• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 156
  • 35
  • 13
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 285
  • 285
  • 285
  • 74
  • 70
  • 58
  • 50
  • 43
  • 37
  • 31
  • 30
  • 30
  • 29
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

First-principles study of the li adsorption on various carbon hybrid systems

Koh, Wonsang 29 June 2011 (has links)
Recent carbon allotropes such as carbon nanotubes (CNTs), fullerenes (C60s) and graphene have attracted great interests in both science and engineering due to their unique properties such as excellent electrical and mechanical properties as well as its vast surface area, and have led to many commercial applications. Especially, CNTs have been considered to be one of the promising candidates in the Li ion battery system because of its outstanding properties. However, the experimental results in the pristine CNT system have shown just slight improvement than original graphitic carbon material, which has been attributed to the weak adsorption of Li on CNTs. In this study, we investigated two types of CNT-C60 hybrid system consisting of CNTs and C60s to improve Li adsorption capabilities and predict its performance through quantum mechanical (QM) computations. First, we investigated adsorption energy of lithium (Li) on dilute CNT-C60 hybrid and CNT-C60 nanobud system as well as various electronic properties such as band structure, density of states (DOS), molecular orbital and charge distribution. Then, we expanded our interest to the more realistic condensed structure of CNT-C60 hybrid and nanobud system to examine actual electrochemical characteristics. The study of the condensed structure has been expanded to the very unique CNT-C60 nano-network system and examined mechanical strength as well as electronic properties. Finally, Li adsorption on other carbon allotropes system such as graphene-C60 hybrid and graphene-C60 bud system was investigated in order to provide fundamental understanding of electronic interaction between carbon allotrope and effect of Li adsorption.
192

State and parameter estimation of physics-based lithium-ion battery models

Bizeray, Adrien January 2016 (has links)
This thesis investigates novel algorithms for enabling the use of first-principle electrochemical models for battery monitoring and control in advanced battery management systems (BMSs). Specifically, the fast solution and state estimation of a high-fidelity spatially resolved thermal-electrochemical lithium-ion battery model commonly referred to as the pseudo two-dimensional (P2D) model are investigated. The partial-differential algebraic equations (PDAEs) constituting the model are spatially discretised using Chebyshev orthogonal collocation enabling fast and accurate simulations up to high C-rates. This implementation of the P2D model is then used in combination with an extended Kalman filter (EKF) algorithm modified for differential-algebraic equations (DAEs) to estimate the states of the model, e.g. lithium concentrations, overpotential. The state estimation algorithm is able to rapidly recover the model states from current, voltage and temperature measurements. Results show that the error on the state estimate falls below 1% in less than 200s despite a 30% error on battery initial state-of-charge (SoC) and additive measurement noise with 10mV and 0.5°C standard deviations. The parameter accuracy of such first-principle models is of utmost importance for the trustworthy estimation of internal battery electrochemical states. Therefore, the identifiability of the simpler single particle (SP) electrochemical model is investigated both in principle and in practice. Grouping parameters and partially non-dimensionalising the SP model equations in order to understand the maximum expected degrees of freedom in the problem reveals that there are only six unique parameters in the SP model. The structural identifiability is then examined by asking whether the transfer function of the linearised SP model is unique. It is found that the model is unique provided that the electrode open circuit voltage curves have a non-zero gradient, the parameters are ordered, and that the behaviour of the kinetics of each electrode is lumped together into a single parameter which is the charge transfer resistance. The practical estimation of the SP model parameters from frequency-domain experimental data obtained by electrochemical impedance spectroscopy (EIS) is then investigated and shows that estimation at a single SoC is insufficient to obtain satisfactory results and EIS data at multiple SoCs must be combined.
193

