• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 7
  • 2
  • Tagged with
  • 22
  • 22
  • 22
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Matériaux d’électrodes négatives graphite-étain pour accumulateur Li-ion : synthèse, caractérisation et propriétés électrochimiques / Graphite-tin negative electrode materials for Li-ion batteries : synthesis, characterization and electrochemical properties

Mercier, Cédric 13 October 2008 (has links)
Cette étude s’inscrit dans le cadre de la recherche de nouveaux matériaux anodiques à forte capacité pour accumulateurs à ion lithium. Il y est décrit, la synthèse de systèmes graphite-étain obtenus par réduction, en présence de graphite à des taux variables, des chlorures d’étain SnCl2 et SnCl4, par les hydrures alcalins NaH et LiH activés par un alcoolate. Les nanomatériaux préparés présentent des capacités réversibles stables en cyclage, assez proches de celles calculées à partir des teneurs en métal déterminées par analyse élémentaire. Cependant, on peut noter des différences importantes entre les valeurs et l’évolution en cyclage des capacités irréversibles selon l’hydrure ou le mélange d’hydrure utilisé(s). Avec l’hydrure de sodium NaH, la capacité irréversible, très élevée au premier cycle, s’annule pratiquement dès le deuxième cycle ; avec l’hydrure de lithium LiH, cette capacité irréversible, bien que plus faible au premier cycle, donne une valeur résiduelle récurrente aux cycles suivants. Il a finalement été montré que l’utilisation du mélange des deux hydrures NaH/LiH permet de préserver les avantages des deux systèmes précédents et d’obtenir des matériaux combinant de manière synergique leurs propriétés. / This study is devoted to the development of new anodic materials with high capacities for lithium-ion batteries. The synthesis of graphite-tin systems obtained by reduction, in the presence of graphite at various rates, of the tin Chlorides SnCl2 and SnCl4, by the alkoxide-activated alkaline hydrides ( sodium hydride or lithium hydride) is described. The nanomaterials prepared have stable reversible capacities in cycling, close to those calculated from the amounts of metal given by elemental analysis. However, important differences between the values and the evolution in cycling of the irreversible capacities depending on the hydride or the mixture of hydride used were observed. With sodium hydride, the irreversible capacity, very high during the first cycle, is practically cancelled at the second cycle; with lithium hydride, this irreversible capacity, although lower to the first cycle, gives a recurring residual value at the following cycles. The use of the NaH/LiH allowed to preserve the advantages of the two preceding systems and to synergistically combine their properties.
2

Suivi à l'échelle nanométrique de l'évolution d'une électrode de silicium dans un accumulateur Li-ion par STEM-EELS / Nanoscale evolution of silicon electrodes for Li-ion batteries by low-loss STEM-EELS

