• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 12
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mathematics of HSV-2 Dynamics

Podder, Chandra Nath 26 August 2010 (has links)
The thesis is based on using dynamical systems theories and techniques to study the qualitative dynamics of herpes simplex virus type 2 (HSV-2), a sexually-transmitted disease of major public health significance. A deterministic model for the interaction of the virus with the immune system in the body of an infected individual (in vivo) is designed first of all. It is shown, using Lyapunov function and LaSalle's Invariance Principle, that the virus-free equilibrium of the model is globally-asymptotically stable whenever a certain biological threshold, known as the reproduction number, is less than unity. Furthermore, the model has at least one virus-present equilibrium when the threshold quantity exceeds unity. Using persistence theory, it is shown that the virus will always be present in vivo whenever the reproduction threshold exceeds unity. The analyses (theoretical and numerical) of this model show that a future HSV-2 vaccine that enhances cell-mediated immune response will be effective in curtailling HSV-2 burden in vivo. A new single-group model for the spread of HSV-2 in a homogenously-mixed sexually-active population is also designed. The disease-free equilibrium of the model is globally-asymptotically stable when its associated reproduction number is less than unity. The model has a unique endemic equilibrium, which is shown to be globally-stable for a special case, when the reproduction number exceeds unity. The model is extended to incorporate an imperfect vaccine with some therapeutic benefits. Using centre manifold theory, it is shown that the resulting vaccination model undergoes a vaccine-induced backward bifurcation (the epidemiological importance of the phenomenon of backward bifurcation is that the classical requirement of having the reproduction threshold less than unity is, although necessary, no longer sufficient for disease elimination. In such a case, disease elimination depends upon the initial sizes of the sub-populations of the model). Furthermore, it is shown that the use of such an imperfect vaccine could lead to a positive or detrimental population-level impact (depending on the sign of a certain threshold quantity). The model is extended to incorporate the effect of variability in HSV-2 susceptibility due to gender differences. The resulting two-group (sex-structured) model is shown to have essentially the same qualitative dynamics as the single-group model. Furthermore, it is shown that adding periodicity to the corresponding autonomous two-group model does not alter the dynamics of the autonomous two-group model (with respect to the elimination of the disease). The model is used to evaluate the impact of various anti-HSV control strategies. Finally, the two-group model is further extended to address the effect of risk structure (i.e., risk of acquiring or transmitting HSV-2). Unlike the two-group model described above, it is shown that the risk-structured model undergoes backward bifurcation under certain conditions (the backward bifurcation property can be removed if the susceptible population is not stratified according to the risk of acquiring infection). Thus, one of the main findings of this thesis is that risk structure can induce the phenomenon of backward bifurcation in the transmission dynamics of HSV-2 in a population.
12

Mathematical modeling of an epidemic under vaccination in two interacting populations

Ahmed, Ibrahim H.I. January 2011 (has links)
>Magister Scientiae - MSc / In this dissertation we present the quantitative response of an epidemic of the so-called SIR-type, in a population consisting of a local component and a migrant component. Each component can be divided into three classes, the susceptible individuals, usually denoted by S, who are uninfected but may contract the disease, infected individuals (I) who are infected and can spread the disease to the susceptible individuals and the class (R) of recovered individuals. If a susceptible individual becomes infected, it moves into the infected class. An infected individual, at recovery, moves to the class R. Firstly we develop a model describing two interacting populations with vaccination. Assuming the vaccination rate in both groups or components are constant, we calculate a threshold parameter and we call it a vaccination reproductive number. This invariant determines whether the disease will die out or becomes endemic on the (in particular, local) population. Then we present the stability analysis of equilibrium points and the effect of vaccination. Our primary finding is that the behaviour of the disease free equilibrium depend on the vaccination rates of the combined population. We show that the disease free equilibrium is locally asymptotically stable if the vaccination reproductive number is less than one. Also our stability analysis show that the global stability of the disease free equilibrium depends on the basic reproduction number, not the vaccination reproductive number. If the vaccination reproductive number is greater than one, then the disease free equilibrium is unstable and there exists three endemic equilibrium points in our model. Two of these three endemic equilibria are so-called boundary equilibrium points, which means that the infection is only in one group of the population. The third one which we focus on is the general endemic point for the whole system. We derive a threshold condition that determines whether the endemic equilibria is locally asymptotically stable or not. Secondly, by assuming that the rate of vaccination in the migrant population is constant, we apply optimal control theory to find an optimal vaccination strategy in the local population. Our numerical simulation shows the effectiveness of the control strategy. This model is suitable for modeling the real life situation to control many communicable diseases. Models similar to the model used in the main contribution of our dissertation do exist in the literature. In fact, our model can be regarded as being in-between those of [Jia et al., Theoretical Population Biology 73 (2008) 437-448] and [Piccolo and Billings, Mathematical and Computer Modeling 42 (2005) 291-299]. Nevertheless our stability analysis is original, and furthermore we perform an optimal control study whereas the two cited papers do not. The essence of chapter 5 and 6 of this dissertation is being prepared for publication. / South Africa
13

