• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Frequency Raster Magnets Design for the ARIEL Electron Target Station at TRIUMF

Ishida, Mathew 22 August 2022 (has links)
TRIUMF, Canada’s nuclear and particle physics research laboratory is currently in development of an Advanced Rare Isotope Facility (ARIEL) that will contain a newly designed electron target station. The target at this station is susceptible to destruction from instantaneous spot heating of the beam. To mitigate this, a raster system consisting of two AC electromagnets was proposed. The two magnets will work in tandem, vertical and horizontal, bending to produce raster patterns at 10 kHz. Since complex patterns consist of harmonics higher than the fundamental frequency, a design frequency of 100 kHz was chosen. AC current causes eddy currents which lead to the skin effect, causing high frequency current to concentrate on the outside of the conductor. To address this, a conductor diameter smaller than the skin depth at the given frequency must be chosen. This led to the choice of litz wire consisting of 400 insulated strands for the conductor. The radiation resistance insulation ethylene tetrafluoroethylene (ETFE) was chosen for these conductors and a 3D printed polyethylene sulfide (PPS) will be used for the coil bobbins. The effects of eddy currents were eliminated from the core material by choosing ferrite, an amorphous material consisting of iron-oxide crystals. Simulations were completed to ensure a homogenous magnetic field in the region of the beam, and the subsequent pole profile was determined. Lastly, a metalized ceramic beampipe is used to integrate with the existing beamline and allow for discharge of any static buildup on the inner surface of the beampipe due to the electron beam. / Graduate
2

The Poetic Process: A Poetry Collection

Litz, Kirsten Noelle 01 May 2020 (has links)
The Poetic Process is a creative thesis analyzing the use of different poetic forms but focuses more on the application of them through a series of creative work.
3

Modélisation électromagnétique 3D d'inducteurs multibrins - Développement d'une méthode intégrale parallélisée / 3D Electromagnetic modeling of multistrands inductors - Development of a parallel integral method

Scapolan, Raphaël 13 November 2014 (has links)
Afin de permettre l’utilisation de hautes fréquences dans le domainedu chauffage par induction industriel, l’emploi d’inducteurs multibrins est envisagé.Or, les pertes occasionnées dans ces inducteurs peuvent être importantes etdépendent fortement de leur géométrie interne qui est complexe. Pour faciliter laconception d’inducteurs multibrins à faibles pertes, il est nécessaire d’en comprendrele comportement électromagnétique. Dans cette thèse, nous présentons ledéveloppement d’un logiciel de calcul parallèle dévolu à la modélisation électromagnétique3D d’inducteurs multibrins. Nous décrivons une méthode originale deconstruction de la géométrie des inducteurs. Ce logiciel est basé sur une méthodenumérique de type intégrale ayant l’avantage de ne pas nécessiter le maillage desespaces entre les brins. L’emploi du calcul parallèle est une des grandes forces de celogiciel. Les études réalisées montrent l’impact de la géométrie sur le comportementde ce type d’inducteur. / In order to enable to use high frequencies in the domain of the industrialinductive heating, the use of multi-wires inductors is considered. But, lossesoccurring into that inductors can be important and strongly depend on their complexinternal geometry. To facilitate the design of lossless multi-wires inductors, it isnecessary to under stand their electromagnetic behavior. In this thesis, we presentthe development of a software of parallel computation intended to the 3D electromagneticmodeling of multi-wires inductors. We describe an original method ofbuilding of the geometry of that inductors. This software is based on an integralmethod in which the meshing of spaces between the wires is unnecessary. The useof parallel computing is one of the great forces of this software. The studies werealized show the impact of the geometry on the behavior of that type of inductor.
4

High-Frequency Voltage Distribution Modelling of a Slotless PMSM from a Machine Design Perspective

