• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 15
  • 14
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 15
  • 14
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physical aspects of selective internal radiation therapy for hepatic cancer.

January 1996 (has links)
by Ho King Wah Stephen. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 251-304). / Title Page --- p.1 / Table of Contents --- p.2 / Summary --- p.3 / Glossary of abbreviations used in the thesis --- p.10 / List of Figures --- p.12 / List of Tables --- p.20 / Acknowledgments --- p.24 / Chapter Chapter 1 --- Hepatic Cancer - Review of the Medical Literature --- p.25 / Chapter Chapter 2 --- Selective Internal Radiation Therapy - Review of the Medical Literature --- p.47 / Chapter Chapter 3 --- The Background In Physics --- p.76 / Chapter Chapter 4 --- Hypothesis and Testing the Hypothesis --- p.88 / Chapter Chapter 5 --- Parameters Required in the Partition Model --- p.98 / Chapter Chapter 6 --- Prediction of Radiation Dose and Verification of the Partition Model --- p.143 / Chapter Chapter 7 --- Clinical Evaluation of the Partition Model --- p.181 / Chapter Chapter 8 --- Conclusions and Future Development --- p.248 / References --- p.251
2

The heterogeneity of albumin : a study of comparative albumin turnovers in normal people, cancer of the liver an the Nephrotic syndrome.

Purves, Langley R. January 1966 (has links)
A dissertation presented in fulfillment of part of the requirements for the degree of Master of Medicine (Pathology) in the Faculty of Medicine, University of the Witwatersrand, Johannesburg, November, 1966. / WHSLYP2017
3

Tumor biopsy and patient enrollment in clinical trials for advanced hepatocellular carcinoma

Rimassa, Lorenza, Reig, Maria, Abbadessa, Giovanni, Peck-Radosavljevic, Markus, Harris, William, Zagonel, Vittorina, Pastorelli, Davide, Rota Caremoli, Elena, Porta, Camillo, Damjanov, Nevena, Patel, Hitendra, Daniele, Bruno, Lamar, Maria, Schwartz, Brian, Goldberg, Terri, Santoro, Armando, Bruix, Jordi January 2017 (has links)
Tumor biopsies may help to reliably distinguish hepatocellular carcinoma (HCC) from other tumors, mostly cholangiocarcinoma as well as to identify the patient populations who most benefit from target-driven HCC treatments, in order to improve the success rate of experimental therapies. Clarifying tumor biology may also lead to identify biomarkers with prognostic role and/or enabling to predict response or resistance to therapies. Recently, clinical trials have more efficiently included biomarker endpoints and increasingly collected tumor tissue from enrolled patients. Due to their frail status and sometimes fast-progressing disease, the performance status of patients with HCC progressing on first-line therapy can deteriorate quickly, preventing their enrollment in clinical trials. However, the challenge of identifying the proper patient at the proper time can be overcome by periodic inter-department meetings involving the key specialists taking care of HCC patients, and solid networks between research centers and referring institutions. An early planned biopsy would also facilitate timely inclusion of patients in biology-driven clinical trials. Ultimately, institution of multidisciplinary teams can optimize treatment choice, biopsy timing, and quick enrollment of patients in clinical trials, before their performance status deteriorates.
4

The chemopreventive effects of tea on diethylnitrosamine-induced lung and liver carcinogenesis in C₃H mice

Cao, Jin January 1994 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
5

Effects of gambogic acid on human hepatoma cells. / 藤黃酸對肝癌細胞的作用 / Teng huang suan dui gan ai xi bao de zuo yong

January 2008 (has links)
Lee, Ngan Hon. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 120-133). / Abstracts in English and Chinese. / Acknowledgements --- p.IV / Abstract --- p.V / 論文摘要 --- p.VII / Table of Contents --- p.IX / List of Figures --- p.XI / List of Abbreviations --- p.XIII / Chapter 1 Introduction --- p.1 / Chapter 1.1 --- Hepatocellular carcinoma (HCC) --- p.1 / Chapter 1.1.1 --- Risk factors --- p.1 / Chapter 1.1.2 --- Molecular mechanism of HCC --- p.4 / Chapter 1.1.3 --- Treatment of HCC --- p.7 / Chapter 1.2 --- Gambogic acid (GA) - a compound derived from Tradition Chinese Medicine (TCM) --- p.9 / Chapter 1.2.1 --- Traditional Chinese Medicine (TCM) --- p.9 / Chapter 1.2.2 --- Gambogic acid --- p.13 / Chapter 1.3 --- Molecular mechanism of apoptosis --- p.18 / Chapter 1.3.1 --- Overview of apoptosis --- p.18 / Chapter 1.3.2 --- Caspases cascade --- p.18 / Chapter 1.3.3 --- Bcl-2 family --- p.20 / Chapter 1.3.4 --- Mitochondria in apoptosis --- p.23 / Chapter 1.4 --- Apoptosis as a strategy for cancer therapies --- p.26 / Chapter 1.5 --- Aims of study --- p.29 / Chapter Chapter 2 --- Materials and Methods --- p.30 / Chapter 2.1 --- Cell culture and treatment --- p.30 / Chapter 2.1.1 --- Cell lines used --- p.30 / Chapter 2.1.2 --- Gambogic acid (GA) --- p.31 / Chapter 2.1.3 --- Chemicals and reagents --- p.31 / Chapter 2.1.4 --- Preparation of solutions --- p.32 / Chapter 2.1.5 --- Procedures --- p.33 / Chapter 2.2 --- Apoptotic detection --- p.35 / Chapter 2.2.1 --- Chemicals and reagents --- p.35 / Chapter 2.2.2 --- Preparation of solutions --- p.35 / Chapter 2.2.3 --- Procedures --- p.37 / Chapter 2.3 --- Effects of GA on gene expression in HepG2 --- p.41 / Chapter 2.3.1 --- Chemicals and Reagents --- p.41 / Chapter 2.3.2 --- Preparation of solutions --- p.41 / Chapter 2.3.3 --- Procedures --- p.43 / Chapter 2.4 --- Protein expression in GA-induced apoptotic cells --- p.51 / Chapter 2.4.1 --- Chemicals and Reagents --- p.51 / Chapter 2.4.2 --- Preparation of solution --- p.51 / Chapter 2.4.3 --- Procedures --- p.54 / Chapter 2.5 --- Caspase cascade study in GA-induced apoptosis --- p.60 / Chapter 2.5.1 --- Chemicals and reagents --- p.60 / Chapter 2.5.2 --- Procedures --- p.60 / Chapter 2.6 --- Downregulation of mRNA using siRNA vector --- p.62 / Chapter 2.6.1 --- siRNA expression vector --- p.62 / Chapter 2.6.2 --- Chemicals and Reagents --- p.63 / Chapter 2.6.3 --- Preparation of solution --- p.63 / Chapter 2.6.4 --- Procedures --- p.64 / Chapter Chapter 3 --- Results --- p.71 / Chapter 3.1 --- GA induces apoptosis in hepatocellular cells --- p.71 / Chapter 3.2 --- Effects of gene expression in HCC --- p.80 / Chapter 3.3 --- Caspase cascade studies in GA-induced apoptosis --- p.83 / Chapter 3.4 --- Caspase 8 activation in GA-treated cells lead to Bid cleavage --- p.89 / Chapter 3.5 --- GA induces Bax conformational changes and cytochrome c release --- p.95 / Chapter 3.6 --- Levels of protein players involved in apoptosis and cell cycle --- p.101 / Chapter Chapter 4 --- Discussion --- p.106 / References --- p.120
6

A geographic analysis of liver cancer mortality and alcohol dependence or abuse in Texas and the U.S., 1980--2003.