Novel lithium-ion host materials for electrode applications

Lyness, Christopher January 2011 (has links)
Two novel lithium host materials were investigated using structural and electrochemical analysis; the cathode material Li₂CoSiO₄ and the LiMO₂ class of anodes (where M is a transition metal ion). Li₂CoSiO₄ materials were produced utilising a combination of solid state and hydrothermal synthesis conditions. Three Li₂CoSiO₄ polymorphs were synthesised; β[subscript(I)], β[subscript(II)] and γ₀. The Li₂CoSiO₄ polymorphs formed structures based around a distorted Li₃PO₄ structure. The β[subscript(II)] material was indexed to a Pmn2₁ space group, the β[subscript(I)] polymorph to Pbn2₁ and the γ₀ material was indexed to the P2₁/n space group. A varying degree of cation mixing between lithium and cobalt sites was observed across the polymorphs. The β[subscript(II)] polymorph produced 210mAh/g of capacity on first charge, with a first discharge capacity of 67mAh/g. It was found that the β[subscript(I)] material converted to the β[subscript(II)] polymorph during first charge. The γ₀ polymorph showed almost negligible electrochemical performance. Capacity retention of all polymorphs was poor, diminishing significantly by the tenth cycle. The effect of mechanical milling and carbon coating upon β[subscript(II)], β[subscript(I)] and γ₀ materials was also investigated. Various Li[subscript(1+x)]V[subscript(1-x)]O₂ materials (where 0≤X≤0.2) were produced through solid state synthesis. LiVO₂ was found to convert to Li₂VO₂ on discharge, this process was found to be strongly dependent on the amount of excess lithium in the system. The Li₁.₀₈V₀.₉₂O₂ material had the highest first discharge capacity at 310mAh/g. It was found that the initial discharge consisted of several distinct electrochemical processes, connected by a complicated relationship, with significant irreversible capacity on first discharge. Several other LiMO₂ systems were investigated for their ability to convert to layered Li₂MO₂ structures on low voltage discharge. While LiCoO₂ failed to convert to a Li₂CoO₂ structure, LiMn₀.₅Ni₀.₅O₂ underwent an addition type reaction to form Li₂Mn₀.₅Ni₀.₅O₂. A previously unknown Li₂Ni[subscript(X)]Co[subscript(1-X)]O₂ structure was observed, identified during the discharge of LiNi₀.₃₃Co₀.₆₆O₂.
194

Hybrid core-shell nanowire electrodes utilizing vertically aligned carbon nanofiber arrays for high-performance energy storage

Klankowski, Steven Arnold January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Jun Li / Nanostructured electrode materials for electrochemical energy storage systems have been shown to improve both rate performance and capacity retention, while allowing considerably longer cycling lifetime. The nano-architectures provide enhanced kinetics by means of larger surface area, higher porosity, better material interconnectivity, shorter diffusion lengths, and overall mechanical stability. Meanwhile, active materials that once were excluded from use due to bulk property issues are now being examined in new nanoarchitecture. Silicon was such a material, desired for its large lithium-ion storage capacity of 4,200 mAh g[superscript]-1 and low redox potential of 0.4 V vs. Li/Li[superscript]+; however, a ~300% volume expansion and increased resistivity upon lithiation limited its broader applications. In the first study, the silicon-coated vertically aligned carbon nanofiber (VACNF) array presents a unique core-shell nanowire (NW) architecture that demonstrates both good capacity and high rate performance. In follow-up, the Si-VACNFs NW electrode demonstrates enhanced power rate capabilities as it shows excellent storage capacity at high rates, attributed to the unique nanoneedle structure that high vacuum sputtering produces on the three-dimensional array. Following silicon’s success, titanium dioxide has been explored as an alternative highrate electrode material by utilizing the dual storage mechanisms of Li+ insertion and pseudocapacitance. The TiO[subscript]2-coated VACNFs shows improved electrochemical activity that delivers near theoretical capacity at larger currents due to shorter Li[superscript]+ diffusion lengths and highly effective electron transport. A unique cell is formed with the Si-coated and TiO[subscript]2-coated electrodes place counter to one another, creating the hybrid of lithium ion battery-pseudocapacitor that demonstrated both high power and high energy densities. The hybrid cell operates like a battery at lower current rates, achieving larger discharge capacity, while retaining one-third of that capacity as the current is raised by 100-fold. This showcases the VACNF arrays as a solid platform capable of assisting lithium active compounds to achieve high capacity at very high rates, comparable to modern supercapacitors. Lastly, manganese oxide is explored to demonstrate the high power rate performance that the VACNF array can provide by creating a supercapacitor that is highly effective in cycling at various high current rates, maintaining high-capacity and good cycling performance for thousands of cycles.
195