Boniface, Maxime 22 December 2017 (has links)
L’accroissement des performances des accumulateurs Li-ion sur les 25 dernières années découle principalement de l’optimisation de leurs composants inactifs. Aujourd’hui, l’urgence environnementale impose de développer de nouveaux matériaux actifs d’électrode pour proposer la prochaine génération d’accumulateur qui participera à la transition énergétique. A cet effet, le silicium pourrait avantageusement remplacer le graphite des électrodes négatives à moyen terme. Cependant la rétention de capacité des électrodes de silicium est mise à mal par l’expansion volumique que le matériau subit lors sa réaction d’alliage avec le lithium, qui mène à la déconnexion des particules de Si et à une réduction continue de l’électrolyte. Une compréhension de ces phénomènes de vieillissement à l’échelle de la nanoparticule est nécessaire à la conception d’électrodes de silicium viables. Pour ce faire, la technique STEM-EELS a été optimisée de manière à s’affranchir des problèmes d’irradiation qui empêchent l’analyse des matériaux légers d’électrode négative et de la Solid electrolyte interface (SEI), grâce à l’analyse des pertes faibles EELS. Un puissant outil de cartographie de phase est obtenu et utilisé pour mettre en lumière la lithiation cœur-coquille initiale des nanoparticules de silicium cristallin, la morphologie hétérogène et la composition de la SEI, ainsi que la dégradation du silicium à l’issue de cyclages prolongés. Enfin, un modèle de vieillissement original est proposé, en s’appuyant notamment sur un effort de quantification des mesures STEM-EELS sur un grand nombre de nanoparticules. / Over the last 25 years, the performance increase of lithium-ion batteries has been largely driven by the optimization of inactive components. With today’s environmental concerns, the pressure for more cost-effective and energy-dense batteries is enormous and new active materials should be developed to meet those challenges. Silicon’s great theoretical capacity makes it a promising candidate to replace graphite in negative electrodes in the mid-term. So far, Si-based electrodes have however suffered from the colossal volume changes silicon undergoes through its alloying reaction with Li. Si particles will be disconnected from the electrode’s percolating network and the solid electrolyte interface (SEI) continuously grows, causing poor capacity retention. A thorough understanding of both these phenomena, down to the scale of a single silicon nanoparticle (SiNP), is critical to the rational engineering of efficient Si-based electrodes. To this effect, we have developed STEM-EELS into a powerful and versatile toolbox for the study of sensitive materials and heterogeneous systems. Using the low-loss part of the EEL spectrum allows us to overcome the classical limitations of the technique.This is put to use to elucidate the first lithiation mechanism of crystalline SiNPs, revealing Li1.5Si @ Si core-shells which greatly differs from that of microparticles, and propose a comprehensive model to explain this size effect. The implications of that model regarding the stress that develops in the crystalline core of SiNPs are then challenged via stress measurements at the particle scale (nanobeam precession electron diffraction) for the first time, and reveal enormous compressions in excess of 4±2 GPa. Regarding the SEI, the phase-mapping capabilities of STEM-EELS are leveraged to outline the morphology of inorganic and organic components. We show that the latter contracts during electrode discharge in what is referred to as SEI breathing. As electrodes age, disconnection causes a diminishing number of SiNPs to bear the full capacity of the electrode. Overlithiated particles will in turn suffer from larger volumes changes and cause further disconnection in a self-reinforcing detrimental effect. Under extreme conditions, we show that SiNPs even spontaneously turn into a network of thin silicon filaments. Thus an increased active surface will compound the reduction of the electrolyte and the accumulation of the SEI. This can be quantified by summing and averaging STEM-EELS data on 1104 particles. In half-cells, the SEI volume is shown to increase 4-fold after 100 cycles without significant changes in its composition, whereas in full cells the limited lithiation performance understandably leads to a mere 2-fold growth. In addition, as the operating potential of the silicon electrodes increases in full cells – potential slippage – organic products in the SEI switch from being carbonate-rich to oligomer-rich. Finally, we regroup these findings into an extensive aging model of our own, based on both local STEM-EELS analyses and the macro-scale gradients we derived from them as a whole.
3

Corrélation entre dégradation des composants internes et sécurité de fonctionnement des batteries Li-ion / Correlation between degradation of internal components and operational safety of Li-ion batteries

