Spelling suggestions: "subject:"1ithium oon battery"" "subject:"1ithium soon battery""
271 |
Studies on degradation factors and their mitigation methods of cathode materials for advanced lithium-ion batteries / 先進リチウムイオン電池正極材料の劣化要因とその緩和方法に関する研究 / センシン リチウム イオン デンチ セイキョク ザイリョウ ノ レッカ ヨウイン ト ソノ カンワ ホウホウ ニカンスル ケンキュウ橋上 聖, Satoshi Hashigami 22 March 2019 (has links)
再生可能エネルギーの大量導入に向けて、電力需給の安定化を目的として蓄電池を用いる電力貯蔵技術に注目が集まっている。現状のリチウムイオン電池(LIB)がベースの先進LIBは250Wh/kgの高エネルギー密度を有し、自動車のみならず電力貯蔵用途としても普及が期待されている。本研究では先進LIB正極材料として期待されるリチウム過剰系正極と高ニッケル三元系正極について容量低下などの劣化要因を明確にして、それら課題に対して正極粒子への酸化物修飾による解決を検討した。 / The development of energy storage technologies using batteries has attracted much attention to introduce the renewable energy. If we can achieve 250 Wh kg-1 with the advanced LIBs based on the principle of LIB, we can lower the cost of the total energy storage systems while ensuring the safety, and hence the advanced LIBs will accelerate the world-wide spread of large-scale power storage systems. In this thesis, the author focused surface modification of lithium-rich layered ternary transition metal oxide and high-nickel layered ternary transition metal oxide cathode particles with oxides as mitigation methods for capacity fading. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
|
272 |
Dilution effects of highly concentrated electrolyte with fluorinated solvents on charge/discharge characteristics of Ni-rich layered oxide positive electrode / 高ニッケル層状酸化物正極充放電特性に及ぼす濃厚電解液のフッ素系溶媒希釈効果 / コウニッケル ソウジョウ サンカブツ セイキョク ジュウホウデン トクセイ ニ オヨボス ノウコウ デンカイエキ ノ フッソケイ ヨウバイ キシャク コウカ曹 子揚, Ziyang Cao 22 March 2020 (has links)
高ニッケル三元系材料は商用のLiCoO2正極より高い容量を有するため、EVsで使用するリチウムイオン電池の正極材料の候補として有望である。本論文に、著者は濃厚電解液とフッ素化溶媒を用いた希釈電解液に着目し、高ニッケル三元系LiNi0.8Co0.1Mn0.1O2(NCM811)の充放電サイクル特性を向上させた。電解液中の溶媒化構造の観点から、濃厚電解液の希釈効果がNCM811の充放電特性に及ぼす影響を詳細に検討した。 / Ni-rich ternary materials have higher capacity than the commercial LiCoO2 positive electrode, and therefore they are promising candidates for the positive electrode material of lithium ion batteries for use in EVs. In this thesis, the author focused on highly concentrated electrolytes and their diluted electrolytes with fluorinated solvents to improve the cycling performance of a Ni-rich ternary LiNi0.8Co0.1Mn0.1O2 (NCM811) for practical application. Dilution effects of the concentrated electrolytes on the charge/discharge properties of NCM811 were discussed in detail from the viewpoint of the solvation structure in the electrolyte. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
|
273 |
Elektrochemische und strukturelle Untersuchungen von Li3Cr2(PO4)3 als Hochvoltkathodenmaterial in LithiumionenbatterienHerklotz, Markus 20 December 2013 (has links)
Ziel dieser Arbeit war es, das LISICON Li3Cr2(PO4)3 als einen Kandidaten für Hochvoltkathodenmaterialien eingehend zu charakterisieren. Dabei lag der Schwerpunkt auf den strukturellen in situ Untersuchungen mittels Synchrotronstrahlung und der Aufdeckung etwaiger limitierender Prozesse.
Für diese Arbeit wurde der neue Messplatz P02.1 an der Synchrotronstrahlungsquelle PETRA III, DESY Hamburg für in situ Batterieuntersuchungen evaluiert. In Abhängigkeit von der 2D-Detektorposition können maximale q-Bereiche von bis zu 35 Å-1 oder instrumentelle Auflösungen bis zu 0,0055 Å-1 erzielt werden. Hervorzuheben ist außerdem die zeitliche Auflösung von minimal 130 ms je Diffraktogramm.
