Spelling suggestions: "subject:"loadcarrying capacity"" "subject:"load_carrying capacity""
1 |
Finite element analysis of masonry arch bridgesGong, Nai-Guang January 1992 (has links)
No description available.
|
2 |
Membrane action in simply supported slabsAlmograbi, Mohammed F. January 1999 (has links)
No description available.
|
3 |
ASSESSMENT OF STRENGTHENING EFFECT ON RC BEAMS WITH UHP-SHCCNAKAMURA, Hikaru, UEDA, Naoshi, KUNIEDA, Minoru, KAMAL, Ahmed January 2008 (has links)
No description available.
|
4 |
Increased Traffic Loads on Swedish Highway Bridges : A Case study of the bridge at highway interchange VäröForsberg, Fredrik January 2017 (has links)
The Swedish government is planning to increase the maximum vehicle gross load regulations on parts of the national roads from the present 60 t, for the load carrying capacity class BK1, to 74 t, for the proposed new load carrying capacity class BK4. The initial implementation of the new load carrying capacity class for 74 t vehicles will only regard major highways and important roads, however, at a later stage the plan is to implement the new BK4 class on the full current BK1 road network. The biggest obstacle which arises when implementing these increased traffic loads is insufficient load carrying capacity for the bridges on the road network. Thus, the objective of this thesis is to examine and analyze the effects of the increased traffic loads on Swedish road bridges. In order to identify the structural effects of the load increase, and draw general conclusions regarding the effects on the bridge network as a whole, a case study with load carrying capacity calculations is carried out on a two-span concrete slab fram bridge at a highway interchange in Värö in western Sweden. The bridge is classified as critical by Trafikverket. The load carrying capacity calculation is carried out using the Swedish standards, in which maximum load values for the axle load, A, and the bogie load, B, is calculated. The load effects acting on the bridge are calculated using the finite element software BRIGADE/Standard, with input traffic A and B loads amounting to 12 t and 21 t respectively for the new BK4 class and to 12 t and 18 t respectively for class BK1. In addition to the load carrying capacity calculations with BK4 traffic loads, a comparison is carried out between the results obtained when using the axle- and bogie loads from the BK1 versus the BK4 load carrying capacity class in the load carrying capacity calculations. The load carrying capacity calculations performed on the studied bridge shows that the capacity of the bridge, both in regards to moment and shear force, is insufficient to meet the new, increased, BK4 A/B – requirements. The critical A/B – values for the whole bridge are 17 t and 18 t respectively, to be compared with the required 12- and 21 t limit for the new BK4 load carrying capacity class, thus, making the load carrying capacity of the bridge inadequate. The critical A/B – values appear for the longitudinal shear force load case at the point where the shear force reinforcement over the column support ends. Moreover, the difference between the results obtained when using the BK1 versus the BK4 traffic loads in the calculations were found to be negligible. Due to the differing properties and characteristics of each individual bridge on the Swedish road network it is difficult to make general statements regarding the effects of the increased traffic loads on the bridge network as a whole. Specific load carrying capacity calculations will need to be performed on each individual bridge in order to evaluate its capability to withstand the new increased BK4 traffic load. However, capacity calculations regarding the BK1 load carrying capacity class can, with sufficient accuracy, be used to evaluate the capability of a bridge to withstand the increased traffic loads in the BK4 load carrying capacity class, thus, making it easier to evaluate the strengthening needs for the bridge network as a whole. / Sveriges regering planerar en utökning av den maximalt tillåtna bruttovikten för fordon på delar av det allmänna vägnätet från den nuvarande begränsningen på 60 t, för bärighetsklass BK1, till 74 