Wang, Nathan Kai-Lei. Delclos, George L. Rodin, Andrei S. January 2008 (has links)
Thesis (M.P.H.)--University of Texas Health Science Center at Houston, School of Public Health, 2008. / Source: Masters Abstracts International, Volume: 46-05, page: 2674. Adviser: George Delclos. Includes bibliographical references.
7

Occlusion of arterial supply to hepatic and renal tumours an experimental and clinical investigation /

Stigsson, Leif. January 1981 (has links)
Thesis (doctoral)--University of Lund, 1981. / Includes bibliographical references.
8

Identification of peroxisome proliferator-activated receptor alpha (PPARα)-dependent genes involved in peroxisome proliferator-induced hepatocarcinogenesis.

January 2006 (has links)
Leung Wan-chi. / Thesis submitted in: November 2005. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 276-284). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract (Chinese Version) --- p.v / Acknowledgements --- p.viii / Tables of Contents --- p.ix / List of Abbreviations --- p.xxx / List of Figures --- p.xxxiii / List of Tables --- p.xlii / Chapter Chapter 1 --- Literature review --- p.1 / Chapter 1.1 --- Peroxisome proliferator activator receptors --- p.1 / Chapter 1.2 --- Peroxisome proliferators --- p.6 / Chapter 1.2.1 --- Hepatomegaly --- p.9 / Chapter 1.2.2 --- Peroxisome proliferation --- p.11 / Chapter 1.2.3 --- Target genes regulation --- p.12 / Chapter 1.2.4 --- Hypolipidemic effect --- p.16 / Chapter 1.2.5 --- Hepatocarcinogenesis --- p.18 / Chapter 1.3 --- Mode of actions --- p.20 / Chapter 1.3.1 --- Oxidative stress --- p.21 / Chapter 1.3.2 --- Inhibition of apoptosis --- p.22 / Chapter 1.3.2 --- Increase in cell replication --- p.22 / Chapter 1.3.4 --- Alterations in cell cycle control --- p.23 / Chapter 1.4 --- Objectives --- p.23 / Chapter Chapter 2 --- Materials and Methods --- p.25 / Chapter 2.1 --- Animal tail-genotyping --- p.25 / Chapter 2.1.1 --- Materials --- p.25 / Chapter 2.1.2 --- Methods --- p.28 / Chapter 2.2 --- Animal treatment --- p.29 / Chapter 2.2.1 --- Materials --- p.29 / Chapter 2.2.2 --- Methods --- p.29 / Chapter 2.3 --- Serum cholesterol and tryiglyceride analysis --- p.30 / Chapter 2.3.1 --- Materials --- p.31 / Chapter 2.3.2 --- Methods --- p.31 / Chapter 2.3.2.1 --- Serum preparation --- p.31 / Chapter 2.3.2.2 --- Serum cholesterol analysis --- p.31 / Chapter 2.3.2.3 --- Serum triglyceride analysis --- p.32 / Chapter 2.4 --- Histological analysis --- p.32 / Chapter 2.4.1 --- Materials --- p.32 / Chapter 2.4.2 --- Methods --- p.33 / Chapter 2.5 --- Total RNA isolation --- p.34 / Chapter 2.5.1 --- Materials --- p.34 / Chapter 2.5.2 --- Methods --- p.34 / Chapter 2.6 --- DNase I treatment of total liver RNA --- p.37 / Chapter 2.6.1 --- Materials --- p.37 / Chapter 2.6.2 --- Methods --- p.37 / Chapter 2.7 --- Reverse transcription (RT) of mRNA and non- fluorescent PCR (non-fluoroDD PCR) --- p.38 / Chapter 2.7.1 --- Materials --- p.43 / Chapter 2.7.2 --- Methods --- p.43 / Chapter 2.8 --- Reverse transcription (RT) of mRNA and fluorescent PCR (fluoroDD PCR) --- p.44 / Chapter 2.8.1 --- Materials --- p.44 / Chapter 2.8.2 --- Method --- p.44 / Chapter 2.9 --- Fluorescent differential display (fluoroDD) --- p.45 / Chapter 2.9.1 --- Materials --- p.45 / Chapter 2.9.2 --- Methods --- p.45 / Chapter 2.9.2.1 --- FluoroDD gel preparation --- p.45 / Chapter 2.9.2.2 --- Sample preparation and electrophoresis --- p.45 / Chapter 2.10 --- Excision of differentially expressed cDNA fragments --- p.46 / Chapter 2.10.1 --- Materials --- p.46 / Chapter 2.10.2 --- Methods --- p.46 / Chapter 2.11 --- Reamplification of differentally expressed cDNA fragments --- p.48 / Chapter 2.11.1 --- Materials --- p.48 / Chapter 2.11.2 --- Methods --- p.50 / Chapter 2.12 --- Subcloning of reamplified cDNA fragmens --- p.50 / Chapter 2.12.1 --- Materials --- p.53 / Chapter 2.12.2 --- Methods --- p.53 / Chapter 2.12.2.1 --- Ligation --- p.53 / Chapter 2.12.2.2 --- Transformation --- p.53 / Chapter 2.12.2.3 --- Phenol-choloroform extraction --- p.54 / Chapter 2.12.2.4 --- Confirmation of insert size by EcoRI digestion --- p.54 / Chapter 2.12.2.5 --- Mini-preparation of plasmid DNA from recombinant clones --- p.55 / Chapter 2.13 --- Sequencing of subcloned cDNA fragments --- p.55 / Chapter 2.13.1 --- Materials --- p.56 / Chapter 2.13.2 --- Methods --- p.56 / Chapter 2.13.2.1 --- Sequencing of fluoroDD cDNA fragments --- p.56 / Chapter 2.13.2.2 --- Blast search against computer database --- p.57 / Chapter 2.14 --- Northern blot analysis of sequenced cDNA fragments --- p.57 / Chapter 2.14.1 --- Materials --- p.58 / Chapter 2.14.2 --- Methods --- p.58 / Chapter 2.14.2.1 --- Formaldehyde agarose gel electrophoresis of total RNA --- p.58 / Chapter 2.14.2.2 --- Preparation of DIG-labeled RNA probes for hybridization --- p.59 / Chapter 2.14.2.3 --- Preparation of PCR DIG-labeled cDNA probes for hybridization --- p.60 / Chapter 2.14.2.4 --- Hybridization and colour development --- p.60 / Chapter Chapter 3 --- Results --- p.62 / Chapter 3.1 --- Confirmation of genotypes by PCR --- p.62 / Chapter 3.2 --- Body weight changes --- p.62 / Chapter 3.3 --- Organ weight changes --- p.67 / Chapter 3.4 --- Serum cholesterol and triglyceride levels --- p.70 / Chapter 3.5 --- Liver histology --- p.78 / Chapter 3.6 --- Reverse transcription (RT) of mRNA and non-fluorescent PCR (non-flurroDD PCR) --- p.114 / Chapter 3.7 --- Reverse transcription (RT) of mRNA and fluorescent PCR (fluoroDD PCR) --- p.125 / Chapter 3.8 --- Reamplification of fluorescent differential display (FDD) fragments --- p.138 / Chapter 3.9 --- Subcloning of reamplifled FDD fragments --- p.162 / Chapter 3.10 --- Sequencing of subcloned cDNA fragments --- p.176 / Chapter 3.11 --- Northern blot analysis of sequenced cDNA fragments --- p.195 / Chapter Chapter 4 --- Discussion --- p.250 / Chapter 4.1 --- Body weight changes --- p.250 / Chapter 4.2 --- Organ weight changes --- p.251 / Chapter 4.3 --- Serum cholesterol and triglyceride levels --- p.253 / Chapter 4.4 --- Liver histology --- p.254 / Chapter 4.5 --- "Functions and roles of identified PPARa-dependent and Wy-14,643- responsive genes" --- p.255 / Chapter 4.6 --- Mechanism of PP-induced hepatocarcinogeneis --- p.270 / Chapter Chapter 5 --- Conclusions --- p.274 / References --- p.276 / Appendix A Tables of preparation of reaction mix --- p.285 / Table A1. Preparation of animal tail genotyping PCR reaction --- p.285 / Table A2. Preparation of DNase I treatment --- p.285 / Table A3. Preparation of reverse transcription of non-fluoroDD and fluoroDD --- p.285 / Table A4. Preparation of non-fluoroDD and fluoroDD RT-PCR --- p.286 / Table A5. Preparation of reamplification of differentially expressed cDNA fragments --- p.286 / Table A6. Preparation of PCR reaction for DNA sequencing --- p.286 / Table A7. Preparation of PCR reaction for RNA probe --- p.287 / Table A8. Preparation of PCR reaction for cDNA probe --- p.287 / Appendix B DNA sequences and sequencing alignments of FluoroDD Fragments --- p.288 / Chapter B 1.1: --- DNA sequence of cDNA subclone AA1#2 (AP1 & ARP2) using M13 forward (-20) primer --- p.288 / Chapter B 1.2: --- "Sequencing alignment of cDNA subclone AA1#2 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.288 / Chapter B 1.3: --- Summary of sequence alignment of cDNA subclone AA1#2 with mouse Peci --- p.288 / Chapter B 2.1: --- DNA sequence of cDNA subclone AA1#3 (AP1 & ARP2) using M13 forward (-20) primer --- p.289 / Chapter B 2.2: --- "Sequencing alignment of cDNA subclone AA1#3 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.289 / Chapter B 2.3: --- Summary of sequence alignment of cDNA subclone AA1#3 with mouse Peci --- p.289 / Chapter B 3.1: --- DNA sequence of cDNA subclone AA1#4 (AP 1 & ARP2) using Ml3 reverse primer --- p.290 / Chapter B 3.2: --- "Sequencing alignment of cDNA subclone AA1#4 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.290 / Chapter B 3.3: --- Summary of sequence alignment of cDNA subclone AA1#4 with mouse Peci --- p.290 / Chapter B 4.1: --- DNA sequence of cDNA subclone AA1#20 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.291 / Chapter B 4.2: --- "Sequencing alignment of cDNA subclone AA1#20 with mouse peroxisomal delta 3, delta 2- enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.291 / Chapter B 4.3: --- Summary of sequence alignment of cDNA subclone AA1#20 with mouse Peci --- p.291 / Chapter B 5.1: --- DNA sequence of cDNA subclone AA4#1 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.292 / Chapter B 5.2: --- Sequencing alignment of cDNA subclone AA4#1 with mouse apolipoprotein A-V (Apoa5) by BLAST searching against the National Center for Biotechnology Information database --- p.292 / Chapter B 5.3: --- Summary of sequence alignment of cDNA subclone AA4#1 with mouse Apoa5 --- p.292 / Chapter B 6.1: --- DNA sequence of cDNA subclone AA4#9 (AP 1 & ARP2) using Ml3 reverse primer --- p.293 / Chapter B 6.2: --- Sequencing alignment of cDNA subclone AA4#9 with mouse apolipoprotein A-V (Apoa5) by BLAST searching against the National Center for Biotechnology Information database --- p.293 / Chapter B 6.3: --- Summary of sequence alignment of cDNA subclone AA4#9 with mouse Apoa5 --- p.293 / Chapter B 7.1: --- DNA sequence of cDNA subclone AA5#5 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.294 / Chapter B 7.2: --- Sequencing alignment of cDNA subclone AA5#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.294 / Chapter B 7.3: --- Summary of sequence alignment of cDNA subclone AA5#5 with mouse mitochondrion --- p.294 / Chapter B 8.1: --- DNA sequence of cDNA subclone AA6#1 (AP1 & ARP2) using Ml3 forward (-20) primer --- p.295 / Chapter B 8.2: --- Sequencing alignment of cDNA subclone AA6#1 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.295 / Chapter B 8.3: --- Summary of sequence alignment of cDNA subclone AA6#1 with mouse mitochondion --- p.295 / Chapter B 9.1: --- DNA sequence of cDNA subclone AA6#9 (AP 1 & ARP2) using Ml3 reverse primer --- p.296 / Chapter B 9.2: --- Sequencing alignment of cDNA subclone AA6#9 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.296 / Chapter B 9.3: --- Summary of sequence alignment of cDNA subclone AA6#9 with mouse mitochondrion --- p.296 / Chapter B 10.1: --- DNA sequence of cDNA subclone AA7#3 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.297 / Chapter B 10.2: --- Sequencing alignment of cDNA subclone AA7#3 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.297 / Chapter B 10.3: --- Summary of sequence alignment of cDNA subclone AA7#3 with mouse mitochondrion --- p.297 / Chapter B 11.1: --- DNA sequence of cDNA subclone AA7#5 (AP 1 & ARP2) using Ml3 reverse primer --- p.298 / Chapter B 11.2: --- Sequencing alignment of cDNA subclone AA7#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.298 / Chapter B 11.3: --- Summary of sequence alignment of cDNA subclone AA7#5 with mouse mitochondrion --- p.298 / Chapter B 12.1: --- DNA sequence of cDNA subclone AA10#1 (AP1 & ARP2) using M l3 forward (-20) primer --- p.299 / Chapter B 12.2: --- Sequencing alignment of cDNA subclone AA10#1 with mouse cysteine sulfinic acid decarboxylase (Csad) by BLAST searching against the National Center for Biotechnology Information database --- p.299 / Chapter B 12.3: --- Summary of sequence alignment of cDNA subclone AA10#1 with mouse Csad --- p.299 / Chapter B 13.1: --- DNA sequence of cDNA subclone AA10#1 (AP 1 & ARP2) using M13 reverse primer --- p.300 / Chapter B 13.2: --- Sequencing alignment of cDNA subclone AA10#1 with mouse cysteine sulfinic acid decarboxylase (Csad) by BLAST searching against the National Center for Biotechnology Information database --- p.300 / Chapter B 13.3: --- Summary of sequence alignment of cDNA subclone AA10#1 with mouse Csad --- p.300 / Chapter B 14.1: --- DNA sequence of cDNA subclone AA12#4 (AP1 & ARP2) using Ml3 forward (-20) primer --- p.301 / Chapter B 14.2: --- "Sequencing alignment of cDNA subclone AA12#4 with mouse acetyl-coenzyme A dehydrogenase, medium chain (MCAD) by BLAST searching against the National Center for Biotechnology Information database" --- p.301 / Chapter B 14.3: --- Summary of sequence alignment of cDNA subclone AA12#4 with mouse MCAD --- p.301 / Chapter B 15.1: --- DNA sequence of cDNA subclone AA12#4 (AP 1 & ARP2) using Ml3 reverse primer --- p.302 / Chapter B 15.2: --- "Sequencing alignment of cDNA subclone AA12#4 with mouse acetyl-coenzyme A dehydrogenase, medium chain (MCAD) by BLAST searching against the National Center for Biotechnology Information database" --- p.302 / Chapter B 15.3: --- Summary of sequence alignment of cDNA subclone AA12#4 with mouse MCAD --- p.302 / Chapter B 16.1: --- DNA sequence of cDNA subclone AB7#2 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.303 / Chapter B 16.2: --- "Sequencing alignment of cDNA subclone AB7#2 with mouse UDP-glucuronosyltransferase 2 family, member 5 (UGT2b5) by BLAST searching against the National Center for Biotechnology Information database" --- p.303 / Chapter B 16.3: --- Summary of sequence alignment of cDNA subclone AB7#2 with mouse UGT2b5 --- p.303 / Chapter B 17.1: --- DNA sequence of cDNA subclone AB7#8 (AP3 & ARP3) using M13 reverse primer --- p.304 / Chapter B 17.2: --- "Sequencing alignment of cDNA subclone AB7#8 with mouse UDP-glucuronosyltransferase 2 family, member 5 (UGT2b5) by BLAST searching against the National Center for Biotechnology Information database" --- p.304 / Chapter B 17.3: --- Summary of sequence alignment of cDNA subclone AB7#8 with mouse UGT2b5 --- p.304 / Chapter B 18.1: --- DNA sequence of cDNA subclone AB17#16 (AP3 & ARP3) using M13 reverse primer --- p.305 / Chapter B 18.2: --- Sequencing alignment of cDNA subclone AB17#16 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.305 / Chapter B 18.3: --- Summary of sequence alignment of cDNA subclone AB17#16 with mouse mitochondrion --- p.305 / Chapter B 19.1: --- DNA sequence of cDNA subclone AB18#4 (AP3 & ARP3) using M13 forward (-20) primer --- p.306 / Chapter B 19.2: --- Sequencing alignment of cDNA subclone AB18#4 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.306 / Chapter B 20.1: --- DNA sequence of cDNA subclone AB18#4 (AP3 & ARP3) using M13 reverse primer --- p.307 / Chapter B 20.2: --- Sequencing alignment of cDNA subclone AB18#4 