Spelling suggestions: "subject:"1ithium batteries"" "subject:"lithiumthienyl batteries""
181 |
Estimation de l’état interne d’une batterie lithium-ion à l’aide d’un modèle électrochimique / State estimation of a lithium-ion battery based on an electrochemical modelBlondel, Pierre 10 January 2019 (has links)
En 30 ans, les batteries Li-ion ont littéralement colonisé notre environnement depuis et leur déploiement s’accélère. Puissante, efficace, légère et compacte, cette technologie présente des problèmes de sécurité. C’est pourquoi la plupart de ces batteries sont équipées de systèmes de gestion. Ils nécessitent l’accès à certains états internes qui ne sont pas tous mesurables. Cette thèse se propose d’estimer les variables en question à l’aide d’observateurs non-linéaires. Un observateur permet d’estimer des états inaccessibles à la mesure, à partir des mesures disponibles et d’un modèle mathématique des dynamiques mises en jeu. Les transports électrochimiques à l’œuvre dans les batteries sont responsables de leur comportement. Nous en proposons un modèle électrochimique adapté à l’observation. Celui-ci repose sur la discrétisation spatiale des équations aux dérivées partielles décrivant ces phénomènes et sur une série d’hypothèses. Présenté comme un système sous forme de représentation d’état, les dynamiques sont affines et l’équation de sortie est non-linéaire. Parmi les observateurs de systèmes à sortie non-linéaire dont nous avons connaissance, aucun ne peut s’appliquer directement au modèle proposé. Nous en avons donc développé de nouveaux dont la stabilité est garantie lorsqu’une inégalité matricielle est satisfaite. Nous avons ensuite confronté ces observateurs à des données expérimentales d’éléments commercialisés. Le comportement de l’observateur est encourageant et semble être un bon compromis entre sens physique et complexité numérique / Developed in the nineties, lithium batteries have colonized our environment in less than thirty years and they keep spreading faster and faster. Powerful, efficient, light and compact, this technology remains hazardous. In order to limit the danger and slow the aging of lithium cells, most of such batteries embed a management system. The latter needs to access some internal states, which are not directly measurable. This thesis intends to estimate these variables using a nonlinear observer, which is based on an electrochemical model. The behavior of the battery is driven by the transportation phenomenon of its main electrochemical species. We therefore built a finite dimensional electrochemical model of these adapted to estimation. It relies on the spatial discretization of the partial differential equations, which describe these transportation phenomena. It also formulates some assumptions, such as the fact that an electrode globally behaves like a single particle of its active material. The obtained state space model has affine dynamics and a nonlinear output. Among the existing observers for such systems that we are aware of, none can be applied directly to the developed model. Hence, we developed new ones whose stability is guaranteed provided a linear matrix inequality holds, which is used to construct the observation gain. We then confront these observers to experimental data acquired on commercialized batteries. The obtained results are encouraging and the observer seems to be a fair compromise between physical meaning and numerical complexity
|
182 |
Desenvolvimento de material híbrido anódico para baterias de íons de Li baseado em carvão ativado e nanotubos de carbono decorados com prata / Development of hybrid anode material for Li ion batteries based on activated carbon and carbon nanotubes decorated with silver.Takahashi, Giuliana Hasegava 16 April 2015 (has links)
Neste trabalho, foi desenvolvido um material híbrido inédito carvão ativado/nanotubos de carbono/nanopartículas de prata para as aplicações em bateria de íons de lítio e capacitor eletroquímico de dupla camada. O compósito foi preparado por crescimento dos nanotubos de carbono diretamente sobre o carvão ativado via deposição química de vapor e depois nanopartículas de prata foram incorporadas no carvão ativado/nanotubos de carbono. A morfologia do compósito foi analisada por microscopia eletrônica de varredura. Investigação das propriedades de intercalação de lítio no carvão ativado (CA), carvão ativado/nanotubos de carbono (CA/NTC), carvão ativado/prata (CA/Ag) e carvão ativado/nanotubos de carbono/prata (CA/NTC/Ag) foi conduzida por voltametria cíclica e ciclos de carga/descarga, utilizando dois diferentes