionomer. The non-covalent interaction of the ionic groups will hopefully improve the compression and transverse mechanical properties of the LCP. In contrast, post-polymerization functionalization incorporated acrylate groups onto the ends of a basic polysulfones. These reactive groups provided a handle for photo-curing which enabled the 3D printing of the polysulfones using vat photopolymerization. / Doctor of Philosophy / The research within this dissertation encompasses the design of new plastics for consumer and high-performance applications. Since the emergence of synthetic plastics in the 1920’s, these materials have become a necessity in our everyday life with a range of applications in food packaging, microelectronics, architecture, medical devices, automotive, and aerospace. Benefits over metals and glass primarily result from their light weight and wide range of mechanical properties which allow a range of material properties from soft and flexible plastic grocery bags to tough car parts. Different classes of plastics (polymers) are based primarily on the chemicals used to produce the materials, for example polyesters and polysulfones. The chemical structure of these core materials drastically impacts the final properties of the polymers, which in turn influences their application space. This work focused on how subtle changes to these starting chemical structures allows us to tune the final polymer properties. Within the class of polyesters, a focus was placed on materials known as liquid crystalline (LC) polyesters. A liquid crystalline polymer can achieve a physical state between a solid and a liquid which imparts many beneficial properties on the material processing. Liquid-crystal television displays utilized these properties to provide drastically thinner TV’s with higher resolution. Alternatively, LC polyesters find applications traditionally as high-performance fibers, insulators in microelectronics, and stainless-steel replacements in medical applications. Studying the role of chemical structure on the properties of LC polyester enabled the design of materials which improve upon the current technological standards. These changes enabled the design of LC polyesters with lower processing temperatures and the use of fewer starting materials which will inevitably save energy and money during their production. In the case of polysulfones, changing the chemical structure at the end of the polymer chain facilitated the application of novel processing methods, such as 3D printing. The ability to process using this method reduces the amount of material waste during production and provides an opportunity to design novel parts with intricate structures, inaccessible through traditional means.
27

Synthesis, Characterization, and Rheology of Functional and Heterocyclic Liquid Crystalline Polymers

Huang, Wenyi January 2006 (has links)
No description available.
28

Stimuli-responsive Materials From Thiol-based Networks

Brenn, William Alexander 01 June 2017 (has links)
No description available.
29

L'orientation et la propriété de mémoire de forme des polymères cristallins liquides à chaînes latérales covalents et supramoléculaires