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.307 / Chapter B 20.3: --- Summary of sequence alignment of cDNA subclone AB 18#4 with mouse mitochondrion --- p.307 / Chapter B 21.1: --- DNA sequence of cDNA subclone AB19#2 (AP3 & ARP3) using M13 forward (-20) primer --- p.308 / Chapter B 21.2: --- Sequencing alignment of cDNA subclone AB 19#2 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.308 / Chapter B 21.3: --- Summary of sequence alignment of cDNA subclone AB19#2 with mouse mitochondrion --- p.308 / Chapter B 22.1: --- DNA sequence of cDNA subclone AB19#10 (AP3 & ARP3) using Ml3 reverse primer --- p.309 / Chapter B 22.2: --- Sequencing alignment of cDNA subclone AB 19#10 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.309 / Chapter B 22.3: --- Summary of sequence alignment of cDNA subclone AB19#10 with mouse mitochondrion --- p.309 / Chapter B 23.1: --- DNA sequence ofcDNA subclone AB22#9 (AP3 & ARP3) using M13 forward (-20) primer --- p.310 / Chapter B 23.2: --- Sequencing alignment of cDNA subclone AB22#9 with mouse peroxisome biogenesis factor 16 (Pexl6) by BLAST searching against the National Center for Biotechnology Information database --- p.310 / Chapter B 23.3: --- Summary of sequence alignment of cDNA subclone AB22#9 with mouse Pexl6 --- p.310 / Chapter B 24.1: --- DNA sequence of cDNA subclone AB22#9 (AP3 & ARP3) using Ml3 reverse primer --- p.311 / Chapter B 24.2: --- Sequencing alignment of cDNA subclone AB22#9 with mouse peroxisome biogenesis factor 16 (Pexl6) by BLAST searching against the National Center for Biotechnology Information database --- p.311 / Chapter B 24.3: --- Summary of sequence alignment of cDNA subclone AB22#9 with mouse Pexl6 --- p.311 / Chapter B 25.1: --- DNA sequence ofcDNA subclone AB24#9 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.312 / Chapter B 25.2: --- Sequencing alignment of cDNA subclone AB24#9 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.312 / Chapter B 25.3: --- Summary of sequence alignment of cDNA subclone AB24#9 with mouse Cyp4al4 --- p.312 / Chapter B 26.1: --- DNA sequence of cDNA subclone AB24#9 (AP3 & ARP3) using M13 reverse primer --- p.313 / Chapter B 26.2: --- Sequencing alignment of cDNA subclone AB24#9 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.313 / Chapter B 26.3: --- Summary of sequence alignment of cDNA subclone AB24#9 with mouse Cyp4al4 --- p.313 / Chapter B 27.1: --- DNA sequence of cDNA subclone AB25#6 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.314 / Chapter B 27.2: --- Sequencing alignment of cDNA subclone AB25#6 with mouse Cyp4a l4 by BLAST searching against the National Center for Biotechnology Information database --- p.314 / Chapter B 27.3: --- Summary of sequence alignment of cDNA subclone AB25#6 with mouse Cyp4al4 --- p.314 / Chapter B 28.1: --- DNA sequence of cDNA subclone AB26#17 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.315 / Chapter B 28.2: --- Sequencing alignment of cDNA subclone AB26#17 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.315 / Chapter B 28.3: --- Summary of sequence alignment of cDNA subclone AB26#17 with mouse Cyp4al4 --- p.315 / Chapter B 29.1: --- DNA sequence of cDNA subclone AB26#3Q (AP3 & ARP3) using M13 reverse primer --- p.316 / Chapter B 29.2: --- Sequencing alignment of cDNA subclone AB26#30 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.316 / Chapter B 29.3: --- Summary of sequence alignment of cDNA subclone AB26#30 with mouse Cyp4al4 --- p.316 / Chapter B 30.1: --- DNA sequence of cDNA subclone AB29#7 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.317 / Chapter B 30.2: --- Sequencing alignment of cDNA subclone AB29#7 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.317 / Chapter B 30.3: --- Summary of sequence alignment of cDNA subclone AB29#7 with mouse catalase --- p.317 / Chapter B 31.1: --- DNA sequence of cDNA subclone AC1#1 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.318 / Chapter B 31.2: --- Sequencing alignment of cDNA subclone AC1#1 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.318 / Chapter B 31.3: --- Summary of sequence alignment of cDNA subclone AC1#1 with mouse SPI --- p.318 / Chapter B 32.1: --- DNA sequence of cDNA subclone AC1#1 (AP2 & ARP 19) using Ml3 reverse primer --- p.319 / Chapter B 32.2: --- Sequencing alignment of cDNA subclone AC 1# 1 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.319 / Chapter B 32.3: --- Summary of sequence alignment of cDNA subclone AC1#1 with mouse SPI --- p.319 / Chapter B 33.1: --- DNA sequence of cDNA subclone AC1#2 (AP2& ARP 19) using M13 forward (-20) primer --- p.320 / Chapter B 33.2: --- Sequencing alignment of cDNA subclone AC 1#2 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.320 / Chapter B 33.3: --- Summary of sequence alignment of cDNA subclone AC1#2 with mouse SPI --- p.320 / Chapter B 34.1: --- DNA sequence of cDNA subclone AC1#2 (AP2& ARP 19) using M13 reverse primer --- p.321 / Chapter B 34.2: --- Sequencing alignment of cDNA subclone AC1#2 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.321 / Chapter B 34.3: --- Summary of sequence alignment of cDNA subclone AC1#2 with mouse SPI --- p.321 / Chapter B 35.1: --- DNA sequence ofcDNA subclone AC2#2 (AP2 & ARP19) using Ml3 reverse primer --- p.322 / Chapter B 35.2: --- Sequencing alignment of cDNA subclone AC2#2 with mouse bifunctional enzyme (PBFE) by BLAST searching against the National Center for Biotechnology Information database --- p.322 / Chapter B 35.3: --- Summary of sequence alignment of cDNA subclone AC2#2 with mouse PBFE --- p.322 / Chapter B 36.1: --- DNA sequence of cDNA subclone AC2#5 (AP2 & ARP19) using Ml3 reverse primer --- p.323 / Chapter B 36.2: --- Sequencing alignment of cDNA subclone AC2#5 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.323 / Chapter B 36.3: --- Summary of sequence alignment of cDNA subclone AC2#5 with mouse catalase --- p.323 / Chapter B 37.1: --- DNA sequence of cDNA subclone AC2#6 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.324 / Chapter B 37.2: --- Sequencing alignment of cDNA subclone AC2#6 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.324 / Chapter B 37.3: --- Summary of sequence alignment of cDNA subclone AC2#6 with mouse SPI --- p.324 / Chapter B 38.1: --- DNA sequence ofcDNA subclone AC4#3 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.325 / Chapter B 38.2: --- Sequencing alignment of cDNA subclone AC4#3 with mouse Cyp2a5 by BLAST searching against the National Center for Biotechnology Information database --- p.325 / Chapter B 38.3: --- Summary of sequence alignment of cDNA subclone AC4#3 with mouse Cyp2a5 --- p.325 / Chapter B 39.1: --- DNA sequence ofcDNA subclone AC4#3 (AP2 & ARP 19) using M13 reverse primer --- p.326 / Chapter B 39.2: --- Sequencing alignment of cDNA subclone AC4#3 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.326 / Chapter B 39.3: --- Summary of sequence alignment of cDNA subclone AC4#3 with mouse SPI --- p.326 / Chapter B 40.1: --- DNA sequence of cDNA subclone AC7#5 (AP2& ARP 19) using M13 forward (-20) primer --- p.327 / Chapter B 40.2: --- Sequencing alignment of cDNA subclone