• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 12
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oxygen reduction reaction mechanism on glassy carbon in aprotic organic solvents / Mécanisme de réduction de l'oxygène sur carbone vitreux dans des solvants organiques aprotiques

Zimmermann, Marc 21 July 2015 (has links)
Afin de mieux comprendre et de dépasser les limites actuelles des systèmes métal-air non-aqueux, le mécanisme de réduction de l’oxygène (ORR) a été étudié en présence de cation alcalins dans divers solvants aprotiques. Sur la base de caractérisations électrochimiques sur électrode statique et d’électrodes tournantes disque-anneau, un mécanisme unique a été proposé afin de rendre compte de l’ORR en présence de cations alcalins. De plus, les différences observées d’un solvant à l’autre ont été expliquées en termes de capacité du solvant à solvater à la fois le cation alcalin en présence et l’anion superoxyde, mais aussi à sa capacité à séparer les paires d’ions. Un modèle cinétique basé sur ce mécanisme a montré un excellent accord avec les résultats expérimentaux. / In order to better understand and overcome the current limitations of non-aqueous metal-air batteries, the oxygen reduction reaction (ORR) mechanism has been studied in presence of different alkali metal cations in several aprotic solvents. Based on electrochemical characterizations on static electrode and rotating ring-disk electrode, a unique mechanism has been proposed to account for ORR in presence of alkali metal cations. It has been further showed that the differences observed from one solvent to another could be linked to the solvent’s ability to solvate both the alkali metal cation and the superoxide anion, as well as its capability to separate ion-pairs. A kinetic model based on this mechanism has shown very good agreement with experimental results.
2

Study and improvement of non-aqueous Lithium-Air batteries via the development of a silicon-based anode / Etude et amélioration des batteries Lithium-Air via l’optimisation de l’électrode négative avec des alliages de silicium

Lepoivre, Florent 15 November 2016 (has links)
Face aux défis du XXIème siècle concernant l'approvisionnement mondial en énergie et le réchauffement climatique, il est capital de développer des systèmes de stockage d'énergie efficaces et compétitifs. Parmi eux, la technologie Lithium-Air fait l'objet de nombreuses recherches car elle présente une densité d'énergie théorique dix fois supérieure à celle des batteries Li-ion actuellement utilisées, mais la complexité des réactions chimiques mises en jeu la cantonne au stade de la recherche. Afin d'étudier de manière fiable et reproductible les batteries Li-Air, une nouvelle cellule de test électrochimique intégrant un capteur de pression a été développée. Elle permet d'estimer la quantité de réactions parasites associées à une configuration de batterie lors du cyclage à court et long terme (> 1000 h). Une étude comparative des différents électrolytes les plus utilisés a été réalisée, révélant la différence de comportement entre ces différentes espèces ainsi que l'instabilité de l'anode composée de lithium métallique. Nous avons donc abordé le remplacement de l'anode de lithium par une électrode de silicium pré-lithié. En étudiant l'influence de différentes techniques de pré-lithiation sur des électrodes contenant des particules de Si oxydées en surface, un phénomène de réduction de SiO2 en Si a été mis en évidence, apportant ainsi un gain substantiel en capacité. Les électrodes " activées " ont ensuite été utilisées en tant qu'anode dans les cellules complètes LixSi-O2. Après optimisation, la durée de vie obtenue est supérieure à 400 h (> 30 cycles), ce qui est comparable à la littérature actuelle mais toutefois limité par la présence de réactions parasites. / Supplying the world energy demand while reducing the greenhouse gases emissions is one of the biggest challenges of the 21st century; this requires the development of efficient energy storage devices enabling the utilization of renewable energies. Among them, Lithium-Air batteries are very attractive due to their high theoretical energy density – 10 times that of the current Li-ion batteries – but their development is hindered by the complexity of the chemistry at play. In order to understand such chemistry, we designed a new electrochemical test cell that integrates a pressure sensor, thereby enabling an accurate in operando monitoring of the pressure changes during charge/discharge with high reproducibility and sensitivity. Its use is demonstrated by quantifying the parasitic reactions in Li-O2 cells for various electrolytes frequently encountered in the literature. Through this comparative study, we are able to observe the phenomena currently limiting the performances of Li-O2 batteries after a long cycling (> 1000 h), such as parasitic reactions and the instability of the Li anode. To address the later issue, Li was replaced by a prelithiated silicon electrode made of Si particles oxidized in surface. We demonstrated the feasibility of enhancing both their capacity and cycle life via a pre-formatting treatment that triggers the reduction of their SiO2 coating by liberating pure Si metal. The full LixSi-O2 cells using such treated electrodes exhibit performances competing with the best analogous systems reported in the literature (> 30 cycles; more than 400 h of cycling), but the development of practical prototypes still requires to improve the cycle-life.
3