eletrólitos. Verificou-se que o ânodo de CA/NTC/Ag apresenta mais elevado valor de capacidade específica reversível que a grafita em eletrólito comercial, provavelmente devido à rede tridimensional com elevada condutividade eletrônica formada por nanotubos de carbono e nanopartículas de prata nos poros e nas rugosidades do substrato. Além disso, os nanotubos de carbono podem exibir elevada capacidade de armazenamento de lítio. Outra vantagem do CA/NTC/Ag é que a rede de nanotubos de carbono acomoda a expansão de volume das partículas de prata durante a ciclagem do eletrodo, mantendo-as bem adsorvidas na superfície do CA/NTC. Os resultados confirmaram a existência do sinergismo entre os componentes do CA/NTC/Ag, que promove características eletroquímicas superiores àquelas dos constituintes isolados. / In this work, an unpublished hybrid material activated carbon/carbon nanotubes/silver nanoparticles was developed for lithium ion battery and electrochemical double layer capacitor applications. The composite was prepared by growing carbon nanotubes directly on the activated carbon via chemical vapor deposition and after silver nanoparticles were incorporated on the activated carbon/carbon nanotubes. The composites morphology was analyzed by scanning electron microscopy. Investigation of lithium intercalation properties in activated carbon (AC), activated carbon/carbon nanotubes (AC/CNT), activated carbon/silver (AC/Ag) and activated carbon/carbon nanotubes/silver (AC/CNT/Ag) was carried out by cyclic voltammetry and charge/discharge cycles by making use of two different electrolytes. It was found that the AC/CNT/Ag anode presents higher reversible specific capacity value in comparison with graphite in commercial electrolyte, probably due to the three dimensional network with high electronic conductivity formed by carbon nanotubes and silver nanoparticles in the substrates pores and roughness. Furthermore, carbon nanotubes can exhibit high lithium storage capacity. Another advantage of the AC/CNT/Ag is that the network of carbon nanotubes accommodates volume expansion of the silver particles during electrode cycling, keeping them well adsorbed on the surface of the AC/CNT. The results confirmed the existence of synergism between the components of the AC/CNT/Ag, which promotes electrochemical characteristics that are higher than those of the individual constituents.
|
183 |
Etude des interfaces électrode/électrolyte de batteries lithium-ion 5V de type graphite/LiNi0.5 Mn1,5O4 / Electrode/electrolyte interface studies of 5V graphite/LiNi0,5Mn1,5O4Charton, Christopher 13 December 2017 (has links)
Les accumulateurs graphite/LiNi0,5Mn1,5O4 (LNMO) permettent d’atteindre des densités d’énergie élevées grâce à leur tension de 5V. Toutefois, une dégradation des électrodes et des électrolytes à base d’alkylcarbonates et de LiPF6 a lieu à haut potentiel reste un problème qu’il est nécessaire de résoudre. L’ajout d’additifs fonctionnels à l’électrolyte comme l’AS, l’AM, le FEC ou le LiBOB forme des films de passivation aux interfaces électrode/électrolyte. Ces films réduisent la dégradation des matériaux et de l’électrolyte de l’accumulateur Gr/LNMO. Pour étudier le mécanisme d’action de ces additifs, les interfaces graphite/électrolyte et LNMO/électrolyte ont été caractérisées au moyen de cellules symétriques Gr/Gr et LNMO/LNMO et de cellules complètes. Les interfaces ont été étudié par spectroscopie d’impédance électrochimique (EIS) et photoélectronique à rayons X (XPS). De plus, l’électrolyte a été analysé par chromatographie en phase gazeuse liée à la spectrométrie de masse (GC-MS). / Gr/LiNi0.5Mn1.5O4 (LNMO) accumulators achieve higher energy densities than current commercial batteries. However, degradation of electrodes and electrolytes based on alkylcarbonates and LiPF6 takes place at high potential remains a problem which it needs to be resolved. The addition of functional additives to the electrolyte such as AS, AM, FEC or LiBOB which form passivation films at the electrode/electrolyte interfaces is a possible solution to these issues. These films reduce the degradation of materials and the oxidation of electrolyte in the Gr/LNMO accumulator. In order to study action mechanism of these additives, graphite/electrolyte and LNMO/electrolyte interfaces were characterized by symmetric Gr/Gr and LNMO/LNMO cells and full cells. Interfaces were investigated by electrochemical impedance spectroscpoy (EIS) and X-ray photoelectron spectroscopy (XPS) while the electrolyte was analyzed by mass spectrometric gas chromatography (GC-MS).
