• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 184
  • 39
  • 28
  • 28
  • 24
  • 19
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 758
  • 587
  • 143
  • 99
  • 99
  • 77
  • 64
  • 59
  • 50
  • 43
  • 38
  • 38
  • 38
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Application of Bacteriophage in Food Manufacturing Facilities for the Control of Listeria monocytogenes and Listeria sp

Reinhard, Robert Gordon 05 February 2020 (has links)
The purpose of this research was to determine if bacteriophage (phage) could be used to treat and reduce the incidence of Listeria in food manufacturing facilities, and thereby reduce the risk of food products being cross-contaminated with Listeria monocytogenes. Listeria incidence in food manufacturing ready-to-eat environments was surveyed at 31 ready-to-eat (RTE) food plants. A total 4,829 samples were collected from all locations. Nine (29%) facilities had zero samples positive for Listeria spp., whereas 22 (71%) had one or more samples positive. The total incidence of Listeria spp. in all RTE food plants was 4.5%. The effectiveness of phage against Listeria was determined when applied to stainless steel, polyurethane thermoplastic, and epoxy. Each material was inoculated with a cocktail containing L. monocytogenes and L. innocua (4 to 5-log10 CFU/cm2) and treated with two different concentrations of phage (2x10^7 and 1x10^8 PFU/cm2). Treated samples were held at 4 or 20°C for 1 and 3h. After treatment with phage, Listeria reductions ranged from 1.27–3.33 log10 CFU/cm2 on stainless steel, 1.17–2.76 log10 CFU/cm2 on polyurethane thermoplastic, and 1.19–1.76 log10 CFU/cm2 on epoxy. Listeria reduction occurred on all materials tested, under all conditions. Higher phage concentration, longer time, and higher environmental temperatures led to significantly (P<0.05) greater reduction of Listeria on stainless-steel and polyurethane thermoplastic. The effectiveness of a phage against Listeria spp. was evaluated in two food manufacturing facilities, operating at either 4°C or 20°C. First, a moderate application of a 2x10^7 PFU/mL phage was applied once per day over three days and samples were collected and analyzed for Listeria at 0, 24, 48 and 72 h. This phage treatment led to a decrease in the incidence of Listeria by 67%. A second application method was studied with phage being applied in the food manufacturing environment in an intensified manner (3 times in 18 hours) at a higher concentration of phage (1x10^8 pfu/mL). This intensified application led to a 32% overall reduction in the incidence of Listeria in the production environment. Applications of Listeria specific phage can be an additional intervention strategy for controlling pathogenic Listeria organisms in food production facilities. / Doctor of Philosophy / Listeriosis is a serious illness caused by the bacterium Listeria monocytogenes. Annually in the United States it is estimated that 95.7% of all listeriosis illnesses are caused by the consumption of contaminated food, and it is generally recognized that L. monocytogenes is caused by cross contamination of ready-to-eat foods from an environmental source. The purpose of this research was to determine if food manufacturing facilities could use bacteriophage (phage) to treat and reduce the incidence of Listeria in food manufacturing plant, and thereby reduce the risk of food products being cross-contaminated with L. monocytogenes. The incident rate of Listeria was surveyed by collecting 4,829 samples from 31 ready-to-eat (RTE) food plants across the United States. Nine (29%) facilities had zero samples positive for Listeria spp., whereas 22 (71%) plants had one or more samples positive. The total incidence of Listeria spp. in all RTE food plant samples was 4.5%. Second, research was completed to determine if phage at different levels reduced Listeria on three common food manufacturing plant materials (stainless steel, polyurethane belting and epoxy flooring). After Listeria was attached to each material (4 to 5-log10 CFU/cm2), they were treated with two different levels of phage (2x10^7 and 1x10^8 PFU/cm2) at two temperatures (4 or 20°C) for 1 and 3 hours. After treatment with phage, Listeria reduction of 93.2 to 99.9% occurred on all materials tested, under all conditions. Finally, two different methods of applying phage (moderate and intensified) in a food manufacturing plant was studied. The moderate application was a single treatment with lower concentration of phage (2x10^7 PFU/mL) once per day for three days, while the intensified treatment was the application of high phage concentrations (1x10^8 pfu/mL) three different times, all in a single day. Both application methods reduced the incidence of Listeria in the food manufacturing plant. The total reduction across all trials was 67% using the moderate application method and 32% using the intensified application of phage.
422