Diferenciální rovnice se zpožděním v dynamických systémech / Delay Differential Equations in Dynamic Systems

Dokyi, Martha January 2021 (has links)
Tato práce je přehledem zpožděných diferenciálních rovnic v dynamických systémech. Počínaje obecným přehledem zpožděných diferenciálních rovnic představujeme koncept zpožděných diferenciálů a použití jeho modelů, od biologie a populační dynamiky po fyziku a inženýrství. Poskytneme také přehled Dynamické systémy a diferenciální rovnice zpoždění v dynamických systémech. Oblastí pro modelování s rovnicemi zpožďovacích diferenciálů je Epidemiologie. Důraz je kladen na vývoj epidemiologického modelu Susceptible-Infected-Removed (SIR) bez časového zpoždění. Analyzujeme naše dva modely v rovnováze a lokální stabilitě pomocí předpokládaných dat COVID -19. Výsledky by byly porovnány mezi modelem bez zpoždění a modelem se zpožděním.
14

Studie napjatosti a přetvoření zděné přehrady / Stresas-strain analysis of masonry dam

Betlach, František January 2016 (has links)
The Diploma thesis deals with the assessment of global and local stability of the masonry gravity dam Pastviny, for two load conditions. The first part consists of a present state review describing selected masonry dams in the Czech Republic and abroad. Further on a conceptual and mathematical formulation of the seepage flow and strain-stress problem are stated. The case study is focused on the practical application of formulated problems on the Pastviny dam. Firstly the available data have been assembled and processed. Global and local safety of the dam was assessed for the selected most vulnerable profile of the dam body. In the final chapters 5, 6 and 7, the seepage flow, stress and strain have been calculated and graphically displayed. Finally global and local stability have been assessed and completed with final summary of the results and concluding remarks.
15

Stabilité d'une onde de gravité interne, analyse locale, globale et croissance transitoire. / Stability of an internal gravity wave, local, global analysis and transient growth.