Mittels galvanostatischen Messungen eines Li3Cr2(PO4)3-haltigen Komposits (80 % (w/w) Aktivmaterial) konnten zwei Lade- und ein Entlademaximum zwischen 4,7 V und 4,9 V vs. Li+/Li nachgewiesen werden. Jedoch beträgt die Coulomb-Effizienz lediglich 60 % (bei 60 mAh/g oxidativer Ladungsmenge). Eine maximale Coulomb-Effizienz von ca. 80 % wurde bei niedrigeren Temperaturen um den Gefrierpunkt gemessen. Neben strukturellen Änderungen ist eine Elektrolytzersetzung nicht auszuschließen, wobei eine mittels XPS nachgewiesene Grenzschicht zwischen Kathode und Elektrolyt diesen vor einer übermäßigen Reaktion zu schützen scheint.
Erstmalig ließ sich mittels der Photoelektronenspektroskopie das aktive Redoxpaar Cr4+/Cr3+ in einer Phosphatmatrix nachweisen. Wie die in situ Untersuchungen zeigen, scheint dies mit der Bildung von Chrom-Sauerstoff-Doppelbindungen einherzugehen. Sowohl sich gegenläufig entwickelnde transständige Chromsauerstoffabstände als auch die Verringerung der Phosphorbesetzungszahlen sind starke Indizien für diese neuartige oktaedrische Koordination des Chroms. Diese als sehr stabil einzuschätzende Chromylverbindung, eine nachgewiesene stark anisotrope Kontraktion der Einheitszelle und mittels REM erkennbare Risse in den aktiven LISICON-Kristalliten werden als Hauptursachen für die relativ geringe De- und Reinterkalierbarkeit von Lithium in die Struktur des hier untersuchten Li3Cr2(PO4)3 angesehen.:I Einleitung und Grundlagen
1 Einleitung
2 Theoretische Grundlagen
2.1 Elektrochemische Grundlagen
2.1.1 Prinzip und Elektrodenmaterialien einer Lithiumionenbatterie
2.1.2 Grundlegende elektrochemische Gesetze und Größen
2.1.3 Elektrochemische Methoden
2.2 Strukturmodellverfeinerung
2.2.1 Lage und Intensität von Bragg-Reflexen
2.2.2 Rietveld-Methode
2.2.3 Profilfunktion
2.2.4 Fehlerbetrachtung
2.2.5 Beschränkung verfeinerter Parameter
II Untersuchte Materialien und experimentelle Aufbauten
3 Die monokline Struktur und Eigenschaften von Li3Cr2(PO4)3
4 Charakterisierungsmethoden und experimentelle Aufbauten
4.1 Elektrochemie
4.2 Photoelektronenspektroskopie
4.3 Rasterelektronenmikroskopie
III Evaluierung eines neuen in situ-Diffraktionsmessplatzes
5 Strahlquellen zur in situ-Charakterisierung von Batteriematerialien
5.1 Vom Labordiffraktometer zum Synchrotron
5.2 Messplätze am DESY Hamburg
6 Aufbau des in situ-Messplatzes an der Beamline P02.1
6.1 Diffraktometer und Zellhalter
6.2 Entwicklung einer neuen in situ-Messzelle
6.3 Programme zum Auswerten von 2D-Diffraktogrammen
7 Leistungsfähigkeit des in situ-Messplatzes an der Beamline P02.1
7.1 Elektrochemische Funktionalität des neuen Zelldesigns
7.2 In situ-Synchrotron-Pulver-Diffraktion mit dem neuen Messaufbau
7.3 Beiträge zum Untergrund
7.4 Zeitauflösung und Diffraktogrammqualität
7.5 Detektierbarer q- bzw. 2 -Bereich
7.6 Instrumentelle Auflösung
IV Untersuchungen am System Li3Cr2(PO4)3
8 Elektrochemisches Verhalten von Li3Cr2(PO4)3
8.1 Einfluss der Ladeschlussspannung und des Lithiumumsatzes
8.2 Einfluss des Lade- bzw. Entladestroms
8.3 Einfluss der Temperatur
9 Photoelektronenspektroskopische Charakterisierung der Chrom-Valenzzustände
9.1 Spektren des Ausgangszustands und Energiekalibrierung
9.2 Charakterisierung der oxidierten Zustände
10 Rasterelektronenmikroskopische Morphologieuntersuchungen
10.1 REM-Aufnahmen des Ausgangszustands
10.2 REM-Aufnahmen des oxidierten Zustands
10.3 Diskussion zur kritischen Kristallitgröße
11 In situ-Strukturuntersuchung
11.1 Elektrochemisches Verhalten in der in situ-Zelle
11.2 Strukturmodell des Ausgangszustands
11.3 Strukturmodellauswahl für die oxidierten Zustände
11.4 Entwicklung der Gitterparameter
11.5 Entwicklung der Atomkoordinaten und Besetzungszahlen
11.6 Mikrostrukturausbildung und Gleitebenen
V Zusammenfassung und Ausblick / Aim of this work is the investigation of a compound of the LISICON family Li3Cr2(PO4)3 as a high voltage cathode material in lithium ion batteries. This thesis focuses on the monitoring of structural fatigue mechanisms using synchrotron radiation.