|
184 |
Towards Safer Lithium-Ion BatteriesHerstedt, Marie January 2003 (has links)
<p>Surface film formation at the electrode/electrolyte interface in lithium-ion batteries has a crucial impact on battery performance and safety. This thesis describes the characterisation and treatment of electrode interfaces in lithium-ion batteries. The focus is on interface modification to improve battery safety, in particular to enhance the onset temperature for thermally activated reactions, which also can have a negative influence on battery performance. </p><p>Photoelectron Spectroscopy (PES) and Differential Scanning Calorimetry (DSC) are used to investigate the surface chemistry of electrodes in relation to their electrochemical performance. Surface film formation and decomposition reactions are discussed.</p><p>The upper temperature limit for lithium-ion battery operation is restricted by exothermic reactions at the graphite anode; the onset temperature is shown to be governed by the composition of the surface film on the anode. Several electrolyte salts, additives and an anion receptor have been exploited to modify the surface film composition. The most promising thermal behaviour is found for graphite anodes cycled with the anion receptor, tris(pentafluorophenyl)borane, which reduces salt reactions and increases the onset temperature from ~80 °C to ~150 °C.</p><p>The electrochemical performance and surface chemistry of Swedish natural graphite, carbon-treated LiFePO<sub>4</sub> and anodes from high-power lithium-ion batteries are also investigated. Jet-milled Swedish natural graphite exhibits a high capacity and rate capability, together with a decreased susceptibility to solvent co-intercalation. Carbon-treated LiFePO<sub>4</sub> shows promising results: no solvent reaction products are detected. The amount of salt compounds increases, with power fade occurring for anodes from high-power lithium-ion batteries; the solvent reduction products comprise mainly Li-carboxylate type compounds.</p>
|
185 |
Towards Safer Lithium-Ion BatteriesHerstedt, Marie January 2003 (has links)
Surface film formation at the electrode/electrolyte interface in lithium-ion batteries has a crucial impact on battery performance and safety. This thesis describes the characterisation and treatment of electrode interfaces in lithium-ion batteries. The focus is on interface modification to improve battery safety, in particular to enhance the onset temperature for thermally activated reactions, which also can have a negative influence on battery performance. Photoelectron Spectroscopy (PES) and Differential Scanning Calorimetry (DSC) are used to investigate the surface chemistry of electrodes in relation to their electrochemical performance. Surface film formation and decomposition reactions are discussed. The upper temperature limit for lithium-ion battery operation is restricted by exothermic reactions at the graphite anode; the onset temperature is shown to be governed by the composition of the surface film on the anode. Several electrolyte salts, additives and an anion receptor have been exploited to modify the surface film composition. The most promising thermal behaviour is found for graphite anodes cycled with the anion receptor, tris(pentafluorophenyl)borane, which reduces salt reactions and increases the onset temperature from ~80 °C to ~150 °C. The electrochemical performance and surface chemistry of Swedish natural graphite, carbon-treated LiFePO4 and anodes from high-power lithium-ion batteries are also investigated. Jet-milled Swedish natural graphite exhibits a high capacity and rate capability, together with a decreased susceptibility to solvent co-intercalation. Carbon-treated LiFePO4 shows promising results: no solvent reaction products are detected. The amount of salt compounds increases, with power fade occurring for anodes from high-power lithium-ion batteries; the solvent reduction products comprise mainly Li-carboxylate type compounds.
|
186 |
Design of resilient silicon-carbon nanocomposite anodesHertzberg, Benjamin Joseph 16 November 2011 (has links)
Si-based anodes have recently received considerable attention for use in Li-ion batteries, due to their extremely high specific capacity - an order of magnitude beyond that offered by conventional graphite anode materials. However, during the lithiation process, Si-based anodes undergo extreme increases in volume, potentially by more than 300 %. The stresses produced within the electrode by these volume changes can damage the electrode binder, the active Si particles and the solid electrolyte interphase (SEI), causing the electrode to rapidly fail and lose capacity. These problems can be overcome by producing new anode materials incorporating both Si and C, which may offer a favorable combination of the best properties of both materials, and which can be designed with internal porosity, thereby buffering the high strains produced during battery charge and discharge with minimal overall volume changes.