Fleury, Xavier 26 October 2018 (has links)
Les batteries lithium-ion sont présentes dans de nombreuses applications portables ou embarquées car leurs énergies massique et volumique et leur cyclabilité les placent en tête des autres technologies de stockage. Cependant, elles ne résistent pas aux fonctionnements abusifs et peuvent subir des emballements thermiques avec risque d’explosion. Par ailleurs, l’état des composants internes évoluant au cours du vieillissement de la batterie, son comportement en sécurité doit être considéré pour n'importe quel état de santé afin de mieux concevoir la gestion thermique des cellules et du pack batterie. Dans ce contexte, il est donc primordial de comprendre les mécanismes de dégradation de l’ensemble des composants internes d’un élément (matériaux d'électrodes, collecteurs, séparateur et électrolyte) lors d’un vieillissement en fonctionnement normal et le déroulement des évènements en conditions abusives pouvant aboutir à un scénario accidentel.Le séparateur doit alors être considéré comme le premier dispositif de sécurité intrinsèque car il assure la séparation physique entre l’électrode positive et négative. Il doit alors être étudié sur le plan de ses propriétés électrochimiques, mécaniques et thermiques. Pour cela, une méthodologie de caractérisation a été développée, mettant en œuvre un large panel de techniques de caractérisation physique et chimique, et appliquée sur des séparateurs issus de vieillissements en conditions normales et après surcharge. Différentes méthodes de lavage ont permis de discréditer l’évolution morphologique et électrochimique du polymère poreux sans l’interaction des résidus solides associées aux produits de dégradation de l’électrolyte. Ainsi, la porosité et la tortuosité de la matrice polymère, associées à la conductivité ionique du système séparateur/électrolyte, ont été pleinement étudiées.Il a pu être montré que, en accord avec la croissance de la SEI sur l’électrode négative graphite, sa porosité de surface se dégrade avec un encrassement des pores par accumulation de composés solides de la SEI. Aucune conséquence sur les propriétés mécaniques n’a été observée, mais les performances électrochimiques en puissance se dégradent fortement. Une évaluation face aux risques de court-circuit interne par percée dendritique a permis de montrer que la formation de dendrite est favorisée. Le séparateur en tant qu’organe de sécurité face aux risques mécaniques garde donc son efficacité tout au long de la vie de la batterie lithium-ion mais le risque de court-circuit est plus élevé. / Lithium-ion batteries have undeniable assets to meet several of the requirements for embedded applications. They provide high energy density and long cycle life. Nevertheless, they can face irreversible damage during their lives which could cause safety issues like the thermal runaway of the battery and its explosion. It is then essential to understand the degradation mechanisms of all the internal components of an accumulator (i.e. electrode materials, collectors, separator and electrolyte) and the progress of events in abusive conditions that can lead to an accident scenario. The aim of this thesis is to work on the security aspects of Lithium-ion batteries in order to understand these degradation mechanisms and to help to prevent future incidents.Even if the degradation mechanisms of all the internal components are studied in this work, a special attention is given to the separator. This component is indeed one of the most important safety devices of a battery and have to be electrochemically, mechanically and thermally characterized after ageing. Different washing methods have been study in order to characterize the separator without any degradation product of the electrolyte which could interfere. Porosity and tortuosity associated with the ionic conductivity of the separator have been tested.The results show that even if the separator is electrochemically inactive, its porosity can decrease because of the degradation of the negative graphite electrode. Indeed, SEI components obstruct the surface porosity of the separator. This porosity change do not cause any mechanical degradation but decrease separator performances at high current rate and promote lithium dendrite growth.
4

New polymers as binders or electroactive materials for Li-ion batteries / Nouveaux polymères comme liants ou matériaux électroactifs pour batteries Li-ion

Ranque, Pierre 18 October 2018 (has links)
Ce travail de thèse, débuté en 2015, a pour but de développer et d'étudier les propriétés de nouveaux liants polymères pour batteries Li-ion. Les synthèses organiques ainsi que leurs caractérisations associées et les tests électrochimiques ont été réalisées à Delft. Puis, des études de spectroscopie photo-électronique par rayons X (XPS) ont été réalisées à Pau pour déterminer et comprendre la réactivité de certain de ces nouveaux matériaux vis-à-vis du lithium. / This PhD work started in 2015, aimed to develop and investigate the properties of new polymers as binders for Li-ion batteries. Organic syntheses with associated characterizations and electrochemical tests were performed in Delft. Then, X-ray photoelectron spectroscopy studies were performed in Pau, to determine and understand the reactivity of some of these new materials toward lithium ions in coin cells.
5

Utilisation de procédés papetiers et de fibres cellulosiques pour l'élaboration de batteries Li-ion Elaboration of Li-ion batteries using cellulose fibers and papermaking techniques

Jabbour, Lara 29 October 2012 (has links) (PDF)
L'objectif du travail décrit dans cette thèse est de développer des batteries Li-ion peu coûteuses, respectueuses de l'environnement, facilement industrialisables et recyclables, tout en utilisant des fibres cellulosiques et un procédé en milieu aqueux. Deux approches ont été adoptées pendant ce travail expérimental. Dans un premier temps, les microfibrilles de cellulose ont été utilisées pour la production d'anodes par un procédé de casting. Puis, une approche papetière a été adoptée. La plupart des travaux expérimentaux se sont focalisés sur l'utilisation de fibres de cellulose pour la production d'électrodes papier (anodes et cathodes) et de séparateurs-papier par procédé de filtration en milieu aqueux pour obtenir des cellules complètes à base de cellulose. Les électrodes obtenues sont homogènes, souples et leurs propriétés électrochimiques comparables à celles d'électrodes de références utilisant un polymère de synthèse comme liant.
6

Utilisation de procédés papetiers et de fibres cellulosiques pour l'élaboration de batteries Li-ion Elaboration of Li-ion batteries using cellulose fibers and papermaking techniques / Preparation of flexible lithium ion batteries using cellulose fibres and a water-based filtration process.