Effect of Delmopinol Hydrochloride on the Prevention and Removal of Listeria monocytogenes and Salmonella enterica Stainless Steel-Adhered Biofilms

Ewell, Ellen Sutton 19 December 2013 (has links)
Bacterial biofilms attached to food contact surfaces are an ongoing concern for the food industry due to the resistance of bacteria within biofilms to detergents and sanitizers. Within food manufacturing facilities, stainless steel is a common food-contact surface in which microbial cell attachment and biofilm formation may occur. Identifying methods to prevent and remove biofilms during standard cleaning and sanitation practices could prove useful, as mature biofilms can release planktonic cells into an aqueous environment, causing continual low-level contamination. Dental studies involving delmopinol hydrochloride, a cationic surfactant, have found a preventative and dissociating affect on biofilms, where food applications have scarcely been researched. This study demonstrates the prevention and removal of Listeria monocytogenes 1/2a and S. enterica Agona biofilms on stainless steel with pre- and post-exposures of delmopinol hydrochloride. Stainless steel blanks (#304, 16 gauge, 2cm x 2cm, finish #4) were submerged in a 0.2% or 0.5% delmopinol solution before or after biofilm formation. Treatment times were 1, 5 or 10 minutes, whereas controls were not exposed to the delmopinol solution. Disinfected stainless steel blanks were spot-inoculated with 20µL of a 10⁹ CFU/mL liquid culture, and pre-exposed blanks were additionally submerged in delmopinol and dried prior to inoculation. Biofilms were exclusively formed on the finished and inoculated side by placing the surface face-down on TSA. After cell attachment and biofilm development for 24 hours at 25°C, blanks were rinsed with phosphate buffer. Post-exposed blanks were submerged in 0.2% or 0.5% delmopinol for 1, 5 or 10 minutes before all blanks were individually vortexed for 90 seconds to dislodge films. Bacterial populations were determined by surface plating onto TSA followed by incubation at 32°C for L. monocytogenes and 37°C for S. Agona for 48 hours. Treatments were in-duplicate and repeated three times for each microorganism. Pre-exposure of 0.2% delmopinol resulted in a significant decrease in L. monocytogenes concentration at 1, 5 and 10 minute exposures (P < 0.05). Pre-exposures with the 0.5% solution had no significant effect on L. monocytogenes biofilm populations (P > 0.05), whereas all post-exposures lead to a significant decline in biofilm concentrations (P < 0.0001). Post-exposures of 10 minutes exhibited a mean log₁₀ reduction of 5.59 and 6.40 log₁₀ for 0.2% and 0.5% delmopinol solutions, respectively. For S. Agona, 0.2% pre-exposure resulted in no significant log10 reduction (P > 0.05), while the 10 minute 0.5% pre-exposure exhibited a minimal reduction in bacterial growth (P < 0.05). Post-exposures of 10 minutes exhibited a mean log10 reduction of 7.65 and 7.75 log10 for 0.2% and 0.5% delmopinol solutions, respectively. For L. monocytogenes and S. Agona, post-exposure to delmopinol hydrochloride caused a notable log10 reduction. The removal effect of delmopinol on biofilms is significantly greater the preventative effect. / Master of Science in Life Sciences
423

Quantitative Evaluation of Recovery Methods for Listeria monocytogenes Applied to Stainless Steel