Titanium dioxide/ silicon oxycarbide hybrid polymer derived ceramic as high energy & power lithium ion battery anode material

Pahwa, Saksham January 1900 (has links)
Master of Science / Mechanical and Nuclear Engineering / Kevin B. Lease / Gurpreet Singh / Energy has always been one of the most important factors in any type of human or industrial endeavor. Clean energy and alternative energy sources are slowly but steadily replacing fossil fuels, the over-dependence on which have led to many environmental and economic troubles over the past century. The main challenge that needs to be addressed in switching to clean energy is storing it for use in the electrical grid and transportation systems. Lithium ion batteries are currently one of the most promising energy storage devices and tremendous amount of research is being done in high capacity anode and cathode materials, and better electrolytes and battery packs as well, leading to overall high efficiency and capacity energy storage systems. Polymer derived ceramics (PDCs) are a special class of ceramics, usually used in high temperature applications, but some silicon based PDCs have demonstrated good electrochemical properties in lithium ion batteries. The goal of this research is to explore a special hybrid ceramic of titanium dioxide (TiO₂) and silicon oxy carbide (SiOC) ceramic derived from 1,3,5,7 -- tetravinyl -- 1,3,5,7 -- tetramethylcyclotetrasiloxane (TTCS) polymer for use in lithium ion batteries and investigate the source of its properties which might make the ceramic particularly useful in some highly specialized energy storage applications.
196

Elaboration of flexible lithium - ion electrodes by printing process / Réalisation d’électrodes souples pour batteries lithium-ion par procédé d’impression

El Baradai, Oussama 24 April 2014 (has links)
Le travail présenté dans ce mémoire concerne la réalisation des batteries souples lithium-ion. Il a comme objectif le développement de nouveaux procédés comme l'impression par sérigraphie pour la fabrication de batteries et le remplacement des polymères issus de la chimie de synthèse par des matériaux bio-sourcés utilisables en milieu aqueux. Les résultats obtenus ont montré qu'il est possible de formuler des encres aqueuses à base des matériaux actifs classiquement utilisés pour l'élaboration d'électrodes (anode et cathode) de batterie Li-ion mais avec des liants dérivés de cellulose en substitution du PVDF qui intègre les formulations standards. Cette encre, dont les propriétés rhéologiques sont compatibles avec le procédé d'impression sérigraphique, permet l'obtention d'électrodes présentant des propriétés spécifiques aux bons fonctionnements de la batterie. Les résultats obtenus ont montré que cette technique d'impression du séparateur pouvait être utilisée pour remplacer la technique de déposition classique des matières actives sur les collecteurs de courant, basée sur un procédé d'enduction à lame (blade coating). Enfin, une batterie lithium-ion imprimée a pu être élaborée en utilisant la stratégie d'impression recto/verso du séparateur avec l'intégration des collecteurs de courant pendant la phase d'impression, validant ainsi cette nouvelle technique d'assemblage. / The work presented in this manuscript describes the manufacturing of lithium-ion batteries on papers substrates by printing technique. Its aim is the development of new up scalable and large area techniques as screen printing for the fabrication of lithium-ion batteries and the replacement of conventional toxic components by bio-sourced one and water based solvent. First results shows how it is possible to formulate cellulose based ink tailored for screen printing technology with suitable properties for lithium-ion batteries requirements. Electrodes were manufactured and tested from a physical and electrochemical point of view and two strategies were proposed to enhance performances. Finally, by considering results obtained for the electrodes, a full cell was manufactured with a new assembling strategy based on: front / reverse printing approach and the embedding of the current collectors during printing stage. As a final point cells were characterized and compared with others obtained by conventional assembling strategies.
197

Desenvolvimento de material híbrido anódico para baterias de íons de Li baseado em carvão ativado e nanotubos de carbono decorados com prata / Development of hybrid anode material for Li ion batteries based on activated carbon and carbon nanotubes decorated with silver.