Brauer, Patrik January 2018 (has links)
The introduction of inverters utilizing wide band-gap semiconductors allow for higher switching frequency and improved machine drive energy efficiency. However, inverter switching results in fast voltage surges which cause overvoltage at the stator terminals and uneven voltage distribution in the stator winding. Therefore, it is important to understand how next generation machine drives, with higher switching frequency, affect the voltage distribution. For this purpose, a lumped-parameter model capable of simulating winding interturn voltages for the wide frequency range of 0-10 MHz is developed for a slotless PMSM. The model includes both capacitive and inductive couplings, extracted from 2D finite element simulations, as well as analytically estimated resistive winding losses. The developed model of a single phase-winding is used to investigate how machine design aspects such as insulation materials and winding conductor distribution affects both voltage distribution and winding impedance spectrum. Validation measurements demonstrate that the model is accurate for the wide frequency range. The sensitivity analysis suggests that the winding conductor distribution affect both impedance spectrum and voltage distribution. For the slotless machine, capacitance between the winding and the stator is several times smaller than capacitance between turns. Therefore, the high-frequency effects are dominated by the capacitance between turns. Insulation materials that affect this coupling does therefore have an impact on the impedance spectrum but does not have any significant impact on the voltage distribution. / Nästa generations inverterare för styrning av elektriska maskiner, baserade på bredbandgaps komponenter, tillåter högre switchfrekvenser vilket skapar en energieffektivare drivlina. Nackdelen är att snabba spänningsflanker från den höga switchfrekvensen skapar överspänning på stators anslutningar och en ojämn spänningsfördelning i statorlindningen. Det är därför betydelsefullt att förstå hur dessa nya drivlinor påverkar lindningens spänningsfördelning. I denna rapport används en modell kapabel att simulera lindningens spänningsfördelning i det breda frekvensspektrumet 0-10 MHZ. Modellen är framtagen för en faslindning av en PMSM, utan statoröppning, som inkluderar både kapacitiva och induktiva kopplingar samt analytiskt beräknade lindningsförluster. Modellen används för att undersöka spänningsfördelningen i lindningen samt inverkan från designparametrar som isolationsmaterial och lindningsdistribution. Känslighetsanalysen visar att lindingsdistributionen har en signifikant påverkan på både impedansspektrumet och spänningsfördelningen. För den studerade maskintypen är det kapacitansen mellan varv som är dominerande för högfrekventa fenomen. Isolationsmaterial som påverkar denna koppling har en påverkan på impedansspektrumet men är liten för spänningsfördelningen.
5

Magnetic and Thermal Design of Litz­wire 500 kHz High­power Planar Transformers with Converging Cooling Duct for “dc Transformer” Resonant Converter Applications

Ngo, Minh T. H. 28 September 2021 (has links)
This work presents the design and analysis of two Litz wire transformers for a 500 kHz, 18 kW input­parallel output­series partial power processing converter (IPOS PPP). Because the two power paths in the IPOS PPP operate as “dc transformers” (DCX), both transformers are designed with the goal of leakage inductance minimization in order to reduce gain variation around the resonant frequency. The selected winding topology with the lowest leakage inductance results in an impedance mismatch among parallel secondaries used in the majority power path transformer, resulting in poor current sharing. In order to balance the goals of leakage inductance minimization and even current sharing, a new winding technique called “intra­leaving” is presented which reduces current sharing error from 50%, to 5%. A design rule for “intra­leaving” is also established which extends the winding method to different winding configurations and higher numbers of parallel winding. A novel cooling duct designed with computational fluid dynamics is used for transformer thermal management. The cooling duct uses two 30 mm 7.7 CFM fans to cool the transformer winding and achieves a small height of 43 mm and only 6.8 W power consumption. Using the cooling duct, 106 °C peak winding temperature and 76 °C peak core temperature is achieved at 15 kW load, an ∼ 8% reduction compared to using a conventional 120 mm fan 41 CFM fan. The two transformers with the cooling system achieve 635 W/in3 power density, 1U height compliance, and 99.4% peak efficiency. / M.S. / As society moves towards the electric grid of the future, there have been increased calls for the research and development of resonant power converters due to their high efficiency, high power density, and low electromagnetic interference. The high frequency transformer is one of the main components of the resonant converter system as it contributes substantially to the converters volume, power loss, and thermal management risks. This work seeks to address the trade­offs between leakage inductance minimization and transformer current sharing and proposes a winding method called “intra­leaving” which achieves both. Using “intra­leaving” current sharing error was reduced from 50%, to 5%. Operating transformers at high frequency reduces their volume in accordance with Faraday’s law but also increases thermal risks due to decreased core surface area, higher winding fill factor, and higher loss per unit volume. A novel cooling duct designed using computational fluid dynamics is presented using two 30 mm 7.7 CFM fans and achieves a small height of 43 mm and only 6.8 W power consumption. Using the cooling duct, 106 °C peak winding temperature and 76 °C peak core temperature is achieved at 15 kW load, an ∼ 8% reduction compared to using a conventional 120 mm fan 41 CFM fan. The transformers with the cooling system designed in this work achieve 635 W/in³ power density, 1U height compliance, and 99.4% peak efficiency.
6