A new in situ experimental setup at the beamline P02.1 (PETRA III, DESY Hamburg) was evaluated. In dependence on the 2D detector position either a q-range of 35 Å-1 or an instrumental resolution of 0.0055 Å-1 were determined. A time resolution of 130 ms per diffractogram with still outstanding signal statistics shall be pointed out.
By galvanostatic cycling of a Li3Cr2(PO4)3-composite (80 % (w/w) active material) partially reversible redox behavior at 4.7 V and 4.9 V vs. Li+/Li was demonstrated. A coulombic efficiency of 60 % (at 60 mAh/g oxidative charge amount) was measured at room temperature. It can be increased to 80 % at 0 °C. Electrolyte decomposition has to be considered as one possible reason for the limited electrochemical reversibility. A solid electrolyte interface, which was proven by XPS measurements, seems to protect the electrolyte against further decomposition.
For the first time, the active redox pair Cr4+/Cr3+ in a phosphate matrix was proven by XPS. Most likely this behavior is accompanied by the formation of chromium-oxygen double bonds, as derived from the in situ synchrotron XRD data. Both an opposing trend in trans-positioned chromium-oxygen bond distances and the less occupied phosphorus positions give strong hints on this octahedral coordination of chromium. The chromyl group is estimated as strong bond and therewith the strongly anisotropic contraction of the unit cell and the formation of visible cracks (as found REM) in the active crystals are indicated as further reasons for the limited electrochemical reversibility for Li-intercalation and deintercalation of the investigated Li3Cr2(PO4)3.:I Einleitung und Grundlagen
1 Einleitung
2 Theoretische Grundlagen
2.1 Elektrochemische Grundlagen
2.1.1 Prinzip und Elektrodenmaterialien einer Lithiumionenbatterie
2.1.2 Grundlegende elektrochemische Gesetze und Größen
2.1.3 Elektrochemische Methoden
2.2 Strukturmodellverfeinerung
2.2.1 Lage und Intensität von Bragg-Reflexen
2.2.2 Rietveld-Methode
2.2.3 Profilfunktion
2.2.4 Fehlerbetrachtung
2.2.5 Beschränkung verfeinerter Parameter
II Untersuchte Materialien und experimentelle Aufbauten
3 Die monokline Struktur und Eigenschaften von Li3Cr2(PO4)3
4 Charakterisierungsmethoden und experimentelle Aufbauten
4.1 Elektrochemie
4.2 Photoelektronenspektroskopie
4.3 Rasterelektronenmikroskopie
III Evaluierung eines neuen in situ-Diffraktionsmessplatzes
5 Strahlquellen zur in situ-Charakterisierung von Batteriematerialien
5.1 Vom Labordiffraktometer zum Synchrotron
5.2 Messplätze am DESY Hamburg
6 Aufbau des in situ-Messplatzes an der Beamline P02.1
6.1 Diffraktometer und Zellhalter
6.2 Entwicklung einer neuen in situ-Messzelle
6.3 Programme zum Auswerten von 2D-Diffraktogrammen
7 Leistungsfähigkeit des in situ-Messplatzes an der Beamline P02.1
7.1 Elektrochemische Funktionalität des neuen Zelldesigns
7.2 In situ-Synchrotron-Pulver-Diffraktion mit dem neuen Messaufbau
7.3 Beiträge zum Untergrund
7.4 Zeitauflösung und Diffraktogrammqualität
7.5 Detektierbarer q- bzw. 2 -Bereich
7.6 Instrumentelle Auflösung
IV Untersuchungen am System Li3Cr2(PO4)3
8 Elektrochemisches Verhalten von Li3Cr2(PO4)3
8.1 Einfluss der Ladeschlussspannung und des Lithiumumsatzes
8.2 Einfluss des Lade- bzw. Entladestroms
8.3 Einfluss der Temperatur
9 Photoelektronenspektroskopische Charakterisierung der Chrom-Valenzzustände
9.1 Spektren des Ausgangszustands und Energiekalibrierung
9.2 Charakterisierung der oxidierten Zustände
10 Rasterelektronenmikroskopische Morphologieuntersuchungen
10.1 REM-Aufnahmen des Ausgangszustands
10.2 REM-Aufnahmen des oxidierten Zustands
10.3 Diskussion zur kritischen Kristallitgröße
11 In situ-Strukturuntersuchung
11.1 Elektrochemisches Verhalten in der in situ-Zelle
11.2 Strukturmodell des Ausgangszustands
11.3 Strukturmodellauswahl für die oxidierten Zustände
11.4 Entwicklung der Gitterparameter
11.5 Entwicklung der Atomkoordinaten und Besetzungszahlen
11.6 Mikrostrukturausbildung und Gleitebenen
V Zusammenfassung und Ausblick
|
274 |
Physics-Based Modelling for SEI and Lithium Plating During Calendar and Cycling Ageing / Fysikbaserad model för SEI och litiumplätering under kalender- och cykelåldringNordlander, Oskar January 2022 (has links)