High-performance hybrid lithium-air batteries : from battery design to catalysts

Li, Longjun 01 July 2014 (has links)
Growing environmental concerns and increasing demand for energy have stimulated extensive interest in electrical energy storage. Li-air batteries are appealing in this regard as they offer much higher energy density than the current Li-ion batteries, but the nonaqueous Li-air batteries suffer from poor cycle life arising from electrolyte decomposition and clogging of the air electrode by insoluble discharge products. Interestingly, hybrid Li-air batteries in which a solid electrolyte separates the lithium-metal anode in an aprotic electrolyte from the air electrode in an aqueous catholyte could overcome these problems. Lots of efforts have been made on developing efficient bifunctional catalysts to lower the overpotential and improve the stability of hybrid Li-air batteries, but the cycle life is still limited. This dissertation focuses on the development of advanced cell configurations and high-performance catalysts for hybrid Li-air batteries. First, a buffer catholyte solution with a moderate pH, based on phosphoric acid and supporting salts, has been developed to keep the solid electrolyte stable and reduce the internal resistance and overpotential. With a high operating voltage and the utilization of all the three protons of phosphoric acid, the buffer catholyte enables a Li-air cell with high energy density. Further increase in power density has been realized by increasing the solid-electrolyte conductivity and operating temperature to 40 °C. The biggest challenge with Li-air cells is the large overpotentials associated with the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Noble-metal-free NiCo₂O₄ nanoflakes directly grown onto a nickel foam (NCONF@Ni) has been found to exhibit high OER activity that is comparable to that of the expensive, noble-metal IrO₂ catalyst. Furthermore, a novel 3-D O- and N-doped carbon nanoweb (ON-CNW) has been developed as an inexpensive, metal-free catalyst for ORR. With a hybrid Li-air cell, the ON-CNW exhibits performance close to that of commercial Pt/C. In addition, a novel hybrid Li-air cell configuration with decoupled ORR and OER electrodes has been developed. The hybrid Li-air cell with decoupled ORR and OER electrodes eliminates the degradation of ORR catalysts and carbon support in the highly oxidizing charge process and leads to high efficiency with good cycle life. / text
4

Développement de cathodes performantes pour batteries lithium/air / Development of high-performance cathodes for lithium/air batteries

Berenger, Sophie 28 January 2014 (has links)
Ces travaux de thèse sont consacrés à l’étude de cathodes performantes pour batteries lithium/air. Les performances de ce type de batteries sont principalement limitées par les phénomènes de diffusion d’oxygène dans la cathode et l’électrolyte ainsi que par la formation d’oxydes de lithium bouchant progressivement les pores de la cathode. Ainsi on ne peut envisager le développement de l’électrode à air sans prendre en compte l’influence de l’électrolyte organique et celui-ci a également était considéré dans cette étude. La porosité de l’électrode et la nature du catalyseur employé joue un grand rôle sur les performances de l’électrode. Les électrodes à base de tissus de carbone et contenant des nanofils de α-MnO2 ont fourni les meilleurs résultats au regard de la capacité et de la tenue au cyclage. Par ailleurs, des mesures de spectroscopie de masse in situ ont permis d’analyser la formation des produits gazeux lors de la charge. Le TEGDME est un électrolyte prometteur; néanmoins, la formation de dioxyde de carbone (CO2) est détectée dès 3,7 V vs. Li/Li+. / In this thesis, high-performance cathodes for lithium/air batteries have been investigated. The main limitations for lithium/air batteries are oxygen diffusion into the cathode and in the electrolyte and the progressive clogging of cathode pores by lithium oxide. The development of the air cathode is strongly dependant on the organic electrolyte used, thus the nature of the electrolyte has been here considered. Electrode porosity and the kind of catalyst employed influence the cathode performance. Promising results were obtained with carbon cloth based electrodes containing α-MnO2 nanotubes as catalyst with regards to capacity and cycle stability. Furthermore, formation of gaseous products during charging has been studied thanks to mass spectroscopy experiments. TEGDME is a promising electrolyte; nevertheless, carbon dioxide (CO2) has been detected up to 3.7 V vs. Li/Li+.
5