However, in order to develop useful anode materials, we must gain a thorough understanding of the structural, microstructural and chemical changes occurring within the electrode during the lithiation and delithiation process, and we must develop new processes for synthesizing composite anode particles which can survive the extreme strains produced during lithium intercalation of Si and exhibit no volume changes in spite of the volume changes in Si. In this work we have developed several novel synthesis processes for producing internally porous Si-C nanocomposite anode materials for Li-ion batteries. These nanocomposites possess excellent specific capacity, Coulombic efficiency, cycle lifetime, and rate capability. We have also investigated the influence of a range of different parameters on the electrochemical performance of these materials, including pore size and shape, carbon and silicon film thickness and microstructure, and binder chemistry.
|
187 |
Studies On Electrode Materials For Lithium-Ion BatteriesPalale, Suresh 02 1900 (has links)
In the early 1970s, research carried out on rechargeable lithium batteries at the Exxon Laboratories in the US established that lithium ions can be intercalated electrochemically into certain layered transition-metal sulphides, the most promising being titanium disulphide. Stemming from this discovery for titanium disulphide, there has been increased interest on lithium-ion intercalation compounds for application in rechargeable batteries. The first rechargeable lithium cell was commercialized in late 1980s by Moli Energy Corporation in Canada. The cell comprised a spirally wound lithium foil as the anode, a separator and MoS2 as the cathode. The cell had a nominal voltage of 1.8 V and an attractive value of specific energy, which was 2 to 3 times greater than either lead-acid or nickel-cadmium cells. However, the battery was withdrawn from the market after safety problems were experienced. This paved way for the discovery of lithium-ion battery.
The origin of lithium-ion battery lies in the discovery that Li+-ions can be reversibly intercalated within or deintercalated from the van der Walls gap between graphene sheets of carbon materials at a potential close to the Li/Li+ electrode. Thus, lithium metal is replaced by carbon as the anode material for rechargeable lithium-ion batteries, and the problems associated with metallic lithium mitigated. Complimentary investigations on intercalation compounds based on transition metals resulted in establishing LiCoO2 and LiNiO2 as promising cathode materials. By employing aforesaid intercalation materials, namely carbon and LiCoO2 respectively, as negative and positive electrodes in a non-aqueous lithium-salt electrolyte, a Li-ion cell with a voltage value of about 3.5 V resulted. These findings led to a novel rechargeable battery technology.
Lithium-ion batteries were first introduced commercially in 1991 by the Sony Corporation in Japan. Other Japanese manufacturers soon entered the market, followed closely by American and European companies. The subsequent growth in sales of the batteries was truly phenomenal. Beginning from 1991, the lithium-ion battery market has grown from an R&D interest to sales of over 400 million units in 1999. The global market value for lithium-ion batteries at original equipment manufacturer level was estimated to be $1.86 billion in 2000. By 2006, the market is expected to grow to over 1.2 billion units with value of over $4 billion, while the average unit price is expected to fall.
Initially, realizable specific energy of commercial Li-ion battery was only about 120 Wh kg-1. However, with continuing improvements in various cell components, present day Li-ion batteries can provide a specific energy density of about 200 Wh kg-1. With the ‘holy grail’ far to be realized, the current R&D efforts are focussed on furthering the specific energy of lithium-ion batteries in conjunction with safety, environmental compatibility, and cost effectiveness.
In the Li-ion cell, all of its electrochemical constituents, namely anode, cathode and electrolyte are central to its performance. This thesis describes some novel studies on cathode and anode materials for lithium-ion Batteries.
|
188 |
Electrochemistry and magnetism of lithium doped transition metal oxides / Elektrochemie und Magnetismus von Lithium dotierten ÜbergangsmetalloxidenPopa, Andreia Ioana 11 January 2010 (has links) (PDF)
The physics of transition metal oxides is controlled by the combination and competition of several degrees of freedom, in particular the charge, the spin and the orbital state of the electrons. One important parameter responsible for the physical properties is the density of charge carriers which determines the oxidization state of the transition metal ions. The central objective in this work is the study of transition metal oxides in which the charge carrier density is adjusted and controlled via lithium intercalation/deintercalation using electrochemical methods. Lithium exchange can be achieved with a high degree of accuracy by electrochemical methods. The magnetic properties of various intermediate compounds are studied.