Målet med projektet var att undersöka samt implementera en fysikbaserad DFN modell för att simulera kalender samt cyklingåldrande av litiumbatterier som används i elbilar. Den fysikbaserade modellen var konstruerad baserad på ett Python biblioteket vid namn PyBaMM, vilket till skillnad från datadrivna modeller ger essentiell information om de kemiska processerna inuti batteriet. Den första delen av projektet täcker konceptet av kalenderåldring, vilket inkluderar en jämförelse mellan tre olika tre olika hastighetsbegränsande SEI modeller. Parametrar som påverkar det erhållna resultatet från modellen är identifierade, estimerade, och till slut validerade för att säkerhetsställa att modellen och parametrarna är identifierbara gentemot experimentella data. Resultatet av jämförelsen gav att SEI tillväxt begränsad av litium interstitiell diffusion är den mest optimala modellen att applicera när kalenderåldring för litiumbatterier ska modelleras. Resultaten visade också att endast en parameter, inre SEI litium interstitiell diffusivitet ska justeras för att erhålla optimal anpassning mot experimentella data. Andra delen av projektet använde resultatet från den första delen och litium plätering implementerades som en andraåldringsmekanism som undersöktes under tre olika laddningsprotokoll. Modellen var optimerad och anpassad gentemot experimentella data, där parametervärdet för kinetisk hasighetskonstanten för plätering var estimerad. Den optimerade modellen användes därefter för att erhålla mer information om elektrokemiska variabler för att kunna analysera samt beskrivaåldringsprocessen utan att behöva genomföra praktiska laborationer. Resultaten visade att mängden pläterat litium på den negativa elektroden ökade för celler som var exponerade till högre ström under laddningsprocessen, samt när cellerna var laddade vid höga SoC nivåer. Sammanfattningsvis, visade modellen hög potential att representera och evaluera experimentella data, samt tillhandahålla en inblick i elektrokemiska processer och kapacitetsförluster länkade till SEI tillväxt och litium plätering. Däremot, för att erhålla en högre grad noggrannhet av elektrokemiskaåldringsmekanismer i litiumbatterier, fler ytterligare mekanismer måste implementeras såsom mekanisk stress av både negativ och positiv elektrod. / The aim of this study was to investigate and apply a physics-based DFN model to simulate the calendar and cycling ageing of lithium-ion batteries manufactured for EV applications. The physics-based cell ageing model was constructed based on the open-source software Python library PyBaMM, which in comparison to data-driven models provides more essential information about the chemical process within the battery cell. The first part of the project covers the concept of calendar ageing which includes comparisons between three different rate-limiting SEI growth models. Parameters that affect the output from the physics-based model are isolated, estimated with numerical methods, and lastly validated to ensure that the model and the parameters rep- resent the physics behind the experimental data. It was found that the SEI growth limited by lithium interstitial diffusion is the most optimal model to apply for a physics-based model when modeling calendar ageing. It was also found that the only parameter that should be tuned against experimental data is the inner SEI lithium interstitial diffusivity. The second part of the project utilizes the results from the first part and introduces lithium plating as a second cell ageing mechanism under three different charging protocols. The model was optimized and fitted against experimental data by sweeping the lithium plating kinetic rate constant parameter. The optimized model was thereafter used to generate outputs that more thoroughly can explain the degradation effects of the cell without constructing real-world experiments. Where increased rate of plated lithium could be observed for the cell subjected to higher charging C-rate, and when the cells were charged at high SoC levels. To summarize, the model showed great potential in representing and evaluating the experimental data and providing the project with insight into the electrochemical processes and cell capacity losses of SEI growth and lithium plating. However, in order to achieve a higher accuracy of cell ageing model in relation to the lithium-ion cells used in customer vehicles, several additional cell degradation mechanisms have to be introduced, such as mechanical degradation of the two electrodes.