Giuliana Hasegava Takahashi 16 April 2015 (has links)
Neste trabalho, foi desenvolvido um material híbrido inédito carvão ativado/nanotubos de carbono/nanopartículas de prata para as aplicações em bateria de íons de lítio e capacitor eletroquímico de dupla camada. O compósito foi preparado por crescimento dos nanotubos de carbono diretamente sobre o carvão ativado via deposição química de vapor e depois nanopartículas de prata foram incorporadas no carvão ativado/nanotubos de carbono. A morfologia do compósito foi analisada por microscopia eletrônica de varredura. Investigação das propriedades de intercalação de lítio no carvão ativado (CA), carvão ativado/nanotubos de carbono (CA/NTC), carvão ativado/prata (CA/Ag) e carvão ativado/nanotubos de carbono/prata (CA/NTC/Ag) foi conduzida por voltametria cíclica e ciclos de carga/descarga, utilizando dois diferentes eletrólitos. Verificou-se que o ânodo de CA/NTC/Ag apresenta mais elevado valor de capacidade específica reversível que a grafita em eletrólito comercial, provavelmente devido à rede tridimensional com elevada condutividade eletrônica formada por nanotubos de carbono e nanopartículas de prata nos poros e nas rugosidades do substrato. Além disso, os nanotubos de carbono podem exibir elevada capacidade de armazenamento de lítio. Outra vantagem do CA/NTC/Ag é que a rede de nanotubos de carbono acomoda a expansão de volume das partículas de prata durante a ciclagem do eletrodo, mantendo-as bem adsorvidas na superfície do CA/NTC. Os resultados confirmaram a existência do sinergismo entre os componentes do CA/NTC/Ag, que promove características eletroquímicas superiores àquelas dos constituintes isolados. / In this work, an unpublished hybrid material activated carbon/carbon nanotubes/silver nanoparticles was developed for lithium ion battery and electrochemical double layer capacitor applications. The composite was prepared by growing carbon nanotubes directly on the activated carbon via chemical vapor deposition and after silver nanoparticles were incorporated on the activated carbon/carbon nanotubes. The composites morphology was analyzed by scanning electron microscopy. Investigation of lithium intercalation properties in activated carbon (AC), activated carbon/carbon nanotubes (AC/CNT), activated carbon/silver (AC/Ag) and activated carbon/carbon nanotubes/silver (AC/CNT/Ag) was carried out by cyclic voltammetry and charge/discharge cycles by making use of two different electrolytes. It was found that the AC/CNT/Ag anode presents higher reversible specific capacity value in comparison with graphite in commercial electrolyte, probably due to the three dimensional network with high electronic conductivity formed by carbon nanotubes and silver nanoparticles in the substrates pores and roughness. Furthermore, carbon nanotubes can exhibit high lithium storage capacity. Another advantage of the AC/CNT/Ag is that the network of carbon nanotubes accommodates volume expansion of the silver particles during electrode cycling, keeping them well adsorbed on the surface of the AC/CNT. The results confirmed the existence of synergism between the components of the AC/CNT/Ag, which promotes electrochemical characteristics that are higher than those of the individual constituents.
198

Eletroinserção de íons lítio em matrizes auto-organizadas de V2O5, poli(etilenoimina) e nanopartículas de carbono / Electroinsertion of lithium ions in self-assembled matrices composed of V2O5, poly(ethyleneimine), and carbon nanoparticles

