• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 10
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 15
  • 14
  • 13
  • 12
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse expérimentale et modélisation de caloducs oscillants en contexte aéronautique / Experimental Analysis and Modelling of Oscillating Heat Pipes in Aeronautical Context

Bonnenfant, Jean-François 03 July 2013 (has links)
L’augmentation permanente des densités de flux de chaleur mises en jeu, en contexte aéronautique notamment, et l’évacuation de celles-ci, constitue actuellement une problématique majeure pour les industriels du secteur. Les solutions de refroidissement utilisées jusqu’à aujourd’hui ne suffisent plus à assurer la tenue thermique de ces systèmes, nécessitant l’apport de nouveaux moyens. A ce titre, parmi les solutions existantes, le caloduc oscillant suscite un intérêt croissant de part ses nombreux avantages, comparé aux systèmes diphasiques classiques. C’est pourquoi le projet Optimal, dans lequel s’inscrivent ces travaux de thèse, se propose d’employer cette technologie dans le but d’optimiser le refroidissement de nouvelles turbomachines électriques. Le principe de fonctionnement du caloduc oscillant, simple au demeurant, recèle néanmoins des aspects encore peu maîtrisés. Cette thèse a donc pour objectif, d’une part, d’évaluer les performances d’un tel système dans ce contexte industriel et, d’autre part, d’apporter de nouveaux éléments visant à accroître la compréhension de son fonctionnement, par des moyens expérimentaux mais également numériques.Pour se faire, l’étude expérimentale réalisée au cours de ce projet a consisté au développement d’un prototype, à partir duquel des campagnes d’essais ont été effectuées. Ces essais ont permis de caractériser les performances du système au travers d’investigations paramétriques (fluide de travail, taux de remplissage, inclinaison, puissance injectée, température de source froide, boucle ouverte ou fermée). Il a ainsi pu être observé une amélioration évidente des performances plus spécifiquement sous certaines conditions opératoires, mais également des comportements particuliers liés au fonctionnement de ce système. A cette approche expérimentale s’ajoute une étude théorique basée sur le développement d’un modèle numérique. Face à la complexité des mécanismes thermo-physiques régissant le fonctionnement du caloduc oscillant, ce modèle s’intéresse à un système simplifié, caractérisé par le déplacement d’un système bulle de vapeur, bouchon liquide, dans lequel un film liquide déposé en aval est soumis à une évaporation. Le but ultime étant à terme de décrire précisément la dynamique de ce film liquide, ce modèle a conduit dans le cadre de cette thèse à mettre en évidence l’ensemble des phénomènes physiques associés à l’évaporation en film dans un tube capillaire, et d’établir une cartographie des domaines d’utilisation de ce modèle selon les hypothèses considérées, pour une utilisation ultérieure liée à l’identification expérimentale des paramètres de ce film. / The continuous increase of heat flux densities involved in aeronautic context, and their evacuation, represent a major issue nowadays. The solutions used until now are no longer sufficient to ensure the thermal maintenance of these systems, requiring new technologies. Among them, the pulsating heat pipe induces a growing interest. Thus, the French FUI project Optimal suggests employing this technology in order to optimize the cooling of new electric turbomachines. The work led in this PhD aims to evaluate the performances of such a system in this context, by experimental and numerical means.The experimental study which has been conducted consisted in the development of a prototype, starting from which experiments have been led. These tests allowed characterizing the thermal performances of the system through parametric investigations. Thereby, it has been observed an obvious improvement of these performances under some operating conditions, but also several particular behaviors. In addition to that approach, one adds a theoretical study based on the development of a numerical model. Given the complexity of the mechanisms governing the pulsating heat pipe’s operation, this model focuses on a simplified system, characterized by the motion of vapor bubble-liquid slug structure, in which a liquid film, deposited downstream, is subjected to evaporation. This model has conducted to highlight the physical phenomena associated to the thin film evaporation in a capillary tube, and to establish a cartography of its applicability fields, according to the considered assumptions.
2

A study of liquid film, liquid motion, and oxygen absorption from hemispherical air/oxygen bubbles

Pedersen, Tom January 1998 (has links)
No description available.
3

Characterization of Water Spray Temperature Distribution and Liquid Film Growth Processes