|
275 |
Heat transfer in ordered porous media with application to batteriesMoosavi, Amin January 2023 (has links)
Environmental concerns, resource depletion, energy security, technological advancements, and global policies are just a few of the variables influencing the global energy perspective. In the case of technological advancement, lithium batteries play a key role in the development of a more sustainable energy infrastructure. The high energy density and long lifespan of lithium batteries make them ideal for usage in a broad range of applications, such as portable electronics, electric vehicles, and grid-scale energy storage for renewable energy sources. However, there are certain possible concerns regarding the safe operation and performance of lithium batteries, most of which are associated with the temperature sensitivity of lithium batteries. Hence, battery thermal management systems are an essential component of a battery package for regulating the temperature level in lithium batteries to avoid the aging process, poor performance, and safety issues. Many studies have been conducted to develop battery thermal management systems with improved cooling performance. Within this framework, Paper A in this licentiate thesis considers how the design of a lithium battery cell may be improved to reduce the thermal load on the thermal management system. An analytical model based on the integral transform technique is developed to accurately and efficiently predict the thermal behavior of a cylindrical lithium battery cell. Following model validation, the thermal behavior of cylindrical lithium-ion battery cells with different jelly-roll layers and can sizes are compared. The results demonstrate that 21700 cylindrical battery cells outperform other types of cylindrical battery cells in terms of thermal performance. Furthermore, the thermally optimal thicknesses for positive active material, negative active material, positive current collector, and negative current collector are 180, 34, 21, and 20 um, respectively. After learning about design considerations to reduce thermal issues in lithium-ion battery cells and developing a proper tool for further studies, the focus was set on the flow behavior surrounding a cylindrical battery cell in an air-based cooling system. The cooling system under consideration is a wall-bounded cross-flow heat exchanger, the most common air-based cooling system for battery applications. Despite the importance of the cooling system in battery safety, few studies have been conducted to investigate the thermo-flow characteristics of wall-bounded cross-flow heat exchangers. Hence, in the battery research field, it is common to estimate the performance of wall-bounded cross-flow heat exchangers using the thermal characteristics of free cross-flow heat exchangers due to their geometrical similarities. In Paper B, this assumption is scrutinized by comparing the thermo-fluid characteristics of free and wall-bounded cross-flow heat exchangers. According to the results, flow through both heat exchangers shows almost similar thermo-fluid behavior in areas sufficiently far from the bounding walls. A turbulence model study suggests that the k-kl-omega transition model is a time-efficient and reliable turbulence model for capturing thermo-fluid characteristics in such heat exchangers. Moreover, it is observed that the two different heat exchangers have an almost identical area-averaged heat transfer rate despite the local changes in Nusselt number along the height of cells. This finding shows that it is possible to do two-dimensional simulations for applications that only require an area-averaged heat transfer rate on the battery cells. The findings in Paper A and Paper B may be used to investigate the cooling performance of a battery thermal management system with a practical design. Hence, in Paper C, a comprehensive yet simplified model is developed that can be used to study the thermal field of lithium battery cells in a large-scale air-based battery thermal management system. The model consists of the CFD model derived in Paper B, which predicts the flow behavior around cells in the inner region of the battery package, and the analytical model described in Paper A, which determines the thermal field within the battery cells. The area-averaged heat transfer coefficient interconnects the models, and a system of equations is employed to estimate the row-to-row variation of the thermal field. The model is employed to assess the effect of transverse and longitudinal pitch ratios on the thermal performance of an air-based battery thermal management system used in a hybrid electric vehicle.