Ana Rita Martins dos Santos 01 August 2013 (has links)
Materiais auto-organizados constituídos de V2O5 xerogel, poli(etilenoimina) (PEI) e nanopartículas de carbono (NpCs) foram obtidos por meio da técnica camada-por-camada (LbL). A metodologia aplicada permitiu a obtenção de filmes finos com elevado controle de espessura além de permitir um crescimento linear dos filmes, denominados neste trabalho V2O5/PEI e V2O5/PEI/NpCs. Além disso, o desempenho eletroquímico dos materiais auto-organizados foi comparado a um eletrodo de V2O5. Análises de FTIR mostraram que interações específicas entre os grupos amina do PEI e os grupos carboxila do V2O5 são responsáveis pelo crescimento do filme. Estas interações permitem a formação de um campo eletrostático capaz de blindar as interações entre os íons lítio e os oxigênios da vanadila (V=O) e, por consequência, são responsáveis pelo aumento na mobilidade iônica dos íons lítio no interior da matriz hospedeira e, portanto, um aumento na capacidade de armazenamento de carga. Resultados obtidos através de medidas de carga/descarga mostram que o V2O5/PEI/NpCs apresenta uma melhor desempenho do que os demais materiais estudados neste trabalho. Estes resultados mostram que a capacidade específica do V2O5/PEI/NpCs foi de 137 mA h g-1 para a menor densidade de corrente aplicada e aproximadamente 1,6 vezes maior do que os valores de capacidade específica para os outros materiais para a maior densidade de corrente aplicada. Além disso, estas medidas permitiram a observação de uma menor variação na razão estequiométrica máxima (xmáx) em função das densidades de corrente aplicadas para os filmes auto-organizados, fato este relacionado a uma maior mobilidade iônica dos íons lítio no interior dessas matrizes. Os resultados obtidos a partir de espectroscopia de impedância eletroquímica (EIS) mostraram que a difusão dos íons lítio no interior das matrizes auto-organizadas é maior do que no caso do V2O5, cujos valores do coeficiente de difusão foram de 1,64 x 10-15, 1,21 x 10-14 e 2,26 x 10-14 cm2 s-1 para os filmes V2O5, V2O5/PEI e V2O5/PEI/NpCs, respectivamente. Sendo assim, o polímero e as NpCs promoveram novos caminhos condutores e permitiram a conexão elétrica entre camadas isoladas da matriz V2O5. Dessa forma, novos nanocompósitos foram obtidos visando demonstrar o método de auto-organização empregado para melhorar o transporte de carga em matrizes hospedeiras. / Self-assembled materials constituted of V2O5 xerogel, poly (ethyleneimine) (PEI), and carbon nanoparticles (CNPs) were obtained by the layer-by-layer (LbL) technique. The applied methodology permitted the obtainment of thin films with high thickness control and also permitted a linear growth of the films, which will be named V2O5/PEI and V2O5/PEI/CNPs. Besides, the electrochemical performance of the self-assembled materials was compared to a V2O5 electrode. FTIR analyses showed that the specific interactions between the amine groups of PEI and the vanadyl groups of the V2O5 are responsible for the film growth. These interactions permitted the formation of an electrostatic shield capable of hindering the interactions between the lithium ions and the vanadyl oxygen atoms (V=O) and are consequently responsible for the enhancement on the ionic mobility of the lithium ions within the host matrix, leading to a higher energy storage capability. Results obtained by the charge/discharge measurements showed that V2O5/PEI/CNPs presents a better performance than the other materials studied for this research. These results demonstrated that the specific capacity of the V2O5/PEI/CNPs was 137 mA h g-1 under the lowest current density applied and approximately 1.6 times higher than the specific capacity values obtained for the other materials under the highest current density applied. Moreover, it was observed that the variation of the maximum stoichiometric ratio (xmax) as a function of the current density is lower for the self-assembled materials than for the V2O5 electrode, which can be related to the higher ionic mobility of the lithium ion within the self-assembled materials. Electrochemical Impedance Spectroscopy (EIS) data demonstrated that the diffusion of the lithium ions within the self-assembled materials is higher than within the V2O5 electrode, and the diffusion coefficients were 1.64 x 10-15, 1.21 x 10-14 e 2.26 x 10-14 cm2 s-1 for V2O5, V2O5/PEI and V2O5/PEI/CNPs, respectively. Thus, the polymer and the CNPs provided new conducting pathways and connected isolated V2O5 chains in the host matrix. Therefore, novel spontaneous nanocomposites were formed, aiming to demonstrate the self-assembled method adopted for improving charge transport within host matrices.
199

Nanomembranes Based on Nickel Oxide and Germanium as Anode Materials for Lithium-Ion Batteries