Chen, Jia-Wei 07 September 2011 (has links)
The aim of this study was to explore the properties of thermal field in spray cooling via experiments. The nozzle diameter (dj) used herein was 200 £gm and the heating surface measured 45 mm ¡Ñ 45 mm. The study was divided into two parts for experiments and analyses. In the first part, with DI water and FC-72 (dielectric liquid) as the working media, the changes in the liquid film thickness on the heater surface under different values of heating power were observed; heat input (Q) and value of gauge pressure (£GP) were taken as the main parameters for discussing the influence of these two parameters on the liquid film thickness in spray cooling. The second part, with DI water as the working medium, adopted the £gLIF system (fluorescent dye: Rhodamine B; concentration: 1.5¡Ñ10-4 M) to measure the effect of different working medium temperatures (23 ¢XC, 30 ¢XC, and 40 ¢XC) on the global temperature distribution, liquid film temperature changes on the heater surface and the thermal field condition of spray cooling, with an aim of exploring the internal physical phenomena of the droplets during cooling.
4

Modeling Bubble Coarsening in Froth Phase from First Principles

Park, Seungwoo 07 May 2015 (has links)
Between two neighboring air bubbles in a froth (or foam), a thin liquid film (TLF) is formed. As the bubbles rise upwards, the TLFs thin initially due to the capillary pressure created by curvature changes. As the film thicknesses (H) reach approximately 200 nm, the disjoining pressure created by surface forces in the films also begins to control the film drainage rate and affect the waves motions at the air/water interfaces. If the disjoining pressure is negative, both the film drainage and the capillary wave motion accelerate. When the TLF thins to a critical film thickness (Hcr), the amplitude of the wave motion grows suddenly and the two air/water interfaces touch each other, causing the TLF to rupture and bubbles to coalesce. In the present work, a new model that can predict Hcr has been developed by considering the film drainage due to both viscous film thinning and capillary wave motion. Based on the Hcr model, bubble-coarsening in a dynamic foam has been predicted by deriving the geometric relation between the thickness of the lamella film, which controls bubble-coalescence rate, and the Plateau border area, which controls liquid drainage rate. Furthermore, a model for predicting bubble-coarsening in froth (3-phase foam) has been developed by developing a film drainage model quantifying the effect of particles on pc. The parameter pc is affected by the number of particles and the local capillary pressure around particles, which in turn vary with the hydrophobicity and size of the particles in the film. Assuming that films rupture at free films, the pc corrected for the particles in lamella films has been used to determine the critical rupture time (tcr), at which the film thickness reaches Hcr, using the Reynolds equation. Assuming that the number of bubbles decrease exponentially with froth height, and knowing that bubbles coalesce when film drains to a thickness Hcr, a bubble coarsening model has been developed. The model predictions are in agreement with the experimental data obtained using particle of varying hydrophobicity and size. / Ph. D.
5

Gas-liquid two-phase flow in up and down vertical pipes

Almabrok, Almabrok Abushanaf January 2013 (has links)
Multiphase flows occurring in pipelines with a serpentine configuration is an important phenomenon, which can be encountered in heat exchangers used in a variety of industrial processes. More specifically, in many industrial units such as a large cracking furnace in a refinery, the tubes are arranged in a serpentine manner and are relatively short. As flow negotiates round the 180o bend at the ends of the tubes, the generated centrifugal force could cause flow maldistribution creating local dry spots, where no steady liquid film is formed on the adjacent straight sections of the pipe. As a result, events including coking, cracking and overheating of heat transfer surfaces may occur and lead to frequent shutdown of the facilities. Consequently, this could increase operating costs and reduce production revenue. Thus, it is desirable to know the effect that the bends exert on the flow in the straight part of the pipe. Apart from this, knowledge of the bend effects on the flows in the pipeline could also be important for the design of other pipelines for gas/liquid transport, e.g. offshore gas and oil pipelines. Quite a large number of studies have been found in the literature. The majority of them were for two-phase flow with small diameter pipes (i.d. ≤ 50 mm). However, studies with large diameter pipes (i.d. ≥ 100 mm), have increasingly been considered in recent years as problems related to large diameter vertical pipes are being encountered more and more often in industrial situations. This thesis studies the effect of 180o bends on the characteristics and development of gas-liquid two-phase flows in large diameter downward and upward pipes. The study particularly focuses on the influence of serpentine configuration on flow structure, cross-sectional void distribution and circumferential liquid film profiles and their development along the downward and upward sections. It was found that both the top and bottom bends have considerable impacts on flow behaviour, although to varying degrees. These impacts were highly dependent on the air and water flow rates. For sufficient flow rates, the bends were observed to create flow maldistribution in the adjacent straight section, due to the effects of centrifugal force. The air moved towards the inner zone of the bend and the water towards the outer zone, while a lesser quantity of water was identified on the other surfaces of the pipe. Investigation of the film thickness development in the downward and upward sections showed that, the liquid film behaviour close to the bends was significantly different from those located further away. This can be attributed to the centrifugal force of the bends. Examination of the power spectral density (PSD) along the downward and upward sections showed that, the shape of PSD located in the adjacent section to the bends, was substantially different from those located further away. Furthermore, several flow regime maps were generated which showed that, in addition to bubbly, intermittent and annular flows, unstable flows existed along the upward section, particularly for low gas and water flow rates. In this study it was found that, the lower bend was periodically blocked by the liquid and then blown through by the accumulated air. The data obtained from this study were compared with different theoretical correlations found in the existing literature. Some discrepancy between the results of the current study and those of previous published materials was noted. Updated correlations were presented which provided well results when they applied for the data obtained from the current study and previous studies.
6