|
276 |
Redistributive Non-Dissipative Battery Balancing Systems with Isolated DC/DC Converters: Theory, Design, Control and ImplementationMcCurlie, Lucas January 2016 (has links)
Energy storage systems with many Lithium Ion battery cells per string require sophisticated balancing hardware due to individual cells having manufacturing inconsistencies, different self discharge rates, internal resistances and temperature variations. For capacity maximization, safe operation, and extended lifetime, battery balancing is required. Redistributive Non-Dissipative balancing further improves the pack capacity and efficiency over a Dissipative approach where energy is wasted as heat across shunt resistors. Redistribution techniques dynamically shuttle charge to and from weak cells during operation such that all of the stored energy in the stack is utilized. This thesis identifies and develops different balancing control methods. These methods include a unconstrained optimization problem using a Linear Quadratic Regulator (LQR) and a constrained optimization problem using Model Predictive Control (MPC). These methods are benchmarked against traditional rule based (RB) balancing. The control systems are developed using MATLAB/Simulink and validated experimentally on a multiple transformer individual cell to stack topology. The implementation uses a DC2100A Demo-board from Linear Technology with bi-directional flyback converters to transfer the energy between the cells. The results of this thesis show that the MPC control method has the highest balancing efficiency and minimum balancing time. / Thesis / Master of Applied Science (MASc)
|
277 |
Life Cycle Assessment of Lightweight Electric Motorbikes : Case Study - RIDECAKE / Livscykelbedömning av lätta elektriska motorcyklar : Fallstudie - RidecakeEnglert, Savitri Visvanathan January 2023 (has links)
The electric vehicle segments of companies have broadened, and their sales have increased in the past decade. The electric motorcycle sector is growing fast, with improved technology on electric powertrains, increased ranges, charging speeds, and infrastructure. Parallel to the increased sales, the electric battery sector is advancing rapidly, thereby lowering the environmental impacts of these vehicles. The competitive adventure sports sector also benefits from using electric powertrains with their incredible power-to-weight ratio and instant torque. The benefits of using electric vehicles over conventional ones can be seen during the use phase, with zero tailpipe emissions and clean, silent riding. However, with the expansion of the electric motorcycle sector rolling out new technologies and models, there are uncertainties about whether the overall lifecycle has reduced impacts on the environment. Finding and improving the most sustainable model(s) or solution(s) implies scrutinizing the effects of these motorcycles on the environment, which is the goal of CAKE 0 Emission AB, a Swedish lightweight electric motorbike manufacturer. The current project will assess the potential environmental impacts of Kalk&, an off-road electric motorcycle model certified for on-road use, designed, and manufactured by CAKE 0 Emission AB. For this purpose, Attributional Life Cycle Assessment was chosen as the method to study the impact of one whole motorbike over a lifetime of 500 battery charging cycles, used by a hypothetical example user in Stockholm, Sweden. The potential environmental impacts are focused on 12 categories using the ReCiPe Midpoint (H) method. As expected from an electric vehicle, the results show that the impacts mainly stem from the manufacturing phase of the motorbike. The hotspots in the manufacturing phase arise from producing the battery, the electric motor, and the electrical components like lights, the charger, and cables. The materials used for construction that have a high share of impact are Copper and Aluminium. Another environmental hotspot is the casting manufacturing process. Within the vehicle use phase, the impact of using solar energy in Sweden for charging the batteries is not immediately intuitive and has shown to be higher than the Swedish electricity board mix; the results argue that the choice of electricity is vital in reducing emissions. Transporting the vehicle overseas by ship instead of by flight decreases emissions by about 82% to 97% within the various impact categories. A sensitivity scenario was created for a hypothetical user in Barcelona, Spain, to better understand the influence of the selected lifetime and user behavior on the impacts. The results indicate that using an additional battery and thereby increasing the lifetime of the vehicle shows a 34% decrease in emissions per km driven within the lifetime of the motorcycle. Lastly, it is recommended