Modeling and Design of Planar Integrated Magnetic Components

Wang, Shen 15 August 2003 (has links)
Recently planar magnetic technologies have been widely used in power electronics, due to good cooling and ease of fabrication. High frequency operation of magnetic components is a key to achieve high power density and miniaturization. However, at high frequencies, skin and proximity effect losses in the planar windings become significant, and parasitics cannot be ignored. This piece of work deals with the modeling and design of planar integrated magnetic component for power electronics applications. First, one-dimensional eddy current analysis in some simple winding strategies is discussed. Two factors are defined in order to quantify the skin and proximity effect contributions as a function of frequency. For complicated structures, 2D and 3D finite element analysis (FEA) is adopted and the accuracy of the simulation results is evaluated against exact analytical solutions. Then, a planar litz structure is presented. Some definitions and guidelines are established, which form the basis to design a planar litz conductor. It can be constructed by dividing the wide planar conductor into multiple lengthwise strands and weaving these strands in much the same manner as one would use to construct a conventional round litz wire. Each strand is subjected to the magnetic field everywhere in the winding window, thereby equalizing the flux linkage. 3D FEA is utilized to investigate the impact of the parameters on the litz performance. The experimental results verify that the planar litz structure can reduce the AC resistance of the planar windings in a specific frequency range. After that, some important issues related to the planar boost inductor design are described, including core selection, winding configuration, losses estimation, and thermal modeling. Two complete design examples targeting at volume optimization and winding parasitic capacitance minimization are provided, respectively. This work demonstrates that planar litz conductors are very promising for high frequency planar magnetic components. The optimization of a planar inductor involves a tradeoff between volumetric efficiency and low value of winding capacitance. Throughout, 2D and 3D FEA was indispensable for thermal & electromagnetic modeling. / Master of Science
7

Contribution à l'intégration moyenne puissance de composants magnétiques pour l'électronique de puissance

Kerim, Aiman 18 November 2008 (has links) (PDF)
L'intégration magnétique d'un transformateur avec une inductance sur un seul noyau magnétique, baptisée LT, se présente comme une solution prometteuse pour augmenter la densité de puissance. Une formule générale de dimensionnement a été établie pour un composant intégré. En respectant quelques hypothèses, les pertes cuivre peuvent être estimées en appliquant la méthode de Dowell ou celle de Ferreira. Ainsi, la méthode d'homogénéisation pour un fil de Litz a été validée expérimentalement et numériquement à fin de calculer les pertes par effet de proximité dans un prototype intégré. Finalement, le transfert de la chaleur d'une forme cubique par la convection naturelle et le rayonnement a été analysé numériquement et analytiquement à fin de construire un modèle thermique pour les composants magnétiques.
8

Design of a 405/430 kHz, 100 kW Transformer with Medium Voltage Insulation Sheets

Sharfeldden, Sharifa 27 July 2023 (has links)
To achieve higher power density, converters and components must be able to handle higher voltage and current ratings at higher percentages of efficiency while also maintaining low cost and a compact footprint. To meet such demands, medium-voltage resonant converters have been favored by researchers for their ability to operate at higher switching frequencies. High frequency (HF) operation enables soft switching which, when achieved, reduces switching losses via either zero voltage switching (ZVS) or zero current switching (ZCS) depending on the converter topology. In addition to lower switching losses, the converter operates with low harmonic waveforms which produce less EMI compared to their hard switching counterparts. Finally, these resonant converters can be more compact because higher switching frequencies imply decreased volume of passive components. The passive component which benefits the most from this increased switching frequency is the transformer. The objective of this work is to design a >400 kHz, 100 kW transformer which will provide galvanic isolation in a Solid-State Transformer (SST) based PEBBs while maintaining high efficiency, high power density, and reduced size. This work aims to present a simplified design process for high frequency transformers, highlighting the trade-offs between co-dependent resonant converter and transformer parameters and how to balance them during the design process. This work will also demonstrate a novel high frequency transformer insulation design to achieve a partial discharge inception voltage (PDIV) of >10 kV. / Master of Science / As the world's population expands and countries progress, the demand for electricity that is high-powered, highly efficient, and dependable has increased exponentially. Further, it is integral to the longevity of global life that this development occurs in a fashion that mitigates environmental consequences. The power and technology sectors have been challenged to address the state of global environmental affairs, specifically regarding climate change, carbon dioxide emissions, and resource depletion. To move away from carbon emitting, non-renewable energy sources and processes, renewable energy sources and electric power systems must be integrated into the power grid. However, the challenge lies in the fact that there is not an easy way to interface between these renewable sources and the existing power grid. Such challenges have undermined the widespread adoption of renewable energy systems that are needed to address environmental issues in a timely manner. Recent developments in power electronics have enabled the practical application of the solid-state transformer (SST). The SST aims to replace the current, widespread form of power transformation: the line frequency transformer (50/60 Hz). This transformer is bulky, expensive, and requires a significant amount of additional circuitry to interface with renewable energy sources and electric power systems. The SST overcomes these drawbacks through high frequency operation (>200 kHz) which enables higher power at a reduced size by capitalizing on the indirect proportionality between the two parameters. The realization of the SST and its implementation has the ability to greatly advance the electrification of the transportation industry which is a top contributor to carbon emissions. This work aims to demonstrate a >400 kHz, 100 kW SST with a novel magnetic design and insulation structure suited for electric ship applications.
9