Lerisson, Gaétan 06 April 2017 (has links)
Dans les océans profonds linéairement stratifiés, la déstabilisation des ondes de gravité internes est importante car elle contribue probablement au mélange turbulent et à la circulation thermohaline.À l'aide de simulations numériques directes, nous créons un faisceau d'onde interne progressive. Cette situation est équivalente à une onde produite par l'oscillation de la marée sur une topographie sous-marine. Nous retrouvons les résultats expérimentaux obtenus par cite{Bourget13} : le faisceau se déstabilise en un mode petite échelle. Nous regardons l'effet d'un écoulement horizontal moyen sur cette instabilité en prenant soin d'abaisser la fréquence de forçage afin de compenser l'effet doppler et de conserver localement la même onde. Un cas limite apparaît lorsque le forçage devient stationnaire, ce qui équivaut à une onde de sillage issue d'un écoulement constant au dessus d'une topographie.Les écoulements à petite vitesse voient une instabilité petite échelle similaire au cas marée alors que les écoulement intermédiaires restent stables. Les écoulements plus rapides (jusqu'au cas sillage) voient, par contre, une instabilité bien plus grande échelle que celle dans le cas marée. Cette sélection d'échelle est robuste aux variations du nombre de Froude, de Reynolds, de la taille du faisceau ou de l'angle de l'onde.Nous montrons que ces instabilités peuvent être décrites comme des triades résonantes et que les différentes échelles correspondent à différentes branches triadiques. Nous confirmons la présence de cas stables pour des vitesses intermédiaires en calculant les modes propres comme des modes de Floquet à l'aide d'un algorithme d'Arnoldi--Krylov, et en montrant qu'ils sont associés à des taux de croissance négatifs.Le cas sillage est instable et nous le stabilisons par une méthode deselective frequency damping cite{Akervik06} afin d'obtenir un écoulement de base stationnaire autour duquel nous calculons les perturbations optimales qui maximisent l'énergie totale à différents horizons temporels. Pour des horizons courts, la perturbation optimale est petite échelle alors que pour des horizons longs, elle est grande échelle et converge vers la solution non-linéaire obtenue précédemment. Les horizons courts voient une instabilité triadique petite échelle advectée par l'écoulement et les horizons longs développent une instabilité d'une branche triadique grande échelle capable de se maintenir dans le faisceau malgré l'écoulement.Nous interprétons cette sélection de mode par le biais de la théorie des instabilités absolue ou convective. Dans le cas de l'onde de sillage l'instabilité grande échelle est absolue alors que la petite échelle est convective (et domine la croissance transitoire puisque son taux de croissance local est supérieur). Les rôles s'inversent dans le cas marée et l'instabilité petit échelle devient absolue alors que la grande échelle est convective. Nous confirmons cette hypothèse en calculant la réponse impulsionnelle d'une onde plane monochromatique dans un domaine 2Dpériodique. L'évolution spatio-temporelle d'une perturbation localisée en temps et en espace montre la formation de trois paquets d'onde, chacun étant associé à une branche triadique que nous identifions par une extension de la théorie triadique prenant en compte un désaccordage cite{McEwan77} et permettant de calculer la vitesse de groupe des sommets des paquets. En calculant ensuite le taux de croissance absolu le long de rayons à x/t et z/t constant, nous validons notre hypothèse. / Internal gravity waves that exist in a continuously stratified fluid are particularly important in the ocean. They transport energy and are thought to generate turbulent mixing, which contribute to the deep ocean circulation.We generate an internal wave beam that propagates in a continuously stratified fluid with direct numerical simulations. This situation is equivalent to a tidal wave, where the tidal flow oscillates over a topography and generates a wave. Experimental results obtained by cite{Bourget13} are recovered, ie. the beam destabilizes into a small scale mode. We consider the effect of an horizontal mean flow on the instability and lower the forcing frequency in order to compensate for the doppler effect and to keep locally the same wave. A limit case appears when the forcing becomes stationary. This case is equivalent to a lee wave appearing when a stratified fluid flows over a topography.For small mean flow, small scale instabilities develop as in the tidal case. The beam then stabilizes at intermediate mean flows and destabilizes again for increasing flow speed. At this second threshold, down to the lee wave case, the instability is of much larger scale than for the tidal case. Varying the Reynolds number, the Froude number, the wave angle or the beam size doesn't affect the instability scale selection : a small scale instability in the tidal regime, and large scale instability in the lee regime.We show that the instability mechanism may be interpreted using the triadic instability. Scale selection corresponds to different branches of triadic resonance. We confirm the presence of a stability region for intermediate value of the mean advection velocity by computing the linear eigenmode as Floquet mode with an Arnoldi-Krylov technique and show that the leading eigenmode has a negative growth rate.In the lee wave, case the flow is unstable and a selective frequency damping method cite{Akervik06} is used to compute a steady base flow. We then implement a linear direct-adjoint method to compute the optimal perturbations that maximizes the total energy at different time horizons. At short time horizon, the optimal perturbation is small scale while at large time the perturbation switches to a large scale solution and converges to the large scale mode observed through the nonlinear simulations. Short time transients correspond to the small scale triadic instability advected by the flow whereas the long time large scale instability corresponds to large scale branch of the triadic instability that is able to sustain the flow.We propose an interpretation of the selection of these different instabilities in term of absolute and convective instability. In the case of the lee wave, the large scale instability is absolute whereas the small scale instability is convective (and dominates the short time transient growth because it has a larger local growth rate). When the mean flow is varied, the properties of small scale and large scale instabilities exchange: in the tidal case the short scale instability is absolute and the large scale convective. This conjecture is confirmed by computing the impulse response around a plane monochromatic internal gravity wave in an extended two dimensional periodic domain. The spatio temporal evolution of a perturbation localized in space and time points out the formation of three different wave packets corresponding to different branches of triadic instability. Using the triadic theory with finite detuning cite{McEwan77},we derive the group velocity at the maximum growth rate of the three different branches of triadic instability and find a good agreement with the velocity of the three wave paquet maxima in the impulse response. Analyzing the impulse response along rays, i.e. at x/t and z/tconstant, we compute the absolute growth rate along all possible rays and validate our conjecture.
16