AC7#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.327 / Chapter B 40.3: --- Summary of sequence alignment of cDNA subclone AC7#5 with mouse SPI --- p.327 / Chapter B 41.1: --- DNA sequence of cDNA subclone AD6#4 (AP2 & ARP 18) using Ml3 reverse primer --- p.328 / Chapter B 41.2: --- Sequencing alignment of cDNA subclone AD6#4 with mouse N-terminal Asn amidase (Ntanl) by BLAST searching against the National Center for Biotechnology Information database --- p.328 / Chapter B 41.3: --- Summary of sequence alignment of cDNA subclone AD6#4 with mouse Ntanl --- p.328 / Chapter B 42.1: --- DNA sequence of cDNA subclone AD6#10 (AP2 & ARP 18) using Ml3 forward (-20) primer --- p.329 / Chapter B 42.2: --- Sequencing alignment of cDNA subclone AD6#10 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.329 / Chapter B 42.3: --- Summary of sequence alignment of cDNA subclone AD6#10 with mouse Cvp4al0 --- p.329 / Chapter B 43.1: --- DNA sequence of cDNA subclone AD6#10 (AP2 & ARP18) using M13 reverse primer --- p.330 / Chapter B 43.2: --- Sequencing alignment of cDNA subclone AD6#10 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.330 / Chapter B 43.3: --- Summary of sequence alignment of cDNA subclone AD6#10 with mouse Cyp4al0 --- p.330 / Chapter B 44.1: --- DNA sequence of cDNA subclone AD8#2 (AP2 & ARP 18) using M13 forward (-20) primer --- p.331 / Chapter B 44.2: --- Sequencing alignment of cDNA subclone AD8#2with mouse Cyp4a l0 by BLAST searching against the National Center for Biotechnology Information database --- p.331 / Chapter B 44.3: --- Summary of sequence alignment of cDNA subclone AD8#2 with mouse Cvp4a10 --- p.331 / Chapter B 45.1: --- DNA sequence ofcDNA subclone AD8#7 (AP2 & ARP18) using Ml3 reverse primer --- p.332 / Chapter B 45.2: --- Sequencing alignment of cDNA subclone AD8#7 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.332 / Chapter B 45.3: --- Summary of sequence alignment of cDNA subclone AD8#7 with mouse Cyp4a10 --- p.332 / Chapter B 46.1: --- DNA sequence of cDNA subclone AD9#2 (AP2 & ARP 18) using Ml3 forward (-20) primer --- p.333 / Chapter B 46.2: --- Sequencing alignment of cDNA subclone AD9#2 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.333 / Chapter B 46.3: --- Summary of sequence alignment of cDNA subclone AD9#2 with mouse Cyp4al0 --- p.333 / Chapter B 47.1: --- DNA sequence of cDNA subclone AD9#3 (AP2 & ARP 18) using M13 reverse primer --- p.334 / Chapter B 47.2: --- Sequencing alignment of cDNA subclone AD9#3 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.334 / Chapter B 47.3: --- Summary of sequence alignment of cDNA subclone AD9#3 with mouse Cvp4a10 --- p.334 / Chapter B 48.1: --- DNA sequence ofcDNA subclone AF1#8 (AP10 & ARP13) using M13 forward (-20) primer --- p.335 / Chapter B 48.2: --- Sequencing alignment of cDNA subclone AF1#8 with mouse very-long-chain acyl-coA synthetase (VLACS) by BLAST searching against the National Center for Biotechnology Information database --- p.335 / Chapter B 48.3: --- Summary of sequence alignment of cDNA subclone AF1#8 with mouse VLACS --- p.335 / Chapter B 49.1: --- DNA sequence of cDNA subclone AF1#8 (AP 10 & ARP 13) using Ml3 reverse primer --- p.336 / Chapter B 49.2: --- Sequencing alignment of cDNA subclone AF1#8 with mouse very-long-chain acyl-coA synthetase (VLACS) by BLAST searching against the National Center for Biotechnology Information database --- p.336 / Chapter B 49.3: --- Summary of sequence alignment of cDNA subclone AF1#8 with mouse VLACS --- p.336 / Chapter B 50.1: --- DNA sequence of cDNA subclone AF21#5 (AP 10 & ARP 13) using M13 reverse primer --- p.337 / Chapter B 50.2: --- "Sequencing alignment ofcDNA subclone AF21#5 with mouse cell death-inducing DNA fragmentation factor, alpha subunit-like effector B (Cideb) by BLAST searching against the National Center for Biotechnology Information database" --- p.337 / Chapter B 50.3: --- Summary of sequence alignment of cDNA subclone AF21#5 with mouse Cideb --- p.337 / Chapter B 51.1: --- DNA sequence ofcDNA subclone AF25#6 (AP10 & ARP13) using M13 forward (-20) primer --- p.338 / Chapter B 51.2: --- Sequencing alignment of cDNA subclone AF25#6 with mouse major urinary protein 2 (MUPII) by BLAST searching against the National Center for Biotechnology Information database --- p.338 / Chapter B 51.3: --- Summary of sequence alignment of cDNA subclone AF25#6 with mouse MUP II --- p.338 / Chapter B 52.1: --- DNA sequence of cDNA subclone AF25#7 (AP 10 & ARP 13) using Ml3 reverse primer --- p.339 / Chapter B 52.2: --- Sequencing alignment of cDNA subclone AF25#7 with mouse major urinary protein 2 (MUP II) by BLAST searching against the National Center for Biotechnology Information database --- p.339 / Chapter B 52.3: --- Summary of sequence alignment of cDNA subclone AF25#7 with mouse MUPII --- p.339 / Chapter B 53.1: --- DNA sequence ofcDNA subclone AF30#4 (AP10 & ARP13) using M13 forward (-20) primer --- p.340 / Chapter B 53.2: --- Sequencing alignment of cDNA subclone AF30#4 with mouse mRNA for suppressor of actin mutations (SAC1 gene) by BLAST searching against the National Center for Biotechnology Information database --- p.340 / Chapter B 53.3: --- Summary of sequence alignment of cDNA subclone AF3Q#4 with mouse SAC1 --- p.340 / Chapter B 54.1: --- DNA sequence of cDNA subclone AF30#5 (AP 10 & ARP 13) using Ml3 reverse primer --- p.341 / Chapter B 54.2: --- Sequencing alignment of cDNA subclone AF30#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.341 / Chapter B 54.3: --- Summary of sequence alignment of cDNA subclone AF30#5 with mouse mitochondrion --- p.341 / Chapter B 55.1: --- DNA sequence ofcDNA subclone AH1#6 (AP11 & ARP19) using M13 forward (-20) primer --- p.342 / Chapter B 55.2: --- Sequencing alignment of cDNA subclone AH1#6 with mouse EST by BLAST searching against the National Center for Biotechnology Information database --- p.342 / Chapter B 55.3: --- Summary of sequence alignment of cDNA subclone AH1#6 with mouse EST --- p.342 / Chapter B 56.1: --- DNA sequence of cDNA subclone AIl#5 (AP6 & ARP4) using Ml3 forward (-20) primer --- p.343 / Chapter B 56.2: --- Sequencing alignment of cDNA subclone AIl#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.343 / Chapter B 56.3: --- Summary of sequence alignment of cDNA subclone All#5 with mouse SPI --- p.343 / Chapter B 57.1: --- DNA sequence of cDNA subclone AI1#5 (AP6 & ARP4) using Ml3 reverse primer --- p.344 / Chapter B 57.2: --- Sequencing alignment of cDNA subclone AIl#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST --- p.344 / Chapter B 57.3: --- Summary of sequence alignment of cDNA subclone AIl #5 with mouse SPI --- p.344 / Chapter B 58.1: --- DNA sequence of cDNA subclone AI18#6 (AP6 & ARP4) using Ml3 forward (-20) primer --- p.345 / Chapter B 58.2: --- Sequencing alignment of cDNA subclone AI18#6 with mouse argininosuccinate lyase (Asl) by BLAST searching against the National Center for Biotechnology Information database --- p.345 / Chapter B 58.3: --- Summary of sequence alignment of cDNA subclone AI18#6 with mouse Asl --- p.345 / Chapter B 59.1: --- DNA sequence of cDNA subclone AI18#6 (AP6 & ARP4) using M13 reverse primer --- p.346 / Chapter B 59.2: --- Sequencing alignment of cDNA subclone AI18#6 with mouse argininosuccinate lyase (Asl) by BLAST searching against the National Center for Biotechnology Information database --- p.346 / Chapter B 59.3: --- Summary of sequence alignment of cDNA subclone AI18#6 with mouse Asl --- p.346 / Chapter B 60.1: --- DNA sequence ofcDNA subclone AJ1#4 (AP6 & ARP14) using Ml3 forward (-20) primer --- p.347 / Chapter B 60.2: --- Sequencing alignment of cDNA subclone AJ1#4 with mouse carboxylesterase by BLAST searching against the National Center for Biotechnology Information database --- p.347 / Chapter B 60.3: --- Summary of sequence alignment of cDNA subclone AJ1#4 with mouse carboxylesterase --- p.347 / Chapter B 61.1: --- DNA sequence ofcDNA subclone AJ1#5 (AP6 & ARP14) using Ml3 reverse primer --- p.348 / Chapter B 61.2: --- Sequencing alignment of cDNA subclone AJ1#5 with mouse carboxylesterase by BLAST searching against the National Center for Biotechnology Information database --- p.348 / Chapter B 61.3: --- Summary of sequence alignment of cDNA subclone AJ1#5 with mouse carboxylesterase --- p.348 / Chapter B 62.1: --- DNA sequence ofcDNA subclone AJ2#10 (AP6 & ARP14) using M13 forward (-20) primer --- p.349 / Chapter B 62.2: --- Sequencing alignment of cDNA subclone AJ2#10 with peroxisomal acyl-coA oxidase (AOX) by BLAST searching against the National Center for Biotechnology Information database --- p.349 / Chapter B 62.3: --- Summary of sequence alignment of cDNA subclone AJ2#10 with mouse AOX --- p.349 / Chapter B 63.1: --- DNA sequence ofcDNA subclone AJ2#10 (AP6 & ARP14) using Ml3 reverse primer --- p.350 / Chapter B 63.2: --- Sequencing alignment of cDNA subclone AJ2#10 with peroxisomal acyl-coA oxidase (AOX) by BLAST searching against the National Center for Biotechnology Information database --- p.350 / Chapter B 63.3: --- Summary of sequence alignment of cDNA subclone AJ2#10 with mouse AOX --- p.350 / Chapter B 64.1: --- DNA sequence ofcDNA subclone AJ9#1 (AP6 & ARP 14) using Ml3 forward (-20) primer --- p.351 / Chapter B 64.2: --- Sequencing alignment of cDNA subclone AJ9#1 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.351 / Chapter B 64.3: --- Summary of sequence alignment of cDNA subclone AJ9#1 with mouse catalase --- p.351 / Chapter B 65.1: --- DNA sequence ofcDNA subclone AJ9#1 (AP6 & ARP14) using Ml3 reverse primer --- p.352 / Chapter B 65.2: --- Sequencing alignment of cDNA subclone AJ9#1 with mouse suppressor of actin mutations (SAC1 gene) by BLAST searching against the National Center for Biotechnology Information database --- p.352 / Chapter B 65.3: --- Summary of sequence alignment of cDNA subclone AJ9#1 with mouse SAC1 --- p.352 / Chapter B 66.1: --- DNA sequence ofcDNA subclone AL2#8 (AP7 & ARP15) using M13 forward (-20) primer --- p.353 / Chapter B 66.2: --- Sequencing alignment of cDNA subclone AL2#8 with mouse hydroxy steroid (17-beta) dehydrogenase 11 (Hsdl7pil) by BLAST searching against the National Center for Biotechnology Information database --- p.353 / Chapter B 66.3: --- Summary of sequence alignment of cDNA subclone AL2#8 with mouse HSD17β11 --- p.353 / Chapter B 67.1: --- DNA sequence of cDNA subclone AL3#3 (AP7& ARP 15) using Ml3 forward (-20) primer --- p.354 / Chapter B 67.2: --- Sequencing alignment of cDNA subclone AL3#3 with mouse hydroxy steroid (17-beta) dehydrogenase 11 (Hsdl7pll) by BLAST searching against the National Center for Biotechnology Information database --- p.354 / Chapter B 67.3: --- Summary of sequence alignment of cDNA subclone AL3#3 with mouse HSD17β11 --- p.354 / Chapter B 68.1: --- DNA sequence of cDNA subclone AL3#3 (AP7& ARP 15) using M13 reverse primer --- p.355 / Chapter B 68.2: --- Sequencing alignment of cDNA subclone AL3#3 with mouse hydroxysteroid (17-beta) dehydrogenase 11 (Hsdl7β1l) by BLAST searching against the National Center for Biotechnology Information database --- p.355 / Chapter B 68.3: --- Summary of sequence alignment of cDNA subclone AL3#3 with mouse HSD17β11 --- p.355 / Chapter B 69.1: --- DNA sequence of cDNA subclone AO1#2 (AP5 & ARP 10) 356 using Ml3 forward (-20) primer --- p.356 / Chapter B 69.2: --- Sequencing alignment of cDNA subclone AO1#2 with mouse 356 adipose differentiation related protein (ADFP) by BLAST searching against the National Center for Biotechnology Information database --- p.356 / Chapter B 69.3: --- Summary of sequence alignment of cDNA subclone AO1 #2 with 356 mouse ADFP --- p.356 / Chapter B 70.1: --- DNA sequence ofcDNA subclone AO1#5 (AP5 & ARP10) 357 using M13 reverse primer --- p.357 / Chapter B 70.2: --- Sequencing alignment of cDNA subclone AO1#5 with mouse 357 carnitine O-octanoyltransferase (Crot) by BLAST searching against the National Center for Biotechnology Information database --- p.357 / Chapter B 70.3: --- Summary of sequence alignment of cDNA subclone AO1 #5 with 357 mouse Crot --- p.357 / Chapter B 71.1: --- DNA sequence ofcDNA subclone AO2#6 (AP5 & ARP10) 358 using Ml3 forward (-20) primer --- p.358 / Chapter B 71.2: --- Sequencing alignment of cDNA subclone A02#6 with mouse 358 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.358 / Chapter B 71.3: --- Summary of sequence alignment of cDNA subclone AO2#6 358 with mouse Rnase4 --- p.358 / Chapter B 72.1: --- DNA sequence of cDNA subclone AO2#6 (AP5 & ARP 10) 359 using Ml3 reverse primer --- p.359 / Chapter B 72.2: --- Sequencing alignment of cDNA subclone A02#6 with mouse 359 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.359 / Chapter B 72.3: --- Summary of sequence alignment of cDNA subclone A02#6 359 with mouse Rnase4 --- p.359 / Chapter B 73.1: --- DNA sequence ofcDNA subclone AO2#8 (AP5 & ARP10) 360 using Ml3 reverse primer --- p.360 / Chapter B 73.2: --- Sequencing alignment of cDNA subclone A02#8 with mouse 360 carnitine O-octanoyltransferase (Crot) by BLAST searching against the National Center for Biotechnology Information database --- p.360 / Chapter B 73.3: --- Summary of sequence alignment of cDNA subclone AO2#8 with 360 mouse Crot --- p.360 / Chapter B 74.1: --- DNA sequence ofcDNA subclone AO8#2 (AP5 & ARP10) 361 using M13 forward (-20) primer --- p.361 / Chapter B 74.2: --- Sequencing alignment of cDNA subclone A08#2 with mouse 361 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.361 / Chapter B 74.3: --- Summary of sequence alignment of cDNA subclone AO8#2 with 361 mouse Rnase4 --- p.361 / Chapter B 75.1: --- DNA sequence of cDNA subclone AP4#4 (AP12 & ARP2) 362 using Ml3 forward (-20) primer --- p.362 / Chapter B 75.2: --- Sequencing alignment of cDNA subclone AP4#4 with mouse 362 mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.362 / Chapter B 75.3: --- Summary of sequence alignment of cDNA subclone AP4#4 with 362 mouse mitochondrion --- p.362 / Chapter B 76.1: --- DNA sequence ofcDNA subclone AP4#4 (AP12 & ARP2) 363 using Ml3 reverse primer --- p.363 / Chapter B 76.2: --- Sequencing alignment of cDNA subclone AP4#4 with mouse 363 mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.363 / Chapter B 76.3: --- Summary of sequence alignment of cDNA subclone AP4#4 with 363 mouse mitochondrion --- p.363
9