Estudo experimental da transferência de calor e massa em evaporadores por filme descendente de água em tubos horizontais. / Experimental study of the heat and mass transfer in water falling film evaporation on horizontal tubes.

Narvaez Romo, Beethoven 08 December 2014 (has links)
A tecnologia de evaporação por filme descendente pode ser empregada em diferentes aplicações como processos químicos, petroquímicos, dessalinização de água, ciclos de refrigeração por absorção, OTEC Ocean termal energy conversion primer, só para mencionar alguns. No entanto, esta tecnologia tem demandado númerosos estudos devido a que ainda não é totalmente bem entendida, inclusive certos fenômenos básicos como são os problemas de distribuição do líquido, comportamento da espessura do filme e, sua transferência simultânea de calor e massa, sendo sujeito a vários estudos tanto numéricos quanto experimentais. Este trabalho foi focado no estudo da transferência simultânea de calor e massa, espessura do filme a os problemas de distribuição na vaporização de filme de água sobre tubos. Para isto, foi construída uma bancada de teste experimental, disponível para mensurar as seguintes variáveis; (a) temperatura da superfície dos tubos evaporadores, (b) espessura do filme descendente, (c) vazões mássicas, (d) potência elétrica fornecida aos tubos evaporadores, e (e) registro fotográfico infravermelho. O presente trabalho foi estruturado em dois aspectos principais; (1) avaliação do coeficiente de transferência de calor e massa, e (2) medição da espessura do filme descendente. Para os dois casos foram analisados os mecanismos de transferência de calor: sensível e latente. Para o primeiro ponto foram calculados os coeficientes local e médio de transferência de calor. No último ponto, usou-se um mecanismo formado por um micrômetro de elevada precisão aliado a um sistema elétrico para mensurar a espessura do filme líquido, sendo comparada com a teoria de Nusselt. Encontrou-se que há uma forte dependência da transferência de calor e massa com a espessura do filme descendente para a região laminar de Reynolds ente 160 a 950, implicando uma diminuição da taxa de transferência de calor com o aumento do Reynolds, já que a espessura de filme impôs uma maior resistência térmica. Além disso, avaliou-se o sistema de medição da espessura do filme com 25% de divergência da teórica de Nusselt. / Falling film evaporation technology can be used in different applications such as water desalination, refrigeration and ar-conditioning absorption cycles, OTEC (ocean thermal energy conversion primer), petrochemical and chemical process industries. This technology still demands númerous studies due to the lack of a complete understanding, even some basic phenomena such as the liquid distribution problem, liquid film thickness behavior and the heat and mass transfer coefficients are subject of intense experimental and numerical studies. This work has analyzed experimentally the heat and mass transfer coefficient, falling film thickness and the distribution system in water vaporization over tubes. For that, it was built an experimental setup, which has been measured the following; (a) tube wall temperature, (b) falling film thickness, (c) mass flow rate, (d) electrical power supplied to the evaporator tube, (e) infrared images. The present work has been structured in two mean aspects; (1) heat and mass transfer coefficient evaluation, and 2) falling film thickness measurement. In both topics, the two heat transfer mechanisms were analyzed: sensible and latent heat transfer. For the first topic, it has been analyzed the local and the overall heat transfer. For the second part, the method used a novel mechanical configuration (leverage effect), which improves the micrometer reading with more precision to obtain the film thickness, which was compared with the Nusselt theory. The experimental data showed that there is a strong dependence between the heat and mass transfer coefficient with the film thickness in the laminar region (Reynolds between 160 e 950), implying a decreasing of the heat transfer rate when the Reynolds increased, due to that the film thickness imposes a greater thermal resistance. Moreover, the study found the film thickness with a divergence of 25 % when it was compared with the theoretical Nusselt film thickness.
7

