• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1626
  • 918
  • 581
  • 182
  • 164
  • 157
  • 78
  • 54
  • 50
  • 30
  • 30
  • 22
  • 15
  • 14
  • 12
  • Tagged with
  • 4684
  • 690
  • 594
  • 415
  • 391
  • 337
  • 335
  • 333
  • 324
  • 297
  • 291
  • 284
  • 277
  • 269
  • 269
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

An interactive load flow program for underground electrical system

Wong, Yuk-Chiu Jack January 1988 (has links)
No description available.
322

The Design Methodology and Optimization of Varactors Based Tunable Matching Network for Power Amplifiers with Load Adaptation Technique

Yang, Chun-Ju 09 September 2011 (has links)
No description available.
323

One-Step-Ahead Load Forecasting for Smart Grid Applications

Vasudevan, Sneha January 2011 (has links)
No description available.
324

RELIABILITY OF LIGHT-FRAME WOOD ROOF CONSTRUCTION UNDER EXTREME WIND LOADS

Rocha, Daniel Meireles de Oliveriria 06 August 2005 (has links)
Light-frame wood construction is frequently used in the U.S. High wind events, such as hurricanes, may cause severe damage to these structures by breaking the roof envelope. This study focuses on computing reliability indices of roof sheathing panels exposed to high wind events while considering a time and spatially varying wind load. A procedure is developed that links probabilistic and dynamic finite element analysis codes. The results show that a few critical panels are most susceptible to damage, while most panels have significantly higher reliability indices than previous studies based on simplified analyses have shown. By setting a target reliability index, panel nail spacing can be adjusted to provide a more uniform level of safety over the entire roof.
325

Modeling the Dynamic Interactions between Wood Pallets and Corrugated Containers during Resonance

Weigel, Timothy G. 14 August 2001 (has links)
The unit load is the form of most commercial and industrial products during storage and distribution. A simple form of a unit load, a palletized bulk bin is commonly used to transport fruit and vegetables from the point of harvest to processing facilities. These vibration sensitive products are often subjected to damaging vibrations during this period. Most damage occurs during the large accelerations associated with resonance, which occurs when the natural frequency of the unit load matches the input frequencies commonly encountered during transportation. A computer model, called RoPUL (resonance of palletized unit loads), of a palletized bulk bin loaded with fruit, was developed using finite element analysis techniques. Unit loads consisting of palletized bulk bins of apples and peaches were tested and RoPUL was found to accurately predict the resonant frequencies of these loads. Using RoPUL, the effects of product mass, container design, and pallet design on natural frequencies can be analyzed. As the input frequencies of most transportation modes is well documented, RoPUL can be used to help design a unit load to better protects vibration sensitive products during shipment. / Ph. D.
326

Methods for Evaluation of the Remaining Strength in Steel Bridge Beams with Section Losses due to Corrosion Damage

Javier, Eulogio Mendoza 02 June 2021 (has links)
This research is intended to better understand the structural behavior of steel bridge beams that have experienced section loss near the bearings. This type of deterioration is common in rural bridges with leaking expansion joints, which exposes the superstructure to corrosive road deicing solutions. Seventeen beams from 4 decommissioned structures throughout Virginia were tested to induce web shear failure near the bearing locations and measured for load, vertical displacement, and web strain behavior. The strain was measured using a digital image correlation (DIC) system to create a digital strain field at equal loading and beam displacement intervals during testing. The data recorded during these large-scale tests was compared to several existing methods for calculating the shear capacity of the damaged beams. Finally, the most appropriate method of these approaches was identified based on accuracy, conservatism, and ease of implementation for load rating. When using load rating methods to determine a steel beam's capacity, this study also recommends that the effective area of the web used in determining the percentage of remaining thickness should consist of the bottom 3 inches of the web and should extend the length of the bearing plus one beam height excluding any areas without any noticeable section losses. / Master of Science / Older bridge structures typically include a rubber joint near the ends to allow for expansion and contraction of the bridge due to heating and cooling from the weather. In many cases, these joints will get damaged due to impacts from vehicle tires and other environmental disturbances. Damage to these joints allows for water to leak through, which, while not in of itself harmful, also allows melting snow to carry road salts laid in the winter to spread onto the underlying bridge steel. These salts cause aggravated corrosion of the steel beams below the bridge's deck, resulting in damage or collapse of the bridge itself. The goal of this study was to characterize this damage and determine how it affects the remaining capacity of the bridge. This objective was achieved by testing 17 beams from 4 out of service bridges with varying damage levels. A load was applied near the damaged ends to determine their behavior during loading, to locate areas of high strain resulting from corrosion, and find the beam's capacity. Several methods to predict the remaining strength in corroded steel beams were compared and recommendations made based on accuracy and conservatism.
327

Effect of Pallet Deckboard Stiffness and Unit Load Factors on Corrugated Box Compression Strength