Sun, Xiaolei 27 September 2017 (has links) (PDF)
Rechargeable lithium-ion batteries are now attracting great attention for applications in portable electronic devices and electrical vehicles, because of their high energy density, long cycle and great convenience. For new generations of rechargeable lithium-ion batteries, they applied not only to consumer electronics but also especially to clean energy storage and hybrid electric vehicles. Therefore, further breakthroughs in electrode materials that open up a new important avenue are essential. Graphite, the most commonly used commercial anode material, has a limited reversible lithium intercalation capacity (372 mAh g-1). In this regard, tremendous efforts have been made towards even further improving high capacity, excellent rate capability, and cycling stability by developing advanced anode materials. This work focuses on the lithium storage properties of nickel oxide (NiO) and germanium (Ge) nanomembranes anodes mainly fabricated by electron-beam evaporation. Specifically, NiO is selected for conversion-type material because of high theoretical specific capacity of 718 mAh g-1 and easily obtained material. The resultant curved NiO nanomembranes anodes exhibit ultrafast power rate of 50 C (1 C = 718 mA g-1) and good capacity retention (721 mAh g-1, 1400 cycles). Remarkably, multifunctional Ni/NiO hybrid nanomembranes were further fabricated and investigated. Benefiting from the advantages of the intrinsic architecture and the electrochemical catalysis of metallic nickel, the hybrid Ni/NiO anodes could be tested at an ultrahigh rate of ~115 C. With Ge as active alloying-type material (1624 mAh g-1), the effect of the incorporated oxygen to the lithium storage properties of amorphous Ge nanomembranes is well studied. The oxygen-enabled Ge (GeOx) nanomembranes exhibit improved electrochemical properties of highly reversible capacity (1200 mAh g-1), and robust cycling performance.
200

Etude des risques d'arc électrique dans les batteries lithium-ion / Electric arc risks study in lithium-ion batteries

Augeard, Amaury 10 November 2015 (has links)
La sûreté de fonctionnement des batteries est un point clé pour la croissance de ce marché et le déploiement de solutions hybrides afin de réduire la consommation d’énergie. L’électrification croissante de ces systèmes ne fait qu’aggraver l’augmentation de l’occurrence de ce problème qui bien que connu depuis longtemps dans le domaine des applications DC ne fait l’objet de recherches intensives que depuis peu comme en témoigne le développement récent des premiers détecteurs d’arc pour l’aviation. L’arc dans les batteries représente aujourd’hui un risque potentiel pour l’intégrité du matériel et des personnes du fait de l’utilisation des batteries au sein d’applications industrielles de fortes puissances. Afin de caractériser ce risque et d’en évaluer la dangerosité, plusieurs bancs d’essais sont réalisés au niveau élément et système afin de reproduire le phénomène d’arc électrique. Les essais réalisés permettent d’extraire les caractéristiques intrinsèques de l’arc. En complément de cette caractérisation, un modèle d’arc permettant d’évaluer les paramètres et d’améliorer la compréhension de ce phénomène est réalisé. Des solutions de limitation, voire de suppression de l’arc issues de cette étude sont proposées. Parmi ces nombreuses solutions, l’utilisation de capteurs optiques, les méthodes numériques pour le traitement des signaux issus de l’arc, la modification de l’architecture batterie ainsi que l’augmentation du niveau de tension lors de l’amorçage de l’arc ouvrent la voie à la conception de systèmes de batteries innovants et plus sûrs en termes de fiabilité, sécurité et de robustesse. Les nombreuses perspectives de recherches proposées permettront également d’améliorer la couverture de ce risque. / The operational security of batteries is a key element in the growth of this market and the deployment of hybrid solutions to reduce energy consumption.The increasing electrification of these systems can only exacerbate the occurrence ratio increase of this problem. Although known for a number of years in the field of DC applications, electric arcs are the subject of intensive research for a short time as shown by the recent development of the first arc sensors for aviation. Electric arcs in batteries currently represent a potential risk to the integrity of the equipment and people because of the use of these batteries in industrial high power applications. To characterize this risk and assess its dangerousness, several test benches were designed at the cell and system level to reproduce the electric arc phenomenon. The tests carried out allow extracting the intrinsic characteristics of the arc. In addition to this characterization, an arc model to evaluate the parameters and improve the understanding of this phenomenon is realized. Limiting mitigation solutions or suppression of the arc resulting from this study are proposed. Among the many solutions, the use of optical sensors, the numerical methods for digital signal processing from the arc, the modification of the architecture as well as the increase of the arc ignition voltage pave the way for the design of innovative and safer batteries systems in terms of reliability, security and robustness. The numerous proposed research perspectives will also improve the coverage of this risk.

Page generated in 0.0788 seconds