t, för den nya föreslagna bärighetsklassen BK4. I det första skedet kommer den nya bärighetsklassen, för fordon med bruttovikt upp till 74 t, bara att implementeras på stora motorvägar och andra ur transportsynpunkt viktiga vägar, men, i ett senare skede finns också planer på att implementera den nya bärighetsklassen, BK4, på hela det nuvarande BK1 vägnätet. Det största problemet som förväntas uppkomma under införandet av de nya, ökade, trafiklasterna är otillräcklig bärighet på vägnätets broar. Således är målet med denna uppsats att undersöka och analysera effekterna av dessa ökade trafiklaster för broar på det Svenska vägnätet. För att identifiera effekterna, och dra generella slutsatser, gällande denna ökade trafiklast för broarna på det Svenska vägnätet i sin helhet kommer en fallstudie med bärighetsberäkningar utföras på en plattrambro vid trafikplats Värö - en bro som Trafikverket bedömer som kritisk. Bärighetsberäkningen utförs enligt svenska standarder, där maximala tillåtna värden på axellasten, A, och bogielasten, B, beräknas. Lasteffekterna som verkar på bron beräknas med hjälp finita element programvaran BRIGADE/Standard med trafiklaster, A och B, som uppgår till 12 respektive 21 t för den nya BK4 bärighetsklassen och 12 respektive 18 t för bärighetsklass BK1. Som tillägg till bärighetsberäkningarna med BK4 laster utförs också en jämförelse av resultaten som uppkommer när axel- och bogielasterna från BK1 respektive BK4 används i beräkningarna. Bärighetsberäkningarna på den studerade bron visar att brons kapacitet, både gällande moment och tvärkraft, är otillräcklig när den belastas med de ökade BK4 trafiklasterna. De kritiska A- och B- värdena för bron är 17 respektive 18 t, värden som skall jämföras med kraven på 12 respektive 21 t för den nya bärighetsklassen BK4 – därmed är brons bärighet otillräcklig. De kritiska A- och B-värdena för bron uppkommer för lastfallet med longitudinell tvärkraft vid punkten där tvärkraftsarmeringen över mittstödet slutar verka. Jämförelsen mellan beräkningsresultaten som uppkom med trafiklaster enligt BK1 respektive BK4 visade att skillnaden mellan beräkningsresultaten var försumbar. På grund av de varierande egenskaperna hos varje enskild bro på det Svenska vägnätet är det svårt att dra generella slutsatser gällande effekterna av lastökningen för vägnätet som helhet. Specifika bärighetsberäkningar måste utföras på varje individuell bro för att kunna utvärdera dess kapacitet att klara av de nya, ökade, BK4 trafiklasterna. Emellertid kan bärighetsberäkningar som beträffar bärighetsklassen BK1, med tillräcklig tillförlitlighet, användas för att bedöma en bros möjlighet att motstå de ökade trafiklasterna i den nya bärighetsklassen BK4, vilket förenklar utvärderingen av vilka broar som kräver förstärkning.
|
5 |
AKR:s inverkan på betongkonstruktioners bärförmåga / ASR’s Impact on the Bearing Capacity of Concrete StructuresPham, Keikiet, Khalil, Murtazah January 2012 (has links)
Alkali-kiselsyrareaktionen (AKR) är en kemisk reaktion som medför att spänningar uppstår i betongen då den bildade silikatgelen expanderar. Reaktionen kräver tillräcklig hög alkalihalt, reaktiv ballast samt vatten. På grund av de AKR-inducerade spänningarna är det av intresse att få kunskap i hur reaktionen påverkar betongens böjmomentkapacitet, förankring samt skjuvnings- och genomstansningskapacitet. För att besvara frågeställningen har därför en omfattande litteraturinventering tillsammans med tre kompletterande intervjuer utförts. Resultat som har erhållits, påvisar att två huvudsakliga effekter fås av AKR. Utöver en reducerad hållfasthet på grund av expansioner och sprickbildningar, erhålls även en gynnsam förspänningseffekt när armering motverkar expansioner. Med hänsyn till dessa huvudeffekter påverkas betongs bärighet i olika stor utsträckning beroende på expansionens storlek samt armeringens läge och typ i tvärsnittet. Resultaten tyder på att draghållfastheten reduceras till 40 % medan tryckhållfastheten reduceras till 60 % vid 5 mm/m expansion. För böjkapaciteten har ingen större reduktion uppmäts då expansioner understiger 6 mm/m. Emellertid har en reduktion på 25 % observerats vid expansioner större än 6 mm/m. Skjuvkapaciteten