Spelling suggestions: "subject:"locally nilpotent derivation"" "subject:"focally nilpotent derivation""
1 |
Uma introdução às derivações localmente nilpotentes com uma aplicação ao 14º problema de Hilbert / An introduction to the locally nilpotent derivations with an application to the Hilbert\'s 14th problemMerighe, Liliam Carsava 30 March 2015 (has links)
O principal objetivo desta dissertação é estudar um contraexemplo para o Décimo Quarto Problema de Hilbert no caso de dimensão n = 5, que foi apresentado por Arno van den Essen ([6]) em 2006 e que é baseado em um contraexemplo de D. Daigle e G. Freudenburg ([4]). Para isso, serão estudados os conceitos fundamentais da teoria de derivações e os princípios básicos das derivações localmente nilpotentes, bem como seus respectivos corolários. Dentre esses princípios encontra-se o Princípio 13, que garante que, se B é uma k- álgebra polinomial, digamos B = k[x1; ..., xn], (onde k é um corpo de característica zero) e D é uma derivação localmente nilpotente sobre B, então seu núcleo A = ker D satisfaz A = B &cap: Frac(A). Assim encontramos o contraexemplo esperado, ao mostrar que A não é finitamente gerado sobre k. Além disso, no apêndice deste trabalho, é dada uma prova para o caso de dimensão 1 do Décimo Quarto Problema de Hilbert. / The main objective of this thesis is to study a counterexample to the Hilberts Fourteenth Problem in dimension n = 5, which was presented by Arno van den Essen ([6]) in 2006 and that is based on a counterexample of D. Daigle and G. Freudenburg ([4]). For these purpose, we study the fundamental concepts of the theory of derivations and the basic principles of locally nilpotent derivations and their corollaries. Among these principles, Principle 13 ensures that if B is a k-algebra polynomial, say B = k[x1; ..., xn], (where k is a field of characteristic zero) and D is a locally nilpotent derivation on B, then its kernel A = ker D satisfies A = B ∩ Frac(A). Once we have proved that A is not finitely generated over k, we find the expected counterexample. In addition, in the appendix of this work is given a proof for the Hilberts Fourteenth Problemin dimension n = 1.
|
2 |
Uma introdução às derivações localmente nilpotentes com uma aplicação ao 14º problema de Hilbert / An introduction to the locally nilpotent derivations with an application to the Hilbert\'s 14th problemLiliam Carsava Merighe 30 March 2015 (has links)
O principal objetivo desta dissertação é estudar um contraexemplo para o Décimo Quarto Problema de Hilbert no caso de dimensão n = 5, que foi apresentado por Arno van den Essen ([6]) em 2006 e que é baseado em um contraexemplo de D. Daigle e G. Freudenburg ([4]). Para isso, serão estudados os conceitos fundamentais da teoria de derivações e os princípios básicos das derivações localmente nilpotentes, bem como seus respectivos corolários. Dentre esses princípios encontra-se o Princípio 13, que garante que, se B é uma k- álgebra polinomial, digamos B = k[x1; ..., xn], (onde k é um corpo de característica zero) e D é uma derivação localmente nilpotente sobre B, então seu núcleo A = ker D satisfaz A = B &cap: Frac(A). Assim encontramos o contraexemplo esperado, ao mostrar que A não é finitamente gerado sobre k. Além disso, no apêndice deste trabalho, é dada uma prova para o caso de dimensão 1 do Décimo Quarto Problema de Hilbert. / The main objective of this thesis is to study a counterexample to the Hilberts Fourteenth Problem in dimension n = 5, which was presented by Arno van den Essen ([6]) in 2006 and that is based on a counterexample of D. Daigle and G. Freudenburg ([4]). For these purpose, we study the fundamental concepts of the theory of derivations and the basic principles of locally nilpotent derivations and their corollaries. Among these principles, Principle 13 ensures that if