An Experimental Study on Micro-Hydrodynamics of Evaporating/Boiling Liquid Film

Gong, Shengjie January 2011 (has links)
Study of liquid film dynamics is of significant importance to the understanding and control of various industrial processes that involve spray cooling (condensation), heating (boiling), coating, cleaning and lubrication. For instance, the critical heat flux (CHF) of boiling heat transfer is one of the key parameters ensuring the efficiency and safety of nuclear power plants under both operational and accident conditions, which occurs as the liquid layers (microlayer and macrolayer) near the heater wall lose their integrity. However, an experimental quantification of thin liquid film dynamics is not straightforward, since the measurement at micro-scale is a challenge, and further complicated by the chaotic nature of boiling process. The object of present study is to develop experimental methods for the diagnosis of liquid film dynamics, and to obtain data for the film instability under various conditions. A dedicated test facility was designed and constructed where micro conductive probes and confocal optical sensors were used to measure the thickness and dynamic characteristics of a thin liquid film on various heater surfaces, while a high speed camera was used to get visual observation. Extensive tests were performed to calibrate and verify the two thickness measuring systems. The micro conductive measuring system was proven to have a high reliability and repeatability with maximum system error less than 5µm, while the optical measuring system is capable of recording the film dynamics with spatial resolution of less than 1 mm. The simultaneous measurement on the same liquid film shows that the two techniques are in a good agreement with respect to accuracy, but the optical sensors have a much higher acquisition rate up to 30 kHz, which are more suitable for rapid process. The confocal optical sensors were therefore employed to measure the dynamic thickness of liquid films (ethanol, hexane and water) evaporating on various horizontal heater surfaces (aluminum, copper, silicon, stainless steel and titanium) to investigate the influences of heat flux, the surface and liquid properties on the film instability and the critical thickness. The critical thickness of water film evaporating on various surfaces was measured in the range of 60-150 mm, increasing with the increased contact angle or increased heat flux (evaporating rate) and also with the decreased thermal conductivity of the heater material. The data suggest the conjugate heat transfer nature of the evaporating liquid film dynamics at higher heat fluxes of interest to boiling and burnout. In the case of hexane on the aged titanium surface with contact angle of ~3o, the liquid film is found resilient to rupture, with film oscillations at relatively large amplitude ensuing as the averaged film thickness decreases below 15 µm. To interpret our experimental findings on liquid film evolution and its critical thickness at rupture, a theoretical analysis is also performed to analyze the dynamics of liquid films evaporating on heater surfaces. While the influences of liquid properties, heat flux, and thermal conductivity of heater surface are captured by the simulation of the lubrication theory, influence of the wettability is considered via a minimum free energy criterion. The thinning processes of the liquid films are generally captured by the simulation of the lubrication theory. For the case with ideally uniform heat flux over the heater surface, the instability of the liquid film occurs at the thickness level of tens micro meters, while for the case of non-uniform heating, the critical thicknesses for the film rupture are closer to  the experimental data but still underestimated by the lubrication theory simulation. By introducing the minimum free energy criterion to considering the influence of surface wettability, the obtained critical thicknesses have a good agreement with the experimental ones for both titanium and copper surfaces, with a maximum deviation less than ±10%. The simulations also explain why the critical thickness on a copper surface is thinner than that on a titanium surface. It is because the good thermal conductivity of copper surface leads to uniform temperature distribution on the heat surface, which is responsible for the resilience of the liquid film to rupture. A silicon wafer with an artificial cavity fabricated by Micro Electronic Mechanical System (MEMS) technology was used as a heater to investigate the dynamics of a single bubble in both a thick and thin liquid layer under low heat flux (<60 kW/m2). The maximum departure diameter of an isolated bubble in a thick liquid film was measured to be 3.2 mm which is well predicted by the Fritz equation. However, in a thin liquid layer with its thickness less than the bubble departure diameter, the bubble was stuck on the heater surface with a dry spot beneath. A threshold thickness of the liquid film which enables the dry spot rewettable was obtained, and its value linearly increases with increasing heat flux. In addition, another test section was designed to achieve a constant liquid film flow on a titanium nano-heater surface which helps to successfully carry boiling in the liquid film from low heat flux until CHF. Again, the confocal optical sensor was employed to measure the dynamics of the liquid film on the heater surface under varied heat flux conditions.  A statistical analysis of the measured thickness signals that emerge in a certain period indicates three distinct liquid film thickness ranges: 0~50 µm as microlayer, 50~500 µm as macrolayer, 500~2500 µm as bulk layer. With increasing heat flux, the bulk layer disappears, and then the macrolayer gradually decreases to ~105 µm, beyond which instability of the liquid film may lose its integrity and CHF occurs. In addition, the high-speed camera was applied to directly visualize and record the bubbles dynamics and liquid film evolution. Dry spots were observed under some bubbles occasionally from 313 kW/m2 until CHF with the maximum occupation fraction within 5%.  A dry spot was rewetted either by liquid receding after the rupture of a bubble or by the liquid spreading from bubbles’ growth in the vicinity. This implies that the bubbles’ behavior (growth and rupture) and their interactions in particular are of paramount importance to the integrity of liquid film under nucleate boiling regime. / QC 20111205 / VR-2005-5729, MSWI
8