Jabbour, Lara 29 October 2012 (has links)
L’objectif du travail décrit dans cette thèse est de développer des batteries Li-ion peu coûteuses, respectueuses de l’environnement, facilement industrialisables et recyclables, tout en utilisant des fibres cellulosiques et un procédé en milieu aqueux. Deux approches ont été adoptées pendant ce travail expérimental. Dans un premier temps, les microfibrilles de cellulose ont été utilisées pour la production d’anodes par un procédé de casting. Puis, une approche papetière a été adoptée. La plupart des travaux expérimentaux se sont focalisés sur l’utilisation de fibres de cellulose pour la production d’électrodes papier (anodes et cathodes) et de séparateurs-papier par procédé de filtration en milieu aqueux pour obtenir des cellules complètes à base de cellulose. Les électrodes obtenues sont homogènes, souples et leurs propriétés électrochimiques comparables à celles d’électrodes de références utilisant un polymère de synthèse comme liant. / This work investigates the production of low cost, low environmental impact, easily up-scalable and recyclable cellulose-based Li-ion batteries. Two main research approaches were explored. At first, microfibrillated cellulose was used for the production of paper-like anodes by means of a water-based casting process.Then, a papermaking approach was adopted and the majority of the experimental work was focused on the use of cellulose fibers for the production of paper-electrodes (i.e. anodes and cathodes) and paper-separators by means of a water-based filtration process.The prepared electrodes are easy to handle and self-standing with good electrochemical characteristics, comparable with that of standard synthetic polymer-bonded electrodes.
7

Étude théorique des matériaux d'électrode positive négative pour batteries Li-ion / Theoretical study materials of positive electrode for Li-ion batteries

El Khalifi, Mohammed 21 December 2011 (has links)
Ce mémoire est consacré à l'étude théorique des matériaux de cathode pour batteries Li-ion de structure olivine LiMPO4 (M=Mn, Fe, Co, Ni), des phases délithiées MPO4 et des phases mixtes LiFexMn1-xPO4, FexMn1-xPO4 et LiFexCo1-xPO4. La stabilité des phases magnétiques et les paramètres de maille théoriques ont été déterminés par la méthode des pseudopotentiels et comparés aux données expérimentales. Les structures électroniques ont été calculées par une méthode « tout électron » et analysées en termes d'hybridation des orbitales atomiques Ces résultats ont permis d'interpréter les spectres de photoélectrons X et d'absorption des rayons X, en particulier les modifications réversibles associées aux cycles de lithiation/délithiation. Les effets de la polarisation de spin et de la corrélation électronique ont été discutés. Enfin, le calcul des paramètres Mössbauer du 57Fe a montré qu'un accord quantitatif entre les résultats théoriques et les données expérimentales nécessitait la prise en compte de ces deux effets. Ce type de calcul a permis de prédire et d'expliquer que la transformation LiFePO4FePO4 s'accompagnait de la variation du gradient de champ électrique Vzz d'une extrémité à l'autre de l'échelle Mössbauer pour 57Fe. / This thesis is devoted to the theoretical study of the cathode materials for Li-ion batteries with olivine structure LiMPO4 (M=Mn, Fe, Co, Ni), the delithiated phases MPO4 and the mixed phases LiFexMn1-xPO4, FexMn1-xPO4 and LiFexCo1-xPO4. The magnetic phase stability and lattice parameters were theoretically determined from pseudopotential calculations and the results have been compared with experiments. Electronic structures were obtained from all electron calculations and analyzed in terms of orbital hybridization. The results have been used for the interpretation of X-ray photoemission and X-ray absorption spectra, especially changes due to lithiation/delithiation cycles. Effects of spin polarization and electronic correlation on the electronic structures have been also discussed. It has been shown that ab initio calculations of the 57Fe Mössbauer parameters also require these two effects in order to obtain a quantitative agreement with experiments. Finally, it was found that LiFePO4FePO4 transformation involves a dramatic change of the electric field gradient VZZ from one end to the other of the 57Fe Mössbauer scale.
8

Estimation de l’état interne d’une batterie lithium-ion à l’aide d’un modèle électrochimique / State estimation of a lithium-ion battery based on an electrochemical model