Etude des réactions mettant en jeu l'oxygène dans un système électrochimique lithium-air aqueux rechargeable électriquement / Study of oxygen reactions in an aqueous lithium-air battery

Moureaux, Florian 16 November 2011 (has links)
Les systèmes électrochimiques lithium-air sont des concepts naissants mais exhibent des performances théoriques intéressantes qui laissent espérer une rupture technologique dans le domaine des batteries pour véhicule électrique. La possibilité d'atteindre une densité d'énergie supérieure à 500 Wh kg-1 est effectivement en ligne de mire. A contrario de la technologie lithium-air anhydre, les systèmes lithium-air aqueux n'ont, jusqu'à présent, fait l'objet d'aucune étude approfondie. Ce travail concerne donc le développement d'un système lithium-air aqueux, à trois électrodes, et vise également à améliorer nos connaissances fondamentales dans le domaine. La présente étude se focalise sur le compartiment positif de la cellule, dans lequel les réactions de l'oxygène sont mises en jeu. Dans un premier temps, une électrode spécifiquement dédiée à la réaction de dégagement d'oxygène a été élaborée à partir d'un acier 316L. L'étude de son comportement a révélé une bonne propension à catalyser la réaction de dégagement d'oxygène ainsi qu'une bonne stabilité sur 3 000 heures de fonctionnement. Néanmoins, d'importants problèmes de catalyse ont pu être observés et attribués à la présence des ions lithium dans l'électrolyte de la batterie. Les ions Li+ bloquent les transitions électrochimiques des sites actifs à l'origine des propriétés d'électrocatalyse. Le comportement d'une électrode à air, composée de carbone et d'oxydes de manganèse, a par la suite été caractérisé dans ce milieu. L'étude révèle deux phénomènes importants réduisant la performance de l'électrode et dont l'origine a également été attribuée aux ions lithium : un blocage des transitions (MnIII/MnIV), et une stabilisation des groupements oxygénés à la surface du carbone. Pour finir, il a été proposé d'optimiser le système électrolytique en limitant l'activité des ions Li+ en solution et ainsi d'améliorer le rendement en potentiel de charge/décharge de la batterie. / The electrochemical lithium-air devices are emerging concepts and their very high theoretical performances have attracted a lot of attention, especially for an application in the electrical vehicle. A target of at least 500 Wh kg-1 is aimed for. The aqueous lithium-air devices have not yet been studied in detail which is not the case for the anhydrous lithium-air technology. This thesis firstly deals with the development of an aqueous lithium-air cell based on a three electrodes setup, and secondly attempts to improve our theoretical knowledge of these systems. This study particularly focuses on the positive compartment of the cell in which oxygen reactions occur. The first section is dedicated to the development of an oxygen evolution electrode made of 316L stainless steel. The study shows its ability to catalyze the oxygen evolution reaction as well its good stability over 3 000 hours of operation. Nevertheless, major problems of catalysis were observed and assigned to the presence of lithium ions in the electrolyte. Li+ ions inhibit the electrochemical oxidation of the active sites, which are needed for the electrocatalytic properties. The behavior of an air cathode was characterized in the same medium. The results show two important phenomena which reduces the electrode performance and which are also attributed to lithium ions : a deactivation of the (MnIII/MnIV) transition and a stabilization of the oxygenated groups at the carbon surface. Finally, an optimization of the electrolytic system was proposed by limiting the Li+ ions activity in solution, which improves the charge/discharge potential efficiency of the battery.
6

Synthèse et caractérisation de membranes hybrides pour la conduction des ions lithium, et application dans les batteries lithium-air à électrolyte aqueux / Elaboration and characterization of hybrid lithium-ion conducting membranes for aqueous lithium-air batteries