whenever possible to source the numerous components of the vehicle closer to the assembly unit to reduce the transportation impacts incurred from transoceanic freight. / Företagens elfordonssegment har breddats och deras försäljning har ökat under det senaste decenniet. Den elektriska motorcykelsektorn växer snabbt, med förbättrad teknik på elektriska drivlinor, ökade räckvidder, laddningshastigheter och infrastruktur. Parallellt med den ökade försäljningen går elbatterisektorn snabbt framåt, vilket minskar miljöpåverkan från dessa fordon. Den konkurrensutsatta äventyrssportsektorn drar också nytta av att använda elektriska drivlinor med deras otroliga kraft-till-vikt-förhållande och omedelbara vridmoment. Fördelarna med att använda elfordon framför konventionella kan ses under användningsfasen, med noll avgasutsläpp och ren, tyst körning. Men med expansionen av elmotorcykelsektorn som rullar ut nya tekniker och modeller, finns det osäkerheter om huruvida den övergripande livscykeln har minskat miljöpåverkan. Att hitta och förbättra de mest hållbara modellerna eller lösningarna innebär att man granskar dessa motorcyklars effekter på miljön, vilket är målet för CAKE 0 Emission AB, en svensk lättviktstillverkare av elmotorcykel. Det aktuella projektet kommer att bedöma de potentiella miljöeffekterna av Kalk&, en terrängmodell av elektrisk motorcykel certifierad för användning på väg, designad och tillverkad av CAKE 0 Emission AB. För detta ändamål valdes Attributional Life Cycle Assessment som metoden för att studera effekten av en hel motorcykel under en livstid på 500 batteriladdningscykler, som används av en hypotetisk exempelanvändare i Stockholm, Sverige. Den potentiella miljöpåverkan är fokuserad på 12 kategorier med hjälp av metoden ReCiPe Midpoint (H). Som förväntat av ett elfordon visar resultaten att effekterna huvudsakligen härrör från motorcykelns tillverkningsfas. Hotspots i tillverkningsfasen uppstår från att producera batteriet, elmotorn och de elektriska komponenterna som lampor, laddare och kablar. De material som används för konstruktion som har en hög andel av påverkan är koppar och aluminium. En annan miljömässig hotspot är tillverkningsprocessen för gjutning. Inom fordonsanvändningsfasen är effekten av att använda solenergi i Sverige för att ladda batterierna inte direkt intuitiv och har visat sig vara högre än den svenska elkortsmixen; resultaten talar för att valet av el är avgörande för att minska utsläppen. Att transportera fordonet utomlands med fartyg istället för med flyg minskar utsläppen med cirka 82% till 97% inom de olika påverkanskategorierna. Ett känslighetsscenario skapades för en hypotetisk användare i Barcelona, Spanien, för att bättre förstå inverkan av den valda livslängden och användarbeteendet på effekterna. Resultaten indikerar att användning av ett extra batteri och därmed ökad livslängd på fordonet visar en 34% minskning av utsläppen per körd km under motorcykelns livslängd. Slutligen rekommenderas det när det är möjligt att köpa de många komponenterna i fordonet närmare monteringsenheten för att minska transportpåverkan från transoceanisk frakt. Note: The abstract has been translated to Swedish from English using Google Translate
|
278 |
Temperature Optimization and Internal Chemical Changes on Cathode Material During Solution Discharge Step in Lithium-Ion Battery Recycling / Temperaturoptimering och inre kemiska förändringar på katodmaterial under lösningsurladdningssteget vid återvinning av litiumjonbatteriKarli, Berfu January 2021 (has links)
Sammanfattning på svenska: I nutiden, forskning och innovationer båda från akademi och industri försätter för att minska effekterna från klimatförändring. Ett av många viktiga område där utvecklingen fortsätter är litiumjonbatterier (LIB). På grund av den ökade energiförbrukningen i många områden (främst transporter) har ökat fossila bränsleförbrukningar och orsakat behovet av energi att lagras mer. Samhället kan inte bara fokusera på global miljövänlig batteriproduktion för att lösa detta problem. Samtidigt är det nödvändigt att koncentrera på hur man utvärderas begagnade batterierna som vi redan har. Återvinning av litiumjonbatterier har därför börjat få en ökad betydelse. Utmaningar för batteri återvinning är energi kravet för steg på processen och andra processer kan orsaka att skadliga ämnen släpps ut i naturen. Därför är det mycket viktigt att veta hur ett batteri påverkas av interna och externa förändringar från första till sista steget i återvinning och hur detta kommer att påverka de andra stegen. Detta examensarbete fokuserar på lösningsbaserade urladdningssteget i LIB-återvinning och syftar till att hitta den optimal temperatur genom att utforska möjliga förändringar som observerats på katodmaterialet. Inom ramen för