Relationship between hepatitis B virus X protein and hypoxia-inducible factors and the therapeutic targets of sorafenib. / CUHK electronic theses & dissertations collection

January 2012 (has links)
慢性乙型肝炎病毒(HBV)感染是肝癌發生的重要因素,其中乙肝病毒X蛋白(HBx)在這一過程起著關鍵作用。研究發現,一些HBV變體和HBx突變具有更高致癌風險,而且這些變體和突變存在地區差異。香港是HBV感染高發地帶,因此本研究目的是從這一地區120個肝癌組織標本中篩查出HBx突變位點。我們用巢式PCR從84.16% (101/120)的標本中提取和擴增了HBx,並進行基因測序。三種HBx突變被檢測出,包括點突變,遠端羧基端截斷和缺失突變。其中點突變位點有39個,特別的是在50%的標本中檢測出A1630G/G1721A 和 A1762T/G1764A雙突變。在31.68% (32/101)的標本中發現遠端羧基端截斷,以及在2.97% (3/101)的標本中檢測出缺失突變。總之,大多數突變集中在HBx轉錄啟動域,表明這些突變在肝癌發生中可能起著重要作用。 / 缺氧誘導因數-1α(HIF-1α)在肝癌的發生和發展中也起著重要作用。研究發現,野生型HBx可以啟動HIF-1α,但是變異型HBx和HIF-1α的關係還沒有研究清楚。我們研究表明HBx轉錄啟動域是必需而且足夠啟動HIF-1α的。在這個區域的突變中,雙突變K130M/V131Z增強HBx對HIF-1α的活性,但遠端羧基端截斷和缺失突變削弱其功能。進一步研究發現,羧基端特別是119-140氨基酸對HBx的穩定和功能非常重要。肝癌標本中,我們也發現HBx和HIF-1α的表達呈正相關。因此,雖然不同的突變對於HBx的功能有不同的影響,但總的來說這些突變可以促進HIF-1α的表達和啟動,進而導致肝癌患者的預後不良。 / 靶向治療在肝癌綜合治療中扮演重要角色。索拉菲尼(Sorafenib)是一種多激酶抑制劑,臨床實驗發現它對晚期肝癌治療有效,但其抑制腫瘤血管生成機制還不完全清楚。我們研究發現Sorafenib明顯而且劑量依賴性地降低HIF-1α的表達和活化,進而抑制血管內皮生長因數(VEGF)的表達。Sorafenib抑制mTOR, ERK, p70S6K, RP-S6, eIF4E和4E-BP1等翻譯起始因數的磷酸化,從而抑制HIF-1α的合成而不影響其降解。體外實驗進一步發現Sorafenib降低HIF-1α和VEGF的表達,從而抑制腫瘤的血管形成和生長。總之,我們的研究表明sorafenib可能通過阻斷mTOR/p70S6K/4E-BP1 和 ERK 信號通路來抑制HIF-1α的合成,從而發揮其抗腫瘤血管生成作用。 / Chronic HBV infection is the leading cause of hepatocellular carcinoma (HCC) and HBx plays a crucial role in the molecular pathogenesis of HBV-related HCC. Previous investigations have indicated that some variations of HBV or mutations of HBx are associated with higher risk of HCC development, whereas the mutations profiles may be disparate in different regions. In the present studies, we thus aim to screen and identify the HBx mutation hotspots in 120 HCC tissues from Hong Kong, a region with HBV hyper-endemic. HBV DNAs were successfully isolated and amplified in 84.16% (101/120) HCC specimens via nest-PCR, and then subjected to gene sequencing. Three types of HBx mutations, including point mutations, distal carboxyl-terminal truncations and deletion mutations, were discovered. Among the point mutations, 39 mutation hotspots were indentified, with two double mutations (A1630G/G1721A and A1762T/G1764A) occurring in approximate 50% of 101 HCC cases. Distal C-terminal truncated mutations were discovered in 31.68% (32/101) of HCC cases, whereas deletion mutations were detected in 2.97% (3/101) of them. Overall, majority of identified mutations were located at the transactivation domain of HBx, suggesting the crucial roles of these mutations in HCC development. / Hypoxia-inducible factor-1α (HIF-1α) also closely involves in the development and progression of HCC. Wild-type HBx has been shown to activate HIF-1α. But the relationship between HBx mutants and activation of HIF-1α has not been fully elucidated. We here revealed that the transactivaiton domain of HBx was necessary and sufficient to activate HIF-1α. Double mutations K130M/V131Z in this domain enhanced the functionality of HBx in upregulating the expression and the activation of HIF-1α, whereas C-terminal truncations and deletion mutations weakened this prosperity of HBx. We further uncovered that the C-terminus, especially the region of amino acids 119-140, was essential for the stability and transactivation of HBx. The positive association between the HBx mutants and HIF-1α was found in the HCC tissue samples. Therefore, although mutations exerted different effects on the functionality of HBx, the overall activity of HBx mutants was suggested to upregulate HIF-1α, whose level is related to poor prognosis of HCC patients. / The therapy targeting a critical molecule in the development of HCC such as HIF-1α may be a potential and effective treatment regimen for HCC patients. Sorafenib, a multikinase inhibitor, has demonstrated promising results for the treatment of advanced HCC in clinical trials, but the mechanism that accounts for the anti-angiogenic efficiency of this agent has not been fully elucidated. We here revealed that sorafenib remarkably and dose-dependently decreased the expression and the transcriptional activity of HIF-1α, and its target gene, vascular endothelial grow factor (VEGF). Further analysis revealed that this reduction of HIF-1α by sorafenib was caused by the inhibition of HIF-1α protein synthesis rather than by the promotion of HIF-1α protein degradation. Moreover, the phosphorylated levels of mTOR, ERK, p70S6K, RP-S6, eIF4E and 4E-BP1 were significantly suppressed by sorafenib. In vivo studies further confirmed the inhibitory effect of sorafenib on the expression of HIF-1α and VEGF proteins, leading to a decrease of tumor vascularisation and growth. Collectively, our data suggest that sorafenib may exhibit anti-angiogenic activity by inhibiting HIF-1α synthesis, which is likely to be achieved through suppressing the phosphorylation of mTOR/p70S6K/4E-BP1 and ERK. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Liu, Liping. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 133-154). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract --- p.I / 摘要 --- p.IV / Publications --- p.VI / Acknowledgements --- p.VII / Abbreviations --- p.IX / List of Figures --- p.XI / List of Tables --- p.XIII / Table of Contents --- p.XIV / Chapter Chapter I --- General Introduction --- p.1 / Chapter 1.1 --- Overview of Hepatocellular Carcinoma --- p.1 / Chapter 1.2 --- HBV Infection and HCC Development --- p.6 / Chapter 1.3 --- Overview on Hepatitis B virus X Protein --- p.10 / Chapter 1.4 --- Roles of Hypoxia-inducible Factors in HCC --- p.17 / Chapter 1.5 --- Targeted Therapies and Sorafenib --- p.27 / Chapter Chapter II --- Identification of HBx Mutation Hotspots in HCC Tissues --- p.31 / Chapter 2.1 --- Abstract --- p.31 / Chapter 2.2 --- Introduction --- p.32 / Chapter 2.3 --- Materials and Methods --- p.35 / Chapter 2.4 --- Results --- p.40 / Chapter 2.5 --- Discussion --- p.53 / Chapter Chapter III --- The Relationship between HBx Mutants and HIF-1α --- p.59 / Chapter 3.1 --- Abstract --- p.59 / Chapter 3.2 --- Introduction --- p.60 / Chapter 3.3 --- Materials and Methods --- p.63 / Chapter 3.4 --- Results --- p.70 / Chapter 3.5 --- Discussion --- p.91 / Chapter Chapter IV --- The Effects of Sorafenib on Hypoxia-inducible Factor-1α --- p.96 / Chapter 4.1 --- Abstract --- p.96 / Chapter 4.2 --- Introduction --- p.98 / Chapter 4.3 --- Materials and Methods --- p.101 / Chapter 4.4 --- Results --- p.108 / Chapter 4.5 --- Discussion --- p.124 / Chapter Chapter V --- Conclusion and Future Plans --- p.129 / Chapter 5.1 --- Conclusion --- p.129 / Chapter 5.2 --- Future Plans --- p.131 / References --- p.133
10