Kang, Suk-Kee David 17 May 2006 (has links)
The ability of Listeria monocytogenes, to attach to various food contact surfaces such as stainless steel, polypropylene, and rubber compounds is well documented. The retention of these or other pathogenic bacteria on food contact surfaces increases the risk of transmission to food products. The objective of this study was to compare several methods for quantitative recovery of Listeria monocytogenes from stainless steel surfaces. A cocktail of four serotypes of Listeria monocytogenes (Scott A (4b)), 1/2b, 3b, and 4b) were mixed in equivalent concentrations and inoculated onto type 304 stainless steel coupons in a 2cm x 2cm area. After a one hour exposure, coupons were sampled by one of the following methods: 1) swabbing using a pre-moistened Dacron swab, 2) rinsing with phosphate buffered saline, 3) direct contact onto a Tryptic Soy Agar containing 0.6% yeast extract (TSA+YE) plate surface for 10 seconds, 4) sonication in an ultrasonic water bath (40 kHz), 5) contact with the bristles of a sonicating brush head for 1 min, and 6) indirect contact (2-4 mm) with the bristles of a sonicating brush head for 1 min. Coupon rinses were plated onto TSA containing 0.6% yeast extract and incubated for 24 hours at 35°C. The three sonication methods yielded higher recovery than the other three methods (p < 0.05). Brushing the coupons with the sonicating brush head yielded a recovery level of 58% and indirect exposure to the sonicating brush head permitted a recovery level of 65% from the initial microbial load. The lowest cell recovery (~20%) was observed with the swab and direct agar contact methods. / Master of Science
424

Use of High Pressure Processing to Reduce Foodborne Pathogens in Coconut Water

Lukas, Anthony R. 18 December 2013 (has links)
Juices have been implicated in numerous foodborne outbreaks over the last couple of decades. The FDA requires a 5-log10 reduction in juice products, which is most commonly achieved through pasteurization. However, pasteurization deteriorates some sensorial properties and nutritive value. Coconut water (CW; classified as a juice), is rapidly gaining popularity increasing over 300% since 2005. CW has not been implicated in a microbial outbreak, but is thermally processed to achieve the required 5-log10 CFU/ml reduction, which results in negative organoleptic properties. The objectives of this study are to determine whether E. coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes can grow in CW, and evaluate the use of High Pressure Processing (HPP) to reduce populations of these bacteria in CW. The three pathogens were inoculated separately into CW and bacterial populations were enumerated over 24 hours. All three bacteria reached at least 8-log10 CFU/ml after 24 hours, which was not significantly different from the control (TSB). CW was then inoculated with each pathogen and processed using HPP (400, 5000, or 600 MPa) for 120 seconds. The D-glucose, D-fructose, sucrose, and phenol oxidase levels in the CW were assessed before and after treatments. Following processing, the pathogens were enumerated from the CW. All three pathogens were reduced by more than 6-log10 CFU/ml following treatments of 500 and 600 MPa, enough to achieve the mandatory 5-log CFu/m reduction. There were no significant changes in the D-glucose, D-fructose, sucrose, and phenol oxidase activity after any of the treatments. / Master of Science in Life Sciences
425

Quantitative Recovery of Listeria monocytogenes and Salmonella enterica from Environmental Sampling Media

Bazaco, Michael Constantine 27 January 2005 (has links)
Environmental sampling is a pathogen monitoring technique that has become important in the food industry. Many food processing companies have adopted environmental sampling as a way to verify good manufacturing practices and sanitation plans in their facilities. Environmental sampling is helpful because it gives better information on the source of product contamination than end product sampling. Two specific pathogens of concern to the food industry are Listeria monocytogenes and Salmonella enterica. Environmental samples are rarely analyzed immediately, but instead may be batched for later analysis or shipped to an off site testing facility. Multiple media on the market today is used for storage and transport of environmental samples. These various media types, differences in holding temperatures and time create variability in test sample conditions. Select time, temperature and media combinations were tested to determine their effect on Listeria monocytogenes and Salmonella enterica populations during transport and storage of samples. Cocktails of Listeria monocytogenes and Salmonella enterica were added separately to sample tubes containing D/E Neutralizing Broth, Neutralizing Buffer or Copan SRK Solution. Bacterial counts at 0, 12, 24 and 48 hours post inoculation were compared. Neutralizing Buffer and Copan SRK Solution maintained consistent bacterial populations at all temperatures. At 10° and 15°C, D/E Broth supported bacterial growth. This study helps validate the use of D/E Neutralizing Broth, Neutralizing Buffer and Copan SRK Solution for environmental sample transport and storage at proper holding temperatures. At temperatures >10°C Neutralizing Buffer or Copan SRK solution should be used if quantifying microbial recovery. / Master of Science
426