projektet planerades temperaturoptimeringsstudien att göras genom att kombinera kemiska förändringar både inom och utanför batteriet i lösningsurladdningen. Detta är med en diskussion om särskilt fokus på att uppnå en hållbar återhämtning och kvaliteten på katodmaterialet. / In today's world, where global warming is felt in every sense, Research & Development (R&D) studies are continuing rapidly both in companies and in research networks to minimize its effects. One of the most important areas where developments continue is on lithium-ion batteries (LIBs). The increased energy consumption in many areas (mainly transportation), has increased fossil fuel consumption and caused the need for energy to be stored more. In this sense, focusing on only global-environmentally friendly battery production is insufficient to solve this problem. At the same time, it is necessary to concentrate on how to evaluate the used batteries that we already have. Therefore, lithium-ion battery recycling has begun to gain importance. Challenges for battery recycling are that some of the processes require energy inputs and others can generate harmful substances that require containment. Therefore, it is very important to know how a battery is affected by internal and external changes from the first to the last stage of recycling and how this will affect the other stages. This master thesis focuses on the solution discharge step in LIB recycling and aims to find the optimum temperature range for the discharge step of LIB recycling by exploration of the possible changes observed on the cathode material. In the scope of the project, the temperature optimization study was done by combining the chemical changes both inside and outside of the battery in the solution discharge. This is with a discussion of a particular focus on achieving a sustainable recovery and the quality of cathode material.
|
279 |
Surfactant Driven Assembly of Freeze-casted, Polymer-derived Ceramic Nanoparticles on Grapehene Oxide Sheets for Lithium-ion Battery AnodesKhater, Ali Zein 01 January 2018 (has links)
Traditional Lithium-Ion Batteries (LIBs) are a reliable and cost-efficient choice for energy storage. LIBs offer high energy density and low self-discharge. Recent developments in electric-based technologies push for replacing historically used Lead-Acid batteries with LIBs. However, LIBs do not yet meet the demands of modern technology. Silicon and graphene oxide (GO) have been identified as promising replacements to improve anode materials. Graphene oxide has a unique sheet-like structure that provides a mechanically stable, light weight material for LIB anodes. Due to its structure, reduced graphene oxide (rGO) is efficiently conductive and resistive to environmental changes. On the other hand, silicon-based anode materials offer the highest theoretical energy density and a high Li-ion loading capacity of various elements [20]. Silicon-based anodes that have previously been studied demonstrated extreme volumetric expansion over long cycles due to lithiation. Polysiloxane may be an interesting alternative as it is a Si-based material that can retain the high Li-ion loading capacity of Si while lacking the unattractive volumetric expansions of Si. Polymer derived ceramic-decorated graphene oxide anodes have been suggested to increase loading capacity, thermal resistance, power density, and mechanical stability of LIBs. Coupled with mechanically stable graphene oxide, polymer derived ceramic nanoparticle decorated graphene oxide anodes are studied to establish their efficiencies under operating conditions.
|
280 |
A Lithium-ion Test Cell for Characterization of Electrode Materials and Solid Electrolyte InterphaseGoel, Ekta 03 May 2008 (has links)
The research discussed is divided into two parts. The first part discusses the background work involved in preparation of the Li-ion cell testing stage. This includes the preparation of anodes using the doctor blade and a calendar mill, electrolyte preparation, test cell assembly, the Li-ion test cell design, and experiments performed to troubleshoot the cell. The second part deals with the cell testing experiments. Li-ion batteries are amongst the most promising rechargeable battery technology because of their high capacity and low weight. Current research aims at improving the anode quality to increase the capacity. The experiments discussed evaluate the traditional anode materials like SFG44 graphite and conducting grade graphite against the novel ones– and tin oxide (SnO2) based and carbon encapsulated tin based anodes. The solid electrolyte interphase formed on each anode was analyzed to understand the initial capacity fade leading to conditioning of the cell thus stabilizing its performance.
|
Page generated in 0.0839 seconds