Design and construction of a reliable wireless power transfer system for an embedded device : With emphasis on industrial applications

Shukla, Dhruvi Ajit January 2022 (has links)
This thesis deals with wireless power transfer from an external source to embedded small devices (such as for conditioning monitoring, control etc.) located at different distances from the source. The proposed designs can be used in a variety of applications, including mobile phones, electric cars, unmanned aerial vehicles, robots, etc. where it could be very convenient to transmit power without wires/cables. The wireless charging method which avoids using conventional cables and wires for energizing or charging electrical devices has been one of the fastest developed recent technologies. The inductive coupling technique is one way to transfer power wirelessly and works fairly well over very short distances. For distances greater than the radius of the emitter, however, inductive coupling rapidly declines. An improved approach is to create inductive-capacitive resonance which improves efficiency and transfer distance, which was proposed by Tesla. Other methods using more than two coils have lately been proposed, which improve transfer characteristics even further. Several designs were proposed consisting of two, three and four coil combinations, with different shapes and sizes. A ferrite cored solenoid was also chosen as emitter in some setups over air cored solenoid, for better field enhancement in longitudinal energy transfer applications. To have low resistive high energy transfer, coil-capacitor designs were proposed. Several simulations were performed using COMSOL Multiphysics software to understand the magnetic field distribution and transfer to the adjacent coils in air medium. Based on this power transfer efficiency graphs were plotted for every proposed design. For validation, few simulations were contrasted with lab experiments. The focus was to develop and contribute to the improvement of existing techniques. For this, it is sometimes enough to transfer a small amount of power (e.g., 0.5 W) at different distances and frequencies with different set ups. The results obtained from the simulation and measurements were used to evaluate the impact of frequency and transfer distance on energy transfer in wireless power transfer techinque for proposed design. The analysis was used to suggest the improvements or part of future work in the designs such as use of Litz wire and ferrite concentrators with thin conductive laminates. / Detta examensarbete behandlar trådlös kraftöverföring från en extern källa till inbyggda små enheter (såsom för tillståndsövervakning, kontroll etc.) placerade på olika avstånd från källan. De föreslagna designerna kan användas i en mängd olika applikationer, inklusive mobiltelefoner, elbilar, obemannade flygfordon, robotar, etc. där det kan vara mycket bekvämt att överföra ström utan ledningar/kablar. Den trådlösa laddningsmetoden som undviker att använda konventionella kablar och ledningar för att strömsätta eller ladda elektriska apparater har varit en av de snabbast utvecklade nya teknologierna. Den induktiva kopplingstekniken är ett sätt att överföra ström trådlöst och fungerar ganska bra över mycket korta avstånd. För avstånd större än sändarens radie avtar emellertid den induktiva kopplingen snabbt. Ett förbättrat tillvägagångssätt är att skapa induktiv-kapacitiv resonans som förbättrar effektiviteten och överföringsavståndet, vilket föreslogs av Tesla. Andra metoder som använder mer än två spolar har nyligen föreslagits, vilka förbättrar överföringsegenskaperna ytterligare. Flera konstruktioner föreslogs bestående av två, tre och fyra spolar kombinationer, med olika former och storlekar. En solenoid med ferritkärna valdes också som sändare i vissa inställningar framför solenoid med luftkärna, för bättre fältförstärkning i longitudinella energiöverföringstillämpningar. För att ha låg resistiv hög energiöverföring föreslogs spolkondensatorkonstruktioner. Flera simuleringar utfördes med COMSOL Multiphysics programvara för att förstå magnetfältets distribution och överföring till intilliggande spolar i luftmedium. Baserat på detta ritades grafer för effektöverföringseffektivitet för varje föreslagen design. För validering kontrasterades få simuleringar med labbexperiment. Fokus var att utveckla och bidra till förbättringen av befintliga tekniker. För detta räcker det ibland att överföra en liten mängd effekt (t.ex. 0,5 W) på olika avstånd och frekvenser med olika uppsättningar. Resultaten från simuleringarna och mätningarna användes för att utvärdera effekten av frekvens och överföringsavstånd på energiöverföring i trådlös kraftöverföringsteknik för föreslagen design. Analysen användes för att föreslå förbättringar eller delar av framtida arbete i designen, såsom användning av Litz-tråd och ferritkoncentratorer med tunna ledande laminat.

Page generated in 0.0478 seconds