Lancel, Gilles 16 February 2016 (has links)
La technologie lithium-air à électrolyte aqueux pourrait révolutionner le stockage de l'énergie, mais la protection du lithium métallique par une vitrocéramique conductrice du lithium reste une limitation importante. Cela rend le système plus fragile, limite sa cyclabilité et augmente la chute ohmique. L'objectif de ce travail a été de remplacer cette vitrocéramique par une membrane hybride réalisée par extrusion électro assistée ou electrospinning, qui combine des propriétés d'étanchéité à l'eau, de flexibilité et de conductivité du lithium. La conductivité ionique est apportée par la partie céramique, pour laquelle les matériaux Li1,4Al0,4Ti1,6(PO4)3 (LATP) et Li0,33La0,57TiO3 (LLTO) ont été étudiés. L'étanchéité est assurée par un polymère fluoré. Différentes voies de synthèse des poudres ont été étudiées et comparées en termes de pureté, de microstructure, de surface spécifique et de propriétés électrochimiques. En particulier, des particules de LATP sub-microniques ont été obtenues pour la première fois par chauffage micro-onde, en des temps aussi courts que 2 min. Des membranes ont ensuite été réalisées à partir de suspensions. Dans une seconde approche, un réseau de nanofibres interconnectées et conductrices du lithium a été réalisé par couplage entre la chimie sol-gel et le procédé d'electrospinning. L'imprégnation de ce réseau donne une membrane hybride flexible, conductrice du lithium et étanche à l'eau. Un renforcement mécanique par les fibres inorganiques est observé. Cette approche a été appliquée aux deux matériaux LATP et LLTO. Ce travail ouvre de nombreuses perspectives pour les batteries lithium-air, lithium soufre et lithium-ion. / Aqueous lithium-air batteries could be a revolution in energy storage, but the main limitation is the use of a thick glass-ceramic lithium ionic conductor to isolate the metallic lithium from the aqueous electrolyte. This makes the system more fragile, limits its cyclability and increases ohmic resistance. The aim of this work is to replace the glass-ceramic by a hybrid membrane made by electrospinning, which combines water tightness, flexibility and lithium-ions conductivity. The ionic conductivity is provided by a nanostructured solid electrolyte ceramic: both Li1,4Al0,4Ti1,6(PO4)3 (LATP) and Li0,33La0,57TiO3 (LLTO) were studied. The water tightness is ensured by a fluorinated polymer. Different powders synthesis methods are reported and compared in terms of purity, microstructure, specific surface area and electrochemical properties. Especially, the LATP microwave-assisted synthesis is reported for the first time. Sub-micrometric LATP particles were obtained in times as short as 2 min. The fabrication of hybrid membranes from suspension is then reported. In a second approach, the coupling between sol-gel chemistry and electrospinning made possible the fabrication of a self-standing lithium-conducting network, made of interconnected crystalline nanofibers. After an impregnation step, a flexible, lithium-conducting and watertight hybrid membrane is obtained. A mechanical reinforcement is observed, which is attributed to the inorganic nanofibers. This approach is exposed for both LATP and LLTO solid electrolytes. This work opens new prospects in lithium-air, lithium-sulfur and lithium-ion batteries.
7

Characterization of Reaction Products in the Li-O2 Battery Using Photoelectron Spectroscopy

Younesi, Reza January 2012 (has links)
The rechargeable Li-O2 battery has attracted interest due to its high theoretical energy density (about 10 times better than today’s Li-ion batteries). In this PhD thesis the cycling instability of the Li-O2 battery has been studied. Degradation of the battery has been followed by studying the interface between the electrodes and electrolyte and determining the chemical composition and quantity of degradation products formed after varied cycling conditions. For this in-house and synchrotron based Photoelectron Spectroscopy (PES) were used as a powerful surface sensitive technique. Using these methods quantitative and qualitative information was obtained of both amorphous and crystalline compounds. To make the most realistic studies the carbon cathode pore structure was optimised by varying the binder to carbon ratio. This was shown to have an effect on improving the discharge capacity. For Li-O2 batteries electrolyte decomposition is a major challenge. The stability of different electrolyte solvents and salts were investigated. Aprotic carbonate and ether based solvents such as PC, EC/DEC, TEGDME, and PEGDME were found to decompose during electrochemical cycling of the cells. The carbonate based electrolytes decompose to form a 5-10 nm thick surface layer on the carbon cathode during discharge which was then removed during battery charging. The degradation products of the ether based electrolytes consisted mainly of ether and carbonate based surface species. It is also shown that Li2O2 as the final discharge product of the cell is chemically reactive and decomposes carbonate and ether based solvents. The stability of lithium electrolyte salts (such as LiPF6, LiBF4, LiB(CN)4, LiBOB, and LiClO4) was also studied. The PES results revealed that all salts are unstable during the cell cycling and in contact with Li2O2. Decomposition layers thinner than 5 nm were observed on Li2O2. Furthermore, it is shown that the stability of the interface on the lithium anode is a chief issue. When compared to Li batteries (where oxygen levels are below 10 ppm) working in the presence of excess oxygen leads to the decomposition of carbonate based electrolytes to a larger degree.
8