Decision Making Tools for Optimizing Environmental Sampling Plans for Listeria in Poultry Processing Plants

Al Wahaimed, Abdullah Saud 08 July 2022 (has links)
Meat and poultry slaughtering and processing practices have been associated with the microbial contamination with Listeria spp. Ready-to-eat poultry products have been considered as a primary agent associated with Listeria monocytogenes illness outbreaks. Developing environmental monitoring programs (EMPs) that are based on product and/or process risk level analysis is a useful approach to reduce contamination in poultry processing plants and enhance food safety. Sampling criteria that is based on product risk levels and process control in ready-to-eat poultry processing facilities was developed to allow users to design and conduct appropriate sampling plans to target Listeria spp. After developing the criteria, an internet-based environmental monitoring program ("EZSafety") was developed to allow poultry producers to enhance their sample collection and analysis of test results over time and conduct appropriate sampling plans for Listeria spp. and other microbiological indicators. The frontend of the program website was built using React Native (an open-source JavaScript library for building user interfaces). The backend of the program website was built using Node.js which executes JavaScript code outside a web browser. MongoDB was used as a document-oriented database for the website. The program was evaluated by 20 food safety professionals to assess its ability to develop appropriate sampling plans to target Listeria spp. The majority of these participants believed that EZSafety has several tools that are effective for targeting Listeria spp. and other indicators and enhancing environmental monitoring. Additionally, most participants agreed that EZSafety is organized and user-friendly. EMPs can play a significant role in improving the detection rate and the prevention of Listeria spp. and other indicators in poultry processing plants. / Master of Science in Life Sciences / Meat and poultry slaughtering and processing practices have been associated with the microbial contamination with a bacterium known as Listeria. Cooked poultry products during the manufacturing process have been considered as a primary agent associated with Listeria monocytogenes (disease causing type of bacteria) sickness outbreaks. Developing environmental monitoring plans to detect and prevent this bacterium in poultry processing establishments is a useful approach to reduce contamination and enhance food safety. Several guidelines and baselines were developed to allow users to design and conduct appropriate environmental monitoring plans to target this bacterium. After developing these guidelines and baselines, an internet-based environmental monitoring program ("EZSafety") was developed to allow poultry processors to enhance their sample collection and analysis of test results over time. The program was developed using several kinds of computer platforms (JavaScript, React Native, and MongoDB) . These open-source platforms were used to design, develop, and store the program over the internet. In order to validate its usefulness, the program was evaluated by 20 users who are majored in food safety and familiar with poultry processing plants hygiene to assess its ability to suggest appropriate monitoring plans. Most of the participants believed that EZSafety has several tools that are effective for targeting Listeria and other kinds of bacteria and enhancing environmental monitoring plans. Additionally, most participants agreed that EZSafety is organized and user-friendly. Such automated monitoring programs can play a significant role in enhancing the detection rate and the prevention of Listeria and other organisms in poultry processing facilities.
427