Baker, Matthew W. 29 March 2016 (has links)
Corrugated paper boxes are the predominant packaging and shipping material and account for the majority of packaging refuse by weight. Wooden pallets are equally predominant in shipping, transportation and warehousing logistics. The interaction between these two components is complex and unexplored leaving industry to compensate with outdated component specific safety factors. Providing a focused exploration of the box and pallet interaction will open the door for holistic design practices that will reduce cost, weight, damage, and safety incidents. This study was separated into four chapters exploring different aspects of the corrugated box to pallet interaction. The first chapter evaluates the support surface provided by a pallet consists of deckboards spaced perpendicular to the length of the pallet. The resulting gaps between deckboards reduce the support to the box. Gaps were limited to 55% of box sidewall length for practical reasons. The effect of gaps was significant and produced a nonlinear reduction in box strength. Small boxes were more susceptible to gaps than larger boxes. Moving the gap closer to the corner increased its effect while increasing the number of gaps did not increase the effect. A modification to the McKee equation was produced that was capable of predicting the loss in strength due to gaps. The equation is novel in that is modifies a widely used equation and is the first such equation capable of handling multiple box sizes. This study also has practical implications for packaging designers who must contend with pallet gap. Chapter 2 explores the relationship between deckboard deflection and box compression strength. Testing found that reducing the stiffness of the deckboard decreases the compression strength of the box by 26.4%. The location of the box relative to the stringer also had varying effects on the box strength. A combination of deckboard stiffness and gaps produced mixed with results with gaps reducing the effect of stiffness. It was observed that lower stiffness deckboards not only deflect but also twist during compression. The torsion is suspected to have a significant influence on compression but further exploration is needed. The third chapter tests the effect of box flap length on box compression strength under various support conditions. Variables included four flap lengths, gaps between deckboards, low stiffness deckboards, column stacking and misaligned stacking. The results show that the box flaps can be reduced by 25% with no significant effect of box strength under any support condition tested. Furthermore, the box flap can be reduced by 50% with less than 10% loss in compression strength under all scenarios. These results have significant sustainability implication as 25% and 50% reduction in box flap reduce material usage by approximately 12% and 24%, respectively. In the fourth and final chapter, the theory of beam-on-elastic foundation is applied to deckboard bending and corrugated boxes. In this model the corrugated box acts and the foundation and the deckboard is the beam. Rotational stiffness, load bridging, and foundation stiffness changes required the development of novel testing solution and model development. The model was capable of predicting the distribution of force along the length sidewall but was not capable of predicting the ultimate strength of the box. The model developed in the study will be applicable in determining potential weakness in the unit load in addition to optimizing those that are over designed. These four chapters represent a considerable contribution of applicable research to a field that relied on outdated safety factors over thirty years. These safety factors often lead to costly over design in an industry where corrugated box and pallets volumes make event the smallest improvements highly beneficial. Furthermore, this research has opened the door for significant additional research that will undoubtedly provided even greater economic and sustainability benefits. / Ph. D.
328

Techniques for examining the statistical and power spectral properties of random time histories

Leybold, Herbert Arthur January 1963 (has links)
A technique for digitally generating random time histories having arbitrarily shaped power spectra is presented. Four random time histories having significantly different statistical and power spectral properties have been generated and analyzed to determine their mean and amplitude distributions. It was found that the distribution of means could be approximated by a normal distribution and that the distribution of amplitudes could be approximated by the sum of a Rayleigh distribution and a normal distribution. An attempt was made to relate the coefficients of the equations used to represent the distributions of means and amplitudes to the power spectral properties of the generated time histories. It was found that two of the coefficients could be related to the power spectral properties of the time histories. The remaining two coefficients were empirically determined since no apparent relationship was found between these coefficients and the power spectral properties of the generated random time histories. In addition a discussion of the applicability of results for estimating fatigue life under randomly varying loads or stresses is presented. / Master of Science
329

Modeling Considerations for the Long-Term Generation and Transmission Expansion Power System Planning Problem

Mitchell-Colgan, Elliott 01 February 2016 (has links)
Judicious Power System Planning ensures the adequacy of infrastructure to support continuous reliability and economy of power system operations. Planning processes have a long and rather successful history in the United States, but the recent infl‚ux of unpredictable, nondispatchable generation such as Wind Energy Conversion Systems (WECS) necessitates the re-evaluation of the merit of planning methodologies in the changing power system context. Traditionally, planning has followed a logical progression through generation, transmission, reactive power, and finally auxiliary system planning using expertise and ranking schemes. However, it is challenging to incorporate all of the inherent dependencies between expansion candidates' system impacts using these schemes. Simulation based optimization provides a systematic way to explore acceptable expansion plans and choose one or several "best" plans while considering those complex dependencies. Using optimization to solve the minimum-cost, reliability-constrained Generation and Transmission Expansion Problem (GTEP) is not a new concept, but the technology is not mature. This work inspects: load uncertainty modeling; sequential (GEP then TEP) versus unified (GTEP) models; and analyzes the impact on the methodologies achieved near-optimal plan. A sensitivity simulation on the original system and final, upgraded system is performed. / Master of Science
330

Nonlinear analysis of plane frames

Bradshaw, Joel Clinton 02 June 2010 (has links)
The results obtained from the nonlinearly elastic, geometrically linear beam-column are almost identical to the results obtained by the method of Gurfinkel and Robinson [6] within the linear range of the stress-strain curve. When the displacements become large, the Gurfinkel and Robinson routine tends to give higher estimates of the strain state of the section being analysed as compared to the results via the finite element model. Changing the number of integration points seems to have a stronger effect on the results than refining the mesh. / Master of Science

Page generated in 0.0471 seconds