Bubble Solid Interaction

Mukherjee, Manas 12 1900 (has links)
The interaction of a bubble with solid surfaces, hydrophobic and hydrophilic, was investigated. When a bubble approaches towards a solid surface, a thin liquid film forms between them. The liquid in the film drains until an instability forms and film ruptures resulting in a three phase contact (TPC). Following rupture, the TPC line spreads on the solid surface. In the present study, glycerol-water solutions with varying percentages of water were used to investigate the effect of viscosity. Experiments were carried out with varying bubble size. The rupture and TPC line movement were recorded by high-speed digital video camera. The dependence of the TPC line movement on different parameters was investigated. The experimental results were compared with the existing theories for the TPC line movement. An empirical equation was developed to predict the TPC line movement. Formation or rupturing of the intervening film in case of a hydrophilic surfaces, which were glass surface cleaned by six cleaning techniques, was investigated. It was shown that a stable film forms for acid or alkali cleaning.
9

Carbon dioxide thermodynamics, kinetics, and mass transfer in aqueous piperazine derivatives and other amines

Chen, Xi, 1981- 22 September 2011 (has links)
To screen amine solvents for application in CO2 capture from coal-fired power plants, the equilibrium CO2 partial pressure and liquid film mass transfer coefficient were characterized for CO2-loaded and highly concentrated aqueous amines at 40 – 100 °C over a range of CO2 loading with a Wetted Wall Column (WWC). The acyclic amines tested were ethylenediamine, 1,2-diaminopropane, diglycolamine®, methyldiethanolamine (MDEA)/Piperazine (PZ), 3-(methylamino)propylamine, 2-amino-2-methyl-1-propanol and 2-amino-2-methyl-1-propanol/PZ. The cyclic amines tested were piperazine derivatives including proline, 2-piperidineethanol, N-(2-hydroxyethyl)piperazine, 1-(2-aminoethyl)piperazine, N-methylpiperazine (NMPZ), 2-methylpiperazine (2MPZ), 2,5-trans-dimethylpiperazine, 2MPZ/PZ, and PZ/NMPZ/1,4-dimethylpiperazine (1,4-DMPZ). The cyclic CO2 capacity and heat of CO2 absorption were estimated with a semi-empirical vapor-liquid-equilibrium model. 5 m MDEA/5 m PZ, 8 m 2MPZ, 4 m 2MPZ/4 m PZ and 3.75 m PZ/3.75 m NMPZ/0.5 m 1,4-DMPZ were identified as promising solvent candidates for their large CO2 capacity, fast mass transfer rate and moderately high heat of absorption. The speciation in 8 m 2MPZ and 4 m 2MPZ / 4 m PZ at 40 °C at varied CO2 loading was investigated using quantitative 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. In 8 m 2MPZ at 40 °C over the CO2 loading range of 0 – 0.37 mol CO2/mol alkalinity, more than 75% of the dissolved CO2 exists in the form of unhindered 2MPZ monocarbamate, and the rest is in the form of bicarbonate and dicarbamate; 19% - 56% of 2MPZ is converted to 2MPZ carbamate at 0.1 - 0.37 mol CO2/mol alkalinity. A rigorous thermodynamic model was developed for 8 m 2MPZ in the framework of the Electrolyte Nonrandom Two-Liquid (ENRTL) model. At 40 °C, the reaction stoichiometry for 2MPZ and CO2 is around 2 at lean loading but diminishes to 0 at rich loading. Bicarbonate becomes the major product at CO2 loading greater than 0.35 mol/mol alkalinity. The predicted heat of CO2 absorption is 75 kJ/mol at 140 °C and decreases with temperature when CO2 loading is above 0.25. The mass transfer rate data for 8 m 2MPZ was represented with a rate-based WWC model created in Aspen Plus®. The reaction rate was described with termolecular mechanism on an activity basis. With minor CO2 loading adjustment and regression of pre-exponential kinetic constants and diffusion activation energy, a majority of the measured CO2 fluxes in the WWC experiments were fitted by the model within ±20% over 40 – 100 °C and 0.1 – 0.37 mol CO2/mol alkalinity. The diffusion activation energy for 8 m 2MPZ at the rich loading is about 28 kJ/mol. The activity-based reaction rate constant at 40 °C for 2MPZ carbamate formation catalyzed by 2MPZ is 1.94×1010 kmol/m3•s. The calculated liquid film mass transfer coefficients are in close agreement with the experimental values. The liquid film mass transfer rate is dependent on the diffusion coefficients of amine and CO2 to the same extent at lean loading and 40 °C. The sum of the powers for the two diffusivities is approximately equal to 0.5 over the loading range of 0 – 0.4 mol CO2/mol alkalinity. The sum of the powers for the dependence of the liquid film mass transfer coefficient on the carbamate formation rate constants (k2MPZ-2MPZ and k2MPZCOO--2MPZ) approaches 0.5 at very lean loading at low temperature, but it decreases as CO2 loading and temperature is increased. At 100 °C, the physical liquid film mass transfer coefficient is the most important factor that determines the liquid mass transfer rate. The pseudo-first order region shifts to higher range of physical liquid film transfer coefficient as temperature increases. / text
10