Fu, Shangyi January 2016 (has links)
In many studies of the side-chain liquid crystalline polymers (SCLCPs) bearing azobenzene mesogens as pendant groups, obtaining the orientation of azobenzene mesogens at a macroscopic scale as well as its control is important, because it impacts many properties related to the cooperative motion characteristic of liquid crystals and the trans-cis photoisomerization of the azobenzene molecules. Various means can be used to align the mesogens in the polymers, including rubbed surface, mechanical stretching or shearing, and electric or magnetic field. In the case of azobenzene-containing SCLCPs, another method consists in using linearly polarized light (LPL) to induce orientation of azobenzene mesogens perpendicular to the polarization direction of the excitation light, and such photoinduced orientation has been the subject of numerous studies. In the first study realized in this thesis (Chapter 1), we carried out the first systematic investigation on the interplay of the mechanically and optically induced orientation of azobenzene mesogens as well as the effect of thermal annealing in a SCLCP and a diblock copolymer comprising two SCLCPs bearing azobenzene and biphenyl mesogens, respectively. Using a supporting-film approach previously developed by our group, a given polymer film can be first stretched in either the nematic or smectic phase to yield orientation of azobenzene mesogens either parallel or perpendicular to the strain direction, then exposed to unpolarized UV light to erase the mechanically induced orientation upon the trans–cis isomerization, followed by linearly polarized visible light for photoinduced reorientation as a result of the cis–trans backisomerization, and finally heated to different LC phases for thermal annealing. Using infrared dichroism to monitor the change in orientation degree, the results of this study have unveiled complex and different orientational behavior and coupling effects for the homopolymer of poly{6-[4-(4-methoxyphenylazo)phenoxy]hexyl methacrylate} (PAzMA) and the diblock copolymer of PAzMA-block- poly{6-[4-(4-cyanophenyl) phenoxy]hexyl methacrylate} (PAzMA-PBiPh). Most notably for the homopolymer, the stretching-induced orientation exerts no memory effect on the photoinduced reorientation, the direction of which is determined by the polarization of the visible light regardless of the mechanically induced orientation direction in the stretched film. Moreover, subsequent thermal annealing in the nematic phase leads to parallel orientation independently of the initial mechanically or photoinduced orientation direction. By contrast, the diblock copolymer displays a strong orientation memory effect. Regardless of the condition used, either for photoinduced reorientation or thermal annealing in the liquid crystalline phase, only the initial stretching-induced perpendicular orientation of azobenzene mesogens can be recovered. The reported findings provide new insight into the different orientation mechanisms, and help understand the important issue of orientation induction and control in azobenzene-containing SCLCPs. The second study presented in this thesis (Chapter 2) deals with supramolecular side-chain liquid crystalline polymers (S-SCLCPs), in which side-group mesogens are linked to the chain backbone through non-covalent interactions such as hydrogen bonding. Little is known about the mechanically induced orientation of mesogens in S-SCLCPs. In contrast to covalent SCLCPs, free-standing, solution-cast thin films of a S-SCLCP, built up with 4-(4’-heptylphenyl) azophenol (7PAP) H-bonded to poly(4-vinyl pyridine) (P4VP), display excellent stretchability. Taking advantage of this finding, we investigated the stretching-induced orientation and the viscoelastic behavior of this S-SCLCP, and the results revealed major differences between supramolecular and covalent SCLCPs. For covalent SCLCPs, the strong coupling between chain backbone and side-group mesogens means that the two constituents can mutually influence each other; the lack of chain entanglements is a manifestation of this coupling effect, which accounts for the difficulty in obtaining freestanding and mechanically stretchable films. Upon elongation of a covalent SCLCP film cast on a supporting film, the mechanical force acts on the coupled polymer backbone and mesogenic side groups, and the latter orients cooperatively and efficiently (high orientation degree), which, in turn, imposes an anisotropic conformation of the chain backbone (low orientation degree). In the case of the S-SCLCP of P4VP-7PAP, the coupling between the side-group mesogens and the chain backbone is much weakened owing to the dynamic dissociation/association of the H-bonds linking the two constituents. The consequence of this decoupling is readily observable from the viscoelastic behavior. The average molecular weight between entanglements is basically unchanged in both the smectic and isotropic phase, and is similar to non-liquid crystalline samples. As a result, the S-SCLCP can easily form freestanding and stretchable films. Furthermore, the stretching induced orientation behavior of P4VP-7PAP is totally different. Stretching in the smectic phase results in a very low degree of orientation of the side-group mesogens even at a large strain (500%), while the orientation of the main chain backbone develops steadily with increasing the strain, much the same way as amorphous polymers. The results imply that upon stretching, the mechanical force is mostly coupled to the polymer backbone and leads to its orientation, while the main chain orientation exerts little effect on orienting the H-bonded mesogenic side groups. This surprising finding is explained by the likelihood that during stretching in the smectic phase (at relatively higher temperatures) the dynamic dissociation of the H-bonds allow the side-group mesogens to be decoupled from the chain backbone and relax quickly. In the third project (Chapter 3), we investigated the shape memory properties of a S-SCLCP prepared by tethering two azobenzene mesogens, namely, 7PAP and 4-(4'-ethoxyphenyl) azophenol (2OPAP), to P4VP through H-bonding. The results revealed that, despite the dynamic nature of the linking H-bonds, the supramolecular SCLCP behaves similarly to covalent SCLCP by exhibiting a two-stage thermally triggered shape recovery process governed by both the glass transition and the LC-isotropic phase transition. The ability for the supramolecular SCLCP to store part of the strain energy above T[subscript g] in the LC phase enables the triple-shape memory property. Moreover, thanks to the azobenzene mesogens used, which can undergo trans-cis photoisomerization, exposure the supramolecular SCLCP to UV light can also trigger the shape recovery process, thus enabling the remote activation and the spatiotemporal control of the shape memory. By measuring the generated contractile force and its removal upon turning on and off the UV light, respectively, on an elongated film under constant strain, it seems that the optically triggered shape recovery stems from a combination of a photothermal effect and an effect of photoplasticization or of an order-disorder phase transition resulting from the trans-cis photoisomerization of azobenzene mesogens.
30

Nanodispersões de fase líquido-cristalina como carreadoras de siRNA no tratamento tópico da psoríase: Avaliação em modelos in vitro e in vivo / Liquid crystalline nanodispersions as a siRNA carrier in the topical treatment of psoriasis: Evaluation in in vitro and in vivo models