Blondel, Pierre 10 January 2019 (has links)
En 30 ans, les batteries Li-ion ont littéralement colonisé notre environnement depuis et leur déploiement s’accélère. Puissante, efficace, légère et compacte, cette technologie présente des problèmes de sécurité. C’est pourquoi la plupart de ces batteries sont équipées de systèmes de gestion. Ils nécessitent l’accès à certains états internes qui ne sont pas tous mesurables. Cette thèse se propose d’estimer les variables en question à l’aide d’observateurs non-linéaires. Un observateur permet d’estimer des états inaccessibles à la mesure, à partir des mesures disponibles et d’un modèle mathématique des dynamiques mises en jeu. Les transports électrochimiques à l’œuvre dans les batteries sont responsables de leur comportement. Nous en proposons un modèle électrochimique adapté à l’observation. Celui-ci repose sur la discrétisation spatiale des équations aux dérivées partielles décrivant ces phénomènes et sur une série d’hypothèses. Présenté comme un système sous forme de représentation d’état, les dynamiques sont affines et l’équation de sortie est non-linéaire. Parmi les observateurs de systèmes à sortie non-linéaire dont nous avons connaissance, aucun ne peut s’appliquer directement au modèle proposé. Nous en avons donc développé de nouveaux dont la stabilité est garantie lorsqu’une inégalité matricielle est satisfaite. Nous avons ensuite confronté ces observateurs à des données expérimentales d’éléments commercialisés. Le comportement de l’observateur est encourageant et semble être un bon compromis entre sens physique et complexité numérique / Developed in the nineties, lithium batteries have colonized our environment in less than thirty years and they keep spreading faster and faster. Powerful, efficient, light and compact, this technology remains hazardous. In order to limit the danger and slow the aging of lithium cells, most of such batteries embed a management system. The latter needs to access some internal states, which are not directly measurable. This thesis intends to estimate these variables using a nonlinear observer, which is based on an electrochemical model. The behavior of the battery is driven by the transportation phenomenon of its main electrochemical species. We therefore built a finite dimensional electrochemical model of these adapted to estimation. It relies on the spatial discretization of the partial differential equations, which describe these transportation phenomena. It also formulates some assumptions, such as the fact that an electrode globally behaves like a single particle of its active material. The obtained state space model has affine dynamics and a nonlinear output. Among the existing observers for such systems that we are aware of, none can be applied directly to the developed model. Hence, we developed new ones whose stability is guaranteed provided a linear matrix inequality holds, which is used to construct the observation gain. We then confront these observers to experimental data acquired on commercialized batteries. The obtained results are encouraging and the observer seems to be a fair compromise between physical meaning and numerical complexity
9

Matériaux d’électrode positive à base de phosphates pour accumulateurs Li-ion et phénomènes aux interfaces : apport de la spectroscopie photoélectronique à rayonnement X (XPS) / Phosphate as positive electrode active materials for Li-ion cells and interfaces phenomena : contribution of X-Ray Photoelectron Spectroscopy (XPS)

Castro, Laurent 23 February 2012 (has links)
Ce travail de thèse est centré sur l’étude de matériaux LiMPO4 (M=Fe, Mn, Co) et de leur évolution en cyclage (processus rédox et interfaces électrode / électrolyte) dans des accumulateurs Li-ion. Il a été mené essentiellement sur la base d’analyses en spectroscopie photoélectronique à rayonnement X (XPS) couplées à des tests électrochimiques. Une oxydation de surface du phosphate LiFePO4 a été mise en évidence lors d’une exposition à l’air de ce matériau avec la formation d’impuretés de surface type Fe2O3. Au plan structure électronique, l’analyse des bandes de valence des matériaux LiMPO4 (M=Fe, Mn, Co) a notamment permis, pour LiFePO4, la visualisation de l’électron spin down du niveau Fe 3d amenant la première preuve expérimentale de la configuration électronique particulière (3d↑)5(3d↓)1 de Fe2+dans ce matériau. Ce travail a également contribué à mieux comprendre l’influence de la température de fonctionnement ainsi que de la nature de l’électrode négative sur les mécanismes de vieillissement des accumulateurs Li-ion. Pour les accumulateurs LiFePO4 // Graphite, la comparaison d’interfaces solide/électrolyte distribuées spatialement a montré que le vieillissement se caractérisant par la perte de lithium actif pouvait être mis en parallèle avec une hétérogénéité de fonctionnement de l’électrode positive. Enfin, l’extension des travaux aux matériaux prometteurs d’électrode positive Li(FeMn)PO4 a révélé que le potentiel de travail de fin de charge plus élevé pour le phosphate mixte, comparativement à LiFePO4, résultait dans une réactivité accrue vis-à-vis de l’électrolyte dont les conséquences ont été analysées. / This thesis is focused on the study of LiMPO4 (M = Fe, Mn, Co) materials and on their evolution upon cycling (redox process end electrodes / electrolyte interfaces) in lithium ion cells. It is based on X-Ray Photoelectron Spectroscopy (XPS) analyses coupled with electrochemical tests. During air exposure, a surface oxidation of phosphate LiFePO4 was observed that lead to the formation of surface impurities such as Fe2O3. Concerning electronic structure, the analysis of LiMPO4 (M=Fe, Mn, Co) materials valence spectra allowed for LiFePO4 the visualization of spin down Fe 3d electron which is the first experimental proof of the particular electronic configuration (3d↑)5(3d↓)1 of Fe2+ in this material. This work also allowed a better understanding of the effect of the working temperature as well as the nature of the negative electrode on Li-ion cells ageing mechanisms. For LiFePO4 // Graphite cell, the comparison of spatially distributed solid/electrolyte interfaces showed that ageing mechanisms, characterized by a loss of active lithium, could be associated with a heterogeneity of working of the positive electrode. In addition, the extension of these studies on new promising Li(FeMn)PO4 materials for positive electrode showed that higher working potential of mixed phosphate material compared to LiFePO4 material leads to a higher electrolyte reactivity which consequences were analysed.
10