Gas-Liquid Two-Phase Flow in Up and Down Vertical Pipes

Almabrok, Almabrok Abushanaf 10 1900 (has links)
Multiphase flows occurring in pipelines with a serpentine configuration is an important phenomenon, which can be encountered in heat exchangers used in a variety of industrial processes. More specifically, in many industrial units such as a large cracking furnace in a refinery, the tubes are arranged in a serpentine manner and are relatively short. As flow negotiates round the 180o bend at the ends of the tubes, the generated centrifugal force could cause flow maldistribution creating local dry spots, where no steady liquid film is formed on the adjacent straight sections of the pipe. As a result, events including coking, cracking and overheating of heat transfer surfaces may occur and lead to frequent shutdown of the facilities. Consequently, this could increase operating costs and reduce production revenue. Thus, it is desirable to know the effect that the bends exert on the flow in the straight part of the pipe. Apart from this, knowledge of the bend effects on the flows in the pipeline could also be important for the design of other pipelines for gas/liquid transport, e.g. offshore gas and oil pipelines. Quite a large number of studies have been found in the literature. The majority of them were for two-phase flow with small diameter pipes (i.d. ≤ 50 mm). However, studies with large diameter pipes (i.d. ≥ 100 mm), have increasingly been considered in recent years as problems related to large diameter vertical pipes are being encountered more and more often in industrial situations. This thesis studies the effect of 180o bends on the characteristics and development of gas-liquid two-phase flows in large diameter downward and upward pipes. The study particularly focuses on the influence of serpentine configuration on flow structure, cross-sectional void distribution and circumferential liquid film profiles and their development along the downward and upward sections. It was found that both the top and bottom bends have considerable impacts on flow behaviour, although to varying degrees. These impacts were highly dependent on the air and water flow rates. For sufficient flow rates, the bends were observed to create flow maldistribution in the adjacent straight section, due to the effects of centrifugal force. The air moved towards the inner zone of the bend and the water towards the outer zone, while a lesser quantity of water was identified on the other surfaces of the pipe. Investigation of the film thickness development in the downward and upward sections showed that, the liquid film behaviour close to the bends was significantly different from those located further away. This can be attributed to the centrifugal force of the bends. Examination of the power spectral density (PSD) along the downward and upward sections showed that, the shape of PSD located in the adjacent section to the bends, was substantially different from those located further away. Furthermore, several flow regime maps were generated which showed that, in addition to bubbly, intermittent and annular flows, unstable flows existed along the upward section, particularly for low gas and water flow rates. In this study it was found that, the lower bend was periodically blocked by the liquid and then blown through by the accumulated air. The data obtained from this study were compared with different theoretical correlations found in the existing literature. Some discrepancy between the results of the current study and those of previous published materials was noted. Updated correlations were presented which provided well results when they applied for the data obtained from the current study and previous studies.

Page generated in 0.0628 seconds