The Recovery and Transfer of Aerosolized Listeria Innocua

Waldron, Calvin Michael 15 September 2017 (has links)
Airborne pathogenic bacteria can present a significant public health risk. Pathogenic Listeria monocytogenes can colonize numerous surfaces as well, through direct and indirect cross contamination. The physical environment can also affect the transmission and viability of Listeria (distance from the source, temperature, humidity, air flow). The purpose of this work was to explore the ability of Listeria innocua (a surrogate for L. monocytogenes) to contaminate a surface after it has become aerosolized in a bioaerosol chamber and a walk-in cooler. L. innocua was nebulized into a 154 L biosafety chamber (~5 log CFU in 1 mL) at two relative humidity (RH) levels (83% and 65%). Oxford Listeria agar plates, stainless steel coupons and polyethylene (HDPE) coupons in the chamber were exposed to the aerosolized bacteria for 5, 10, 20 or 40 minutes. Also, at these times, air samples (100 L) were collected on to gelatin filters which were transferred to Oxford agar plates. In the second part of the research, L. innocua was nebulized into an 11 m3 walk-in cooler where RH ranged from ~29-37%. Aerosolized bacteria were collected on to Oxford agar plates for 10 min intervals and with 50 or 100 L air samples. Recovery of L. innocua from steel, plastic and agar was significantly higher at 83% RH (2.7 cells/cm2) compared to 65% RH (0.45 cells/cm2). Mean cell recovery from air samples (gelatin filters) was significantly higher (p<0.05) when collected 5 or 10 minutes after nebulization at 83% humidity (mean 2.2 CFU/L) compared to collection after 20 or 40 minutes or compared to all times under 65% humidity (mean 0.4 CFU/L). Recovery from HDPE coupons (1.21 CFU/cm2) was 2.5 X recovery from Oxford agar (0.49 CFU/cm2). In the walk-in cooler, total estimated mean recovery from Oxford media at 10 min after nebulizing was 0.48%, but only 0.04% for samples collected after 60 minutes. The recovery of L. innocua from air samples after 60 min was one-fourth of the number recovered 5 min after nebulizing. No significant difference in recovery was found between plates at different distances (2 – 2.5 m) from the nebulizer in the walk-in cooler. Understanding the survival of aerosolized Listeria and how it can colonize over time on a food contact surface will enhance our efforts to prevent transmission on a small and large scale. The food industry will be able to implement better safety measures to prevent contamination by Listeria species. / Ph. D. / Airborne pathogenic bacteria, including Listeria monocytogenes, can present a significant public health risk. Pathogenic bacteria can colonize numerous surfaces as well through direct and indirect cross contamination. The physical environment can also affect the transmission and viability of Listeria (distance from the source, temperature, humidity). The purpose of this work was to explore the ability of Listeria innocua to contaminate a surface after it has become aerosolized in a bioaerosol chamber and a walk-in cooler. Environmental factors of distance from the source, temperature, and relative humidity were explored. L. innocua was nebulized into a 154 L biosafety chamber (~5 log CFU in 1 ml) at two relative humidity (RH) levels (83% and 65%). Oxford Listeria agar plates, stainless steel coupons and polyethylene (HDPE) coupons in the chamber were exposed to the aerosolized bacteria for 5, 10, 20 or 40 minutes. Also, at these times, air samples (100 L) were collected on to gelatin filters which were transferred to Oxford agar plates. In the second part of the research, L. innocua was nebulized into an 11 m³ walk-in cooler where RH ranged from ~29-37%. Aerosolized bacteria were collected with 50 or 100 L air samples. And, Oxford media was placed on the cooler floor in layers (attached to poster boards) at various locations for surface analysis. The three surface samples yielded a greater mean recovery of 2.7 cells/cm² at 83% humidity compared to 0.45 cells/cm² at 65% humidity. Mean cell recovery from air samples (gelatin filters) was significantly higher (p<0.05) when collected 5 or 10 minutes after nebulization at 83% humidity (mean 2.2 CFU/L) compared to collection after 20 or 40 minutes or compared to all times under 65% humidity (mean 0.4 CFU/L). Recovery from HDPE coupons (1.21 CFU/cm² ) was 2.5 X recovery from Oxford agar (0.49 CFU/cm² ). In the walk-in cooler, total estimated mean recovery from the Oxford media at 10 min after nebulizing the Listeria innocua was 0.48%, but only 0.04% for samples collected after 60 minutes. The recovery of L. innocua from air samples after 60 min was one-fourth of the number recovered 5 min after nebulizing. Understanding the survival of aerosolized Listeria and how it can colonize over time on a food contact surface will enhance our efforts to prevent transmission on a small and large scale. The food industry will be able to implement better safety measures to prevent contamination by Listeria species.
428

Factors Influencing The Ecology and Epidemiology of Microbial Indicators and Foodborne Pathogens In Surface Waters and Development of Risk Mitigations