i AKR-skadad betong beror till stor del av byglars närvaro samt expansionens omfattning. I balkar utan byglar reduceras skjuvkapaciteten med 15-25 % för slät armering och 20-30 % för räfflad armering. Genomstansningskapaciteten i ett dubbelarmerat betongtvärsnitt reduceras obetydande till dess att expansionen överstiger 6 mm/m varpå en mer påtaglig reduktion fås. Hållfastheten för vidhäftning minskar med ca 40 % då täckande betongskikt understiger 1.5Æ och/eller att inga byglar är närvarande. Om byglar är närvarande samt om täckande betongskikt överstiger 4Æ visas inga tecken på försämrad vidhäftningshållfasthet. Utöver en minskad bärighet, öppnar AKR upp betong och skapar gynnsammare förutsättningar för rost-och frostangrepp. / Alkali-silica reaction (ASR) is a chemical reaction that causes stresses in concrete when the produced alkali silica gel expands. The reaction requires sufficiently high alkali content, reactive aggregates and water. Due to ASR-induced stresses it is of interest to gain insight in how ASR affects the concrete’s bending capacity, anchoring together with shear- and punching shear capacity. An extensive literature review was therefore carried out together with three complementary interviews in order to answer the question at issue. Obtained results show two main effects of ASR. In addition to a reduced strength because of cracking and expansion, an advantageous pre-stress is gained due to restraint to expansion. Thus, the load-carrying capacity of concrete is affected in various extents depending on the size of expansion and location and type of the reinforcement. The results indicate that the tensile strength is reduced to 40 % whereas the compressive strength is reduced to 60 % at 5 mm/m expansions. While expansions lesser than 6 mm/m has not shown a greater reduction of the bending capacity, a reduction of 25 % has been observed in concrete with expansions greater than 6 mm/m. The shear capacity of an ASR-affected concrete structure depends mainly on the presence of links and the extent of expansions. In beams without links, shear capacity is reduced to 15-25 % for smooth bars and 20-30 % for ribbed bars. The punching strength of a concrete structure reinforced in both faces is not reduced until expansions exceed 6 mm/m, whereas a more significant reduction is obtained. The bond strength decreases by about 40 % if the concrete cover is less than 1.5 Æ and/or if no links are present. Meanwhile if links are present and if concrete cover is more than 4Æ, no signs of reduction of the bond strength has been observed. Additionally, to a reduced load-carrying capacity, ASR also opens up the concrete and consequently creates beneficial circumstances for corrosion and frost attacks.
|
6 |
Finite element modeling of twin steel box-girder bridges for redundancy evaluationKim, Janghwan 08 October 2010 (has links)
Bridge redundancy can be described as the capacity that a bridge has to continue carrying loads after suffering the failure of one or more main structural components without undergoing significant deformations. In the current AASHTO LRFD Bridge Design Specification, two-girder bridges are classified as fracture critical, which implies that these bridges are not inherently redundant. Therefore, two-girder bridges require more frequent and detailed inspections than other types of bridges, resulting in greater costs for their operation. Despite the fracture-critical classification of two-girder bridges, several historical events involving the failure of main load-carrying members in two-girder bridges constructed of steel plate girders have demonstrated their ability to have significant reserve load carrying capacity. Relative to the steel plate girder bridges, steel box-girder bridges have higher torsional stiffness and more structural elements that might contribute to load redistribution in the event of a fracture of one or more bridge main members. These observations initiated questions on the inherent redundancy that twin box-girder bridges might possess. Given the high costs associated with the maintenance and the inspection of these bridges, there is interest in accurately characterizing the redundancy of bridge systems.