Etude d’interfaces électrode/électrolyte dans des batteries Li-ion par spectroscopie photoélectronique à différentes profondeurs / Insights in Li-ion battery interfaces through photoelectron spectroscopy depth profiling

Philippe, Bertrand 24 May 2013 (has links)
Les éléments capables de former un alliage avec le lithium, tels que le silicium ou l’étain constituent des composés très prometteurs en tant que matériaux d’électrodes négatives pour la prochaine génération d’accumulateurs Li-ion. Un point important réside dans la compréhension des phénomènes se produisant aux interfaces électrode/électrolyte de ces nouveaux matériaux, la stabilité de la couche de passivation (SEI) se formant lors du cyclage en surface des électrodes constituant un élément primordial vis-à-vis des performances de la batterie. A côté des processus de lithiation et delithiation du matériau actif au cours du cyclage, il est important de mieux connaître la nature, la formation et l’évolution de la SEI de même que l’évolution des oxydes natifs de surface et la réactivité chimique de l’électrode au contact de l’électrolyte. Dans ce travail de thèse, pour mieux connaître et comprendre ces différents processus, nous avons développé une approche d'analyse non destructive à différentes profondeurs de la surface de matériaux d’électrodes. Les analyses ont été réalisées par spectroscopie photoélectronique à rayonnement X (XPS), la modification d’énergie du rayonnement incident permettant une variation de la profondeur d'analyse. Cette méthodologie a été utilisée pour sonder les phénomènes aux interfaces d’électrodes à base de silicium et d’étain. Les mécanismes se produisant lors du premier cycle électrochimique puis au cours d’un long cyclage d’électrodes à base de silicium cyclées avec le sel classique LiPF6 puis avec un nouveau sel très prometteur, LiFSI ont été analysés et discutés. L’étude a été étendue à un nouveau composé intermétallique à base d’étain: MnSn2. / Compounds forming alloys with lithium, such as silicon or tin, are promising negative electrode materials for the next generation of Li-ion batteries and an important issue is to better understand the phenomena occurring at the electrode/electrolyte interfaces of these materials. The stability of the passivation layer (SEI) is crucial for good battery performance and its nature, formation and evolution have to be investigated. It is also important to follow upon cycling alloying/dealloying processes, the evolution of surface oxides with battery cycling and the change in surface chemistry when storing electrodes in the electrolyte. The aim of this thesis is to improve the knowledge of these surface reactions through a non-destructive depth-resolved photoelectron spectroscopy analysis of the surface of new negative electrodes. A unique combination utilizing hard and soft-ray photoelectron spectroscopy allows by variation of the photon energy an analysis from the extreme surface to the bulk of the particles. This experimental approach was used to access the interfacial phase transitions at the surface of silicon or tin particles as well as the composition and thickness/covering of the SEI. Interfacial mechanisms occurring upon the first electrochemical cycle and upon long-term cycling of Si-based electrodes cycled with the classical salt LiPF6 and with a new promising salt, LiFSI were investigated as well as the interfacial reactions occurring upon the first cycle of an intermetallic compound MnSn2 were studied.

Page generated in 0.0717 seconds