Contributions to fuzzy polynomial techniques for stability analysis and control

Pitarch Pérez, José Luis 07 January 2014 (has links)
The present thesis employs fuzzy-polynomial control techniques in order to improve the stability analysis and control of nonlinear systems. Initially, it reviews the more extended techniques in the field of Takagi-Sugeno fuzzy systems, such as the more relevant results about polynomial and fuzzy polynomial systems. The basic framework uses fuzzy polynomial models by Taylor series and sum-of-squares techniques (semidefinite programming) in order to obtain stability guarantees. The contributions of the thesis are: ¿ Improved domain of attraction estimation of nonlinear systems for both continuous-time and discrete-time cases. An iterative methodology based on invariant-set results is presented for obtaining polynomial boundaries of such domain of attraction. ¿ Extension of the above problem to the case with bounded persistent disturbances acting. Different characterizations of inescapable sets with polynomial boundaries are determined. ¿ State estimation: extension of the previous results in literature to the case of fuzzy observers with polynomial gains, guaranteeing stability of the estimation error and inescapability in a subset of the zone where the model is valid. ¿ Proposal of a polynomial Lyapunov function with discrete delay in order to improve some polynomial control designs from literature. Preliminary extension to the fuzzy polynomial case. Last chapters present a preliminary experimental work in order to check and validate the theoretical results on real platforms in the future. / Pitarch Pérez, JL. (2013). Contributions to fuzzy polynomial techniques for stability analysis and control [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34773
17

Epidemic models and basic reproduction number

Johnson, Christine Bowen 15 June 2023 (has links)
No description available.
18

Eclatement tourbillonnaire dans le sillage turbulent d'un véhicule générique / Vortex breakdown in the turbulent wake of a generic car

Jermann, Cyril 14 October 2015 (has links)
La thèse est une contribution à l’étude des tourbillons longitudinaux qui se développent sur la lunette arrière des véhicules automobiles, dans l’idée de provoquer leur éclatement afin de réduire la traînée aérodynamique. On conçoit tout d’abord un système d’acquisition dénommé A-SPIV, permettant de reconstruire le champ moyen de vitesse 3D d’un sillage turbulent à partir de plans stéréo-PIV acquis par translation du système caméras-laser, sans qu’il soit nécessaire de le recalibrer. En complément, on propose une méthode de reconstruction de la pression moyenne reposant sur les données A-SPIV et sur une mesure de la pression pariétale. L’ensemble forme un nouveau protocole expérimental, validé dans le sillage d’un corps d’Ahmed 25° et dont les résultats à haut Reynolds sont comparés à la littérature existante. L'analyse topologique des tourbillons longitudinaux suggère l’existence d’un éclatement tourbillonnaire spontané dans le sillage proche, malgré l’absence de point de stagnation. On démontre formellement l’existence de cet éclatement par deux critères théoriques qui considèrent ce phénomène, soit comme la conséquence d’une réorganisation de la vorticité, soit comme la résultante d’une accumulation, en un point critique, d’ondes inertielles se propageant le long du tourbillon. Les analyses sous-jacentes sont menées dans un repère cylindrique attaché à l’axe tourbillonnaire et prédisent une même position d’éclatement, en bon accord avec la position singulière issue des mesures A-SPIV. La thèse se conclut par une analyse de stabilité globale de l'écoulement moyen qui suggère un lien possible entre l’éclatement et une instabilité globale de l’écoulement tourbillonnaire. / This thesis is a contribution to the study of the longitudinal vortices developing in the near wake of ground vehicles, with the general purpose of reducing the aerodynamic drag by triggering the vortex breakdown phenomenon. We present a new data acquisition system called A-SPIV, allowing to reconstruct a 3D turbulent time-averaged velocity field from stereo-PIV planes measured by translation of the whole cameras-laser system, with no need to recalibrate. We also propose a method to reconstruct the mean pressure in the bulk from the A-SPIV data and from a dedicated wall static pressure measurement. This new overall experimental protocol is applied to a standard aerodynamic test-case, the 25° Ahmed body, all results being compared and validated at high turbulent Reynolds number against existing data from the literature. A thorough analysis of the longitudinal vortices suggests the occurrence of a spontaneous vortex breakdown in the near-wake, although there exist no stagnation point in the experimental data. Such vortex breakdown is therefore evidenced using two different theoretical criteria considering the phenomenon as the consequence of either a reorganization of the vorticity, or an accumulation of inertial waves propagating along the vortex core. The underlying analyses are carried out in a cylindrical system attached to the vortex axis and predict a single breakdown position, in good agreement with the singular position initially inferred from the A-SPIV data. The thesis ends with a global stability analysis of the turbulent mean flow suggesting a possible connection between the occurrence of vortex breakdown and a global instability of the longitudinal vortex.

Page generated in 0.0779 seconds