Murphy, Claire Margaret 25 April 2023 (has links)
Foodborne outbreaks have continued to be associated with produce contamination originating from on-farm sources, such as soil or agricultural water. Additionally, the heterogeneity of the pre-harvest environment complicates the development of universal strategies for managing produce safety risks. Understanding the ecology and epidemiology of foodborne pathogens and fecal indicator bacteria (FIB) by growing regions, sample types, scale of analysis, and detection method is essential for developing targeted mitigation strategies. This dissertation utilized quantitative research methods and statistical modeling to examine the impact of sampling method, spatial, temporal, meteorological, and physicochemical factors on pathogen prevalence and FIB levels. Key findings highlight that the drivers of prevalence differ between pathogens and were influenced by sample type, scale, and region.. The variations in associations emphasize that risk varies by space and time. Therefore, results support regional and scale-dependent food safety standards and guidance documents for controlling hazards to minimize risk. Additionally, the method used for pathogen detection influences prevalence highlighting the need for standard methods since methodological differences confound comparisons across studies. Furthermore, since agricultural water quality is an important food safety priority, this dissertation aimed to determine the efficacy of chemical antimicrobial sanitizers against Salmonella in pre-harvest agricultural water. Results demonstrated that certain sanitizer treatments and conditions can significantly reduce Salmonella populations in preharvest agricultural water sources and thus may serve as a risk reduction option when used correctly. / Doctor of Philosophy / Fresh fruits and vegetables are continually implicated in foodborne outbreaks. Additionally, the source of the pathogen that causes illness in these outbreaks is often due to contact with contaminated soil or water on the farm. Since the environment is extremely diverse, the risk of foodborne pathogens is not uniform across a farm and between farms. Therefore, the development of a one-size-fits-all plan to reduce the risk of foodborne pathogens from contaminating produce on a farm is difficult. Understanding the incidence and distribution of foodborne pathogens and fecal bacteria and how these microorganisms interact with the environment is important to develop strategies to manage risk. Additionally, understanding how the prevalence of bacteria varies by state, medium (water vs soil), and farm is needed to develop targeted mitigation plans. This dissertation utilized laboratory and field-based experiments to understand how space, time, weather, and physical properties impact the occurrence of foodborne pathogens and fecal bacteria. The primary results show factors that impact prevalence are different between pathogens (Salmonella vs Listeria vs E. coli). Furthermore, the occurrence differed by sampling method (molecular vs culture), sample type (water vs soil), scale (within a farm vs between multiple farms), and region emphasizing that the risk from foodborne pathogens varies over space and time. Overall, this dissertation's results suggest that both regional and scale-specific guidelines are needed to reduce foodborne pathogen risks in the farm environment. Lastly, since the quality of the water used in growing fresh produce is an important food safety priority, the effectiveness of chemical antimicrobial sanitizers against Salmonella in agricultural water was evaluated. Results demonstrated that certain sanitizer treatments and conditions (sanitizer concentrations, water temperatures) can significantly reduce Salmonella populations in pre-harvest water sources and may serve as a risk reduction option when sanitizers are used correctly.
429

Acceptability and Shelf-Life of Fresh and Pasteurized Crab Meat Stored Under Different Environmental Conditions

Tyler, Carla Gutierrez 02 April 2009 (has links)
Crab meat is important to the economy of coastal Virginia. The objectives of this study were to complete a shelf-life study on two different packaging styles of fresh crab meat and to test the inhibition capabilities of Carnobacterium piscicola against the pathogen, Listeria monocytogenes. In a shelf-life study, a 12 ounce food grade polyethylene traditional snap-lid container of fresh crab meat was compared to an 8 ounce SimpleStep® trays with Cryovac™ film of equally fresh crab meat sealed with 10,000 cc/m2/24hr oxygen transmission rate (OTR) film. Eleven g samples were used for the microbial shelf-life study conducted at 4°C for 12 days. Aerobic plate counts of crab meat indicated microbial growth from the SimpleStep® trays with Cryovac™ film in 10,000 cc/m2/24hr OTR versus the polyethylene snap-lid was not significant (P>0.05). In objective two, 25 g samples of fresh and pasteurized blue crab (Callinectes sapidus) meat were inoculated with 0.1ml of each, C. piscicola and L. monocytogenes. Three different concentrations of the inoculation levels were studied on select days at both 4°C and 10°C. Microbial spoilage was defined as 107 CFU/g. In fresh crab meat, at both 4°C and 10°C, crab meat spoilage occurred at 7 days or less. In the pasteurized crab meat, at 4°C and 10°C, spoilage did not occur prior to 26 days, and studies were terminated at 28 days of storage. The growth of the two organisms in fresh crab meat was found to be significant for the differing concentration levels and sampling days (P<0.05). The growth of the two organisms in pasteurized crab meat was significant for different concentration levels, sampling days and temperature (P<0.05). In both fresh and pasteurized crab meat, regardless of the inoculation ratios, the L. monocytogenes and C.piscicola followed similar growth trends, but L. monocytogenes was higher in the 2:2 CFU/g concentration and lower at the 6:2 CFU/g concentration level. Although C. piscicola did not completely inhibit L. monocytogenes growth at any concentration ratio, some inhibition was observed. / Master of Science
430