In this study, twin steel box-girder bridges, which have become popular in recent years due to their aesthetics and high torsional resistance, were investigated to characterize and to define redundancy sources that could exist in this type of bridge. For this purpose, detailed finite element bridge models were developed with various modeling techniques to capture critical aspects of response of bridges suffering severe levels of damage. The finite element models included inelastic material behavior and nonlinear geometry, and they also accounted for the complex interaction of the shear studs with the concrete deck under progressing levels of damage. In conjunction with the computational analysis approach, three full-scale bridge fracture tests were carried out during this research project, and data collected from these tests were utilized to validate the results obtained from the finite element models. / text
|
7 |
Zvýšení únosnosti kluzného axiálního ložiska / Load carrying capacity enhancement of thrust bearingTomek, Ondřej January 2009 (has links)
The Master Thesis describes knowlege in thrust bearings with solid segments. Contains analysis of thrust bearing used in NR/20SJ turbochargers. Further designs new thrust bearing with enhancement of load carrying capacity. The new thrust bearing and the old one are tested and compared.
|
8 |
Numerical Investigation of High Strength Structural Steel Gravity Columns at Elevated TemperatureAkhtar, Mohammad Farhan January 2020 (has links)
No description available.
|
9 |
Finite Element Analysis of a Femur to Deconstruct the Design Paradox of Bone CurvatureJade, Sameer 01 January 2012 (has links) (PDF)
The femur is the longest limb bone found in humans. Almost all the long limb bones found in terrestrial mammals, including the femur studied herein, have been observed to be loaded in bending and are curved longitudinally. The curvature in these long bones increases the bending stress developed in the bone, potentially reducing the bone’s load carrying capacity, i.e. its mechanical strength. Therefore, bone curvature poses a paradox in terms of the mechanical function of long limb bones. The aim of this study is to investigate and explain the role of longitudinal bone curvature in the design of long bones. In particular, it has been hypothesized that curvature of long bones results in a trade-off between the bone’s mechanical strength and its bending predictability. This thesis employs finite element analysis of human femora to address this issue. Simplified human femora with different curvatures were modeled and analyzed using ANSYS Workbench finite element analysis software. The results obtained are compared between different curvatures including a straight bone. We examined how the bone curvature affects the bending predictability and load carrying capacity of bones. Results were post processed to yield probability density functions (PDFs) for circumferential location of maximum equivalent stress for various bone curvatures to assess the bending predictability of bones. To validate our findings on the geometrically simplified ANSYS Workbench femur models, a digitally reconstructed femur model from a CT scan of a real human femur was employed. For this model we performed finite element analysis in the FEA tool, Strand7, executing multiple simulations for different load cases. The results from the CT scanned femur model and those from the CAD femur model were then compared. We found general agreement in trends but some quantitative differences most likely due to the geometric differences between the digitally reconstructed femur model and the simplified CAD models. As postulated by others, our results support the hypothesis that the bone curvature is a trade-off between the bone strength and its bending predictability. Bone curvature increases bending predictability at the expense of load carrying capacity.
|
10 |
Load-carrying and energy-dissipation capacities of ultra-high-performance concrete under dynamic loadingBuck, Jonathan J. 06 April 2012 (has links)
The load-carrying and energy-dissipation capacities of ultra-high-performance concrete (UHPC) under dynamic loading are evaluated in relation to microstructure composition at strain rates on the order of 10⁵ s⁻¹ and pressures of up to 10 GPa. Analysis focuses on deformation and failure mechanisms at the mesostructural level. A cohesive finite element framework that allows explicit account of constituent phases, interfaces, and fracture is used. The model resolves essential deformation and failure mechanisms in addition to providing a phenomenological account of the effects of the phase transformation. Four modes of energy dissipation are tracked, including pressure-sensitive inelastic deformation, damage through the development of distributed cracks, interfacial friction, and energy released through phase transformation of the quartz silica constituent. Simulations are carried out over a range of volume fractions of constituent phases to quantify trends that can be used to design materials for more damage-resistant structures. Calculations show that the volume fractions of the constituents have more influence on the energy-dissipation capacity than on the load-carrying capacity, that inelastic deformation is the source of over 70% of the energy dissipation, and that the presence of porosity changes the role of fibers in the dissipation process. The results also show that the phase transformation has a significant effect on the load-carrying and energy-dissipation capacities of UHPC for the conditions studied. Although transformation accounts for less than 2% of the total energy dissipation, the phase transformation leads to a twofold increase in the crack density and yields nearly an 18% increase to the overall energy dissipation. Microstructure-behavior relations are established to facilitate materials design and tailoring for target-specific applications.
|
Page generated in 0.0797 seconds