Depieri, Lívia Vieira 05 August 2016 (has links)
A terapia gênica por interferência de RNA (RNAi) é um processo de silenciamento gênico pós-transcricional onde moléculas de small interfering RNA (siRNA) específicas são capazes de suprimir a expressão de um determinado gene. Atualmente, é uma abordagem terapêutica promissora para o tratamento de muitas doenças graves, incluindo doenças cutâneas. No entanto, dificuldades relacionadas à administração e à biodistribuição limitam a utilização clínica dos siRNAs. Neste contexto, foi proposto o uso de um nanocarreador a base de cristais líquidos para viabilizar a aplicação de siRNAs no tratamento tópico da psoríase. A nanodispersão líquido-cristalina (NLC) desenvolvida, composta por monoleína, ácido oleico, polietilenoimina e fase aquosa (8:2:1:89, p/p/p/p), foi capaz de superar as barreiras da via de administração tópica, bem como as limitações resultantes das características das moléculas de siRNA. A NLC foi capaz de complexar o siRNA, protege-lo por 24 h da degradação enzimática e liberá-lo de forma intacta. A NLC promoveu uma alta taxa de captação celular do siRNA em fibroblastos e macrófagos. Sua aplicação tópica pode ser considerada segura para a pele, pois manteve a viabilidade da epiderme humana reconstruída acima de 50% e a quantidade de IL-1? liberada foi inferior a 60 pg/mL. A NLC apresentou eficácia em promover a liberação funcional do siRNA nos modelos in vitro avaliados. No modelo de pele humana reconstruída psoriática, reduziu os níveis de IL-6 (~ 70%) após um único tratamento por 6 h e, os níveis do RNAm IL6 (~ 50%) após o tratamento por 3 dias consecutivos. Em macrófagos, reduziu os níveis do RNAm Tnf em 40% após o tratamento concomitante com LPS por 24 h e, em 60% após o tratamento por 24 h pós-estímulo prévio com LPS. A eficácia foi ainda maior com o pré-tratamento por 24 h seguido do estímulo com LPS, que normalizou os níveis do RNAm Tnf. O tratamento tópico com a NLC veiculando siRNA Tnf foi eficaz em reduzir significativamente os níveis do RNAm Tnf nos modelos in vivo de inflamação cutânea aguda induzida por TPA (~ 60%) e de psoríase induzida por imiquimode (~ 90%) avaliados. No modelo in vivo de psoríase, o tratamento tópico com a NLC veiculando siRNA Tnf também reduziu significativamente a atividade da mieloperoxidade (~ 65%) e a espessura da epiderme (~ 70%) em comparação aos grupos controle. Também foi eficaz na melhora fenotípica dos animais, reduzindo o rubor, descamação, acantose e o número de ataques de coceira, resultados da redução do processo inflamatório decorrente da ação efetiva das moléculas de siRNA Tnf. A NLC também promoveu a penetração cutânea das moléculas de siRNA nas camadas mais profundas da pele, in vivo. Face aos resultados obtidos, pode-se concluir que a NLC é uma estratégia relevante para a administração tópica de siRNAs, que mostrou potencial terapêutico para suprimir genes específicos relacionados a doenças de pele. / Gene therapy by RNA interference (RNAi) is a post-transcriptional gene silencing process in which specific small interfering RNA (siRNA) molecules can suppress the expression of a particular gene. Currently, is a promising therapeutic approach for the treatment of many severe disorders, including skin diseases. However, difficulties related to the administration and biodistribution limit the clinical use of siRNAs. In this context, a nanocarrier based in liquid crystal has been proposed to enable the application of siRNAs in the topical treatment of psoriasis. The liquid crystalline nanodispersion (LCN) developed, composed by monoolein, oleic acid, polyethylenimine and aqueous phase (8:2:1:89, w/w/w/w), was able to overcome the barriers of topical administration route, as well as limitations resulting from the characteristics of the siRNA molecules. The LCN was able to complex the siRNA, protect it for 24 h from enzymatic degradation and release it in an intact form. The LNC promoted a high cellular uptake of siRNA in fibroblasts and macrophages. Its topical application can be considered safe to the skin since viability of the reconstructed human epidermis remained above 50% and the amount of IL-1? released is less than 60 pg/mL. The LCN showed efficacy in promoting functional release of siRNA in in vitro models evaluated. In psoriatic reconstructed human skin model, it reduced the IL-6 levels (~ 70%) after a single treatment for 6 h and the mRNA IL6 levels (~ 50%) after treatment for 3 consecutive days. In macrophages, it reduced the mRNA Tnf levels in 40% after the concomitant treatment with LPS for 24 h and, in 60% with treatment for 24 h after prior stimulation with LPS. The efficiency was higher with the pretreatment for 24 h followed by stimulation with LPS, that normalized the RNAm Tnf levels. Topical treatment with NLC carrying siRNA Tnf was effective in reduce significantly the mRNA Tnf levels in in vivo models of skin acute inflammation induced by TPA (~ 60%) and of psoriasis induced by imiquimod (~ 90%) evaluated. In the in vivo model of psoriasis, topical treatment with the NLC carrying siRNA Tnf also significantly reduced activity of myeloperoxidase (~ 65%) and the epidermis thickness (~ 70%) compared to control groups. It has also been effective in animal phenotypic improvement, reducing redness, desquamation, acanthosis and the number of itch attacks, results of the reduction in inflammatory process obtained by the effective action of siRNA Tnf molecules. The LCN also promoted the penetration of siRNA molecules into the deeper layers of the skin in vivo. With the results obtained, we can conclude that the LCN is a relevant strategy for topical administration of siRNAs, which showed therapeutic potential to suppress specific genes related to skin diseases.

Page generated in 0.1463 seconds