Novel routes to high performance lithium-ion batteries

Drewett, Nicholas E. January 2013 (has links)
This thesis investigates several approaches to the development of high-performance batteries. A general background to the field and an introduction to the experimental methods used are given in Chapters 1 and 2 respectively. Chapter 3 presents a study of ordered and disordered LiNi₀.₅Mn₁.₅O₄ materials produced using an optimised resorcinol-formaldehyde gel (R-F gel) synthetic technique. Both materials exhibited good electrochemical properties and minimal side reaction with the electrolyte. Structural analyses of the materials in various states of discharge and charge were undertaken, and from these the charge / discharge processes were elucidated. In chapter 4 R-F gel synthesised Li(Ni₁/₃Mn₁/₃Co₁/₃)O₂ is studied and found to exhibit a high degree of structural stability on cycling, as well as excellent capacity, cyclability and rate capability. Photoelectron spectroscopy studies revealed that the R-F gel derived particles have highly stable surfaces. A discussion of the results and their significance, with particular regard to the outstanding electrochemical performance observed, is also presented. Chapter 5 sets out an investigation into the nature of R-F gel synthesised 0.5Li₂MnO₃:0.5LiNi₁/₃Mn₁/₃Co₁/₃O₂. The electrochemical data revealed that, after an initial activation stage, the R-F gel derived material exhibited a high capacity, good cyclability and exceptional rate capability. This chapter also considers some initial structural investigations and the electrochemical processes occurring on charge. In chapter 6 the use of ether-based electrolytes, combined with various cathode materials, in lithium-oxygen batteries is examined. The formation of decomposition products was observed, and a scheme suggesting probable reaction pathways is given. It was noted that significant quantities of the desired discharge product, lithium peroxide, were formed on the 1st cycle discharge, implying some electrolyte / cathode combinations do demonstrate a degree of stability. A summary of the results and a discussion of their significance are also included.
9

Novel Lithium Ionic Conducting Perovskite Materials for Lithium-Air Batteries

Almohareb, Muneerah January 2017 (has links)
Lithium Air (Li/O2) batteries are energy conversion devices that produce electricity from the oxidation of lithium metal at the anode and the reduction of molecular oxygen at the cathode. These batteries are considered as promising rechargeable cells for high power applications due to their high power density ranging from 1000 to 2000 Wh/kg. However, one of the most significant challenges is the need to separate the metallic lithium anode from any oxygen or water-containing environment while at the same time allowing fast and efficient lithium ion transport through the electrolyte. Therefore, lithium ion conducting materials that are water and CO2 resistant are a prerequisite. Common materials used as anode protective films and/or Li+ conducting electrolytes for lithium air batteries are perovskite-type oxides (formula: ABO3). Perovskites are good candidates for this application because of their versatility, particularly in regards to ionic conductivity. In the present work, a low cost perovskite family such as SFO (SmFeO3) is developed as a lithium ion conducting material by the introduction of Li+ into its lattice. The perovskites have been synthesized using a solid-state reaction method (SSR) and characterized using different techniques such as powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive X-ray Spectroscopy (EDS) and electrochemical impedance spectroscopy (EIS). The synthesized perovskites are based on samarium lithium ferrite and divided into two groups depending on the formal presence of vacancies in the stoichiometric formula. The first group (SLFO) with no formal vacancies has the stoichiometric formula of SmxLi1-xFeO2+x (where x = 0.1, 0.2, 0.3, 0.5 and 0.7). While the second group (SLFO*) was generated with less metal atoms than specified in the perovskite structure, thereby generating a structure with intrinsic vacancies and with the formula, Sm(x)Li([1-x] – [0.1] or [0.2]) FeO3-δ (where x = 0.3, 0.4, 0.5 and 0.6). Finally, the effect of varying Li and Sm concentrations in both groups and vacancies created in the lattice for the second group, on the ionic conductivity is explored.
10

Development of High Performance Air-Cathodes for Solid State Lithium-Air Cells

Garlapati, Vasisht 13 April 2010 (has links)
No description available.

Page generated in 0.0379 seconds