Resultados do tratamento cirúrgico e de estudo dos fatores prognósticos de sobrevida em pacientes com metástases hepáticas sincrônicas do câncer de cólon e reto / Surgical treatment of synchronous colorectal liver metastasis results and evaluation of prognostic factors

Fontana, Rafael 22 March 2011 (has links)
O câncer colorretal (CCR) é a neoplasia mais prevalente no mundo e, cerca de 60% apresentarão metástases hepáticas, representando uma importante causa de mortalidade. Aproximadamente 35% dos pacientes apresentam metástases hepáticas no momento do diagnóstico do tumor primário ou desenvolverão metástases durante o primeiro ano após o tratamento da neoplasia colorretal, conhecidas como metástases sincrônicas. Inúmeros trabalhos têm demonstrado que as metástases sincrônicas representam importante fator prognóstico negativo na evolução destes pacientes, representando um grupo de pacientes que necessita uma abordagem multidisciplinar mais agressiva. O objetivo deste trabalho foi de avaliar os resultados do tratamento cirúrgico das metástases sincrônicas de CCR e determinar os possíveis fatores que pudessem interferir no prognóstico de sobrevida livre de doença e sobrevida atuarial. Entre maio de 1996 e dezembro de 2007, 59 pacientes submetidos à ressecção hepática por metástases sincrônicas foram avaliados retrospectivamente através de análise uni e multivariada. A mortalidade pós-operatória foi de 3,38%, e a morbidade pós-operatória de 30,50%. A sobrevida estimada em 5 anos foi de 38,45% e a sobrevida livre de doença no mesmo período foi de 23,96. O valor do antígeno carcinoembrionário igual ou superior a 50 ng/ml e o número de metástases hepáticas maior que três lesões representaram fatores prognósticos limitados da sobrevida livre de doença, porém sem interferir na sobrevida atual. Pacientes com metástases no fígado e com doença extra-hepática, selecionados para a ressecção, não apresentaram sobrevida livre de doença acima de 20 meses, porém sem impacto na sobrevida a longo prazo. Nenhum dos fatores prognósticos estudados interferiu na sobrevida atual tardia. Entretanto,não foi observada sobrevivência além de 40 meses em pacientes com mais de três metástases hepáticas. A ressecção de metástases sincrônicas de câncer colorretal pode propiciar sobrevida tardia em mais de um terço dos pacientes. O valor do CEA e do número de metástases representaram fatores prognósticos limitantes da sobrevida livre de doença / Colorectal cancer is the world´s most prevalent digestive neoplasia and about 60% of the patients will present liver metastases, representing an important cause of mortality. About 35% of the patients present hepatic metastases at the diagnosis of the colorectal tumor or will develop metastases during the first year after the treatment of the primary tumor, known as synchronous metastases. Innumerable studies have shown that synchronous metastases represent a negative prognostic factor in the evolution of these patients, representing a group of patients that need an aggressive multidisciplinary approach. The purpose of this study was to evaluate results of the surgical treatment of colorectal cancer synchronous metastases and to determine possible factors that might interfere in the prognosis of disease-free and actuarial survival. Between May 1996 and December 2007, 59 patients submitted to liver resection for synchronous metastases were retrospectively evaluated through univariate and multivariate analysis. Postoperative morbidity and mortality were 30.5% and 3.38%, respectively. Cumulative survival estimated in 5 years was 38.45% and disease-free survival in the same period was 23.96%. Levels of carcino-embrionary antigen (CEA) higher than 50 ng/ml and the number of hepatic metastases higher than three lesions represented negative prognostic factors limiting disease-free survival; however, with no impact on cumulative survival. Patients with liver metastases and extrahepatic disease selected for resection didnt present a disease-free survival above 20 months, yet without impact in global survival. None of the prognostic factors studied interfered in long term actuarial survival, however survival beyond 40 months in patients with more than three hepatic metastases was not observed. Resection of synchronous metastases of colorectal cancer may provide late survival in more than one third of the patients. CEA values and the number of metastases represented prognostic factors with negative impact on disease-free survival

Page generated in 0.0617 seconds