Effect of Ozone and Ultraviolet Irradiation Treatments on Listeria monocytogenes Populations in Chill Brines

Dev Kumar, Govindaraj 10 December 2008 (has links)
The efficacy of ozone and ultraviolet light, used in combination, to inactivate Listeria monocytogenes in fresh (9% NaCl, 91.86% transmittance at 254 nm) and spent chill brines (20.5% NaCl, 0.01% transmittance at 254 nm) was determined. Preliminary studies were conducted to optimize parameters for the ozonation of "fresh" and "spent" brines. These include diffuser design, comparison of kit to standard methods to measure residual ozone, studying the effect of ozone on uridine absorbance and determining presence of residual listericidal activity post ozonation. An ozone diffuser was designed using 3/16 inch PVC tubing for the ozonation of brines. The sparger was designed to facilitate better diffusion and its efficiency was tested. The modified sparger diffused 1.44 ppm of ozone after 30 minutes of ozonation and the solution had an excess of 1 ppm in 10 minutes of ozonating fresh brine solution (200ml). Population levels of L. monocytogenes were determined at various time intervals post-ozonation (0, 10, 20, 60 min) to determine the presence of residual listericidal activity. The population post ozonation (0 minutes) was 5.31 Log CFU/ml and was 5.08 Log CFU/ml after a 60 minute interval. Therefore, residual antimicrobial effect was weak. Accuracy of the Vacu-vial Ozone analysis kit was evaluated by comparing the performance of the kit to the standard indigo colorimetric method for measuring residual ozone. The kit was inaccurate in determining residual ozone levels of spent brines and 1% peptone water. Uridine was evaluated as a UV actinometric tool for brine solutions that were ozonated before UV treatment. The absorbance of uridine (A262) decreased after ozonation from 0.1329 to 0.0512 for standard 10 minutes UV exposure duration. Absorbance of uridine was influenced by ozone indicating that the presence of ozone may hamper UV fluence determination accuracy in ozone-treated solutions. Upon completion of diffuser design and ozone/UV analysis studies, the effect of ozone-UV combination on L. monocytogenes in fresh and spent brines was evaluated. Ozonation, when applied for 5 minutes, caused a 5.29 mean Log reduction while 5 minutes of UV exposure resulted in a 1.09 mean Log reduction of L. monocytogenes cells in fresh brines. Ten minutes of ozonation led to a 7.44 mean Log reduction and 10 minutes of UV radiation caused a 1.95 mean Log reduction of Listeria in fresh brine. Spent brines required 60 minutes of ozonation for a 4.97 mean Log reduction in L. monocytogenes counts, while 45 minutes resulted in a 4.04 mean Log reduction. Ten minutes of UV exposure of the spent brines resulted in 0.30 mean Log reduction in Listeria cells. A combination of 60 minutes ozonation and 10 minute UV exposure resulted in an excess of 5 log reduction in cell counts. Ozonation did not cause a sufficient increase in the transmittance of the spent brine to aid UV penetration but resulted in apparent color change as indicated by change in L*a*b* values. Ozonation for sufficient time had considerable listericidal activity in fresh brines and spent brines and when combined with UV treatment, is effective reducing L. monocytogenes to undetectable levels in fresh brines. / Master of Science in Life Sciences

Page generated in 0.0552 seconds