Among the materials under study the mixed valent vanadium-oxide multiwall nanotubes represent a potentially technologically relevant material for lithium-ion batteries. Upon electron doping of VOx-NTs, the data confirm a higher number of magnetic V4+ sites. Interestingly, room temperature ferromagnetism evolves after electrochemical intercalation of Li, making VOx-NTs a novel type of self-assembled nanoscaled ferromagnets. The high temperature ferromagnetism was attributed to formation of nanosize interacting ferromagnetic spin clusters around the intercalated Li ions. This behavior was established by a complex experimental study with three different local spin probe techniques, namely, electron spin resonance (ESR), nuclear magnetic resonance (NMR) and muon spin relaxation spectroscopies.
Sr2CuO2Br2 was another compound studied in this work. The material exhibits CuO4 layers isostructural to the hole-doped high-Tc superconductor La2-xSr2CuO4. Electron doping is realized by Li-intercalation and superconductivity was found below 9K. Electrochemical treatment hence allows the possibility of studying the electronic phase diagram of LixSr2CuO2Br2, a new electron doped superconductor. The effect of electrochemical lithium doping on the magnetic properties was also studied in tunnel-like alpha-MnO2 nanostructures. Upon lithium intercalation, Mn4+ present in alpha-MnO2 will be reduced to Mn3+, resulting in a Mn mixed valency in this compound. The mixed valency and different possible interactions arising between magnetic spins give a complexity to the magnetic properties of doped alpha-MnO2.
|
189 |
Surface Active Sites: An Important Factor Affecting the Sensitivity of Carbon Anode Material towards HumidityFu, L. J., Zhang, H. P., Wu, Y. P., Wu, H. Q., Holze, R. 31 March 2009 (has links) (PDF)
In this paper, we report that various kinds of active sites on graphite surface including active hydrophilic sites markedly affect the electrochemical performance of graphite anodes for lithium ion batteries under different humidity conditions. After depositing metals such as Ag and Cu by immersing and heat-treating, these active sites on the graphite surface were removed or covered and its electrochemical performance under the high humidity conditions was markedly improved. This suggests that lithium ion batteries can be assembled under less strict conditions and that it provides a valuable direction to lower the manufacturing cost for lithium ion batteries.
|
190 |
Fundamental Properties of Functional Magnetic MaterialsWikberg, Magnus January 2010 (has links)
Magnetic properties of powders, thin films and single crystals have been investigated using magnetometry methods. This thesis provides analysis and conclusions that are supported by the results obtained from spectroscopic and diffraction measurements as well as from theoretical calculations. First, the magnetic behavior of transition metal (TM) doped ZnO with respect to doping, growth conditions and post annealing has been studied. Our findings indicate that the magnetic behavior stems from small clusters or precipitates of the dopant, with ferromagnetic or antiferromagnetic interactions. At the lowest dopant concentrations, the estimated cluster sizes are too small for high resolution imaging. Still, the clusters may be sufficiently large to generate a finite spontaneous magnetization even at room temperature and could easily be misinterpreted as an intrinsic ferromagnetic state of the TM:ZnO compound. Second, influence of lattice strain on both magnetic moment and anisotropy has been investigated for epitaxial MnAs thin films grown on GaAs substrates. The obtained magnetic moments and anisotropy values are higher than for bulk MnAs. The enhanced values are caused by highly strained local areas that have a stronger dependence on the in-plane axis strain than out-of plane axis strain. Finally, spin glass behavior in Li-layered oxides, used for battery applications, and a double perovskite material has been investigated. For both Li(NiCoMn)O2 and (Sr,La)MnWO6, a mixed-valence of one of the transition metal ions creates competing ferromagnetic and antiferromagnetic interactions resulting in a low temperature three-dimensional (3D) spin glass state. Additionally, Li(NiCoMn)O2 with large cationic mixing exhibits a percolating ferrimagnetic spin order in the high temperature region and coexists with a two-dimensional (2D) frustrated spin state in the mid temperature region. This is one of the rare observations where a dimensional crossover from 2D to 3D spin frustration appears in a reentrant material. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 720
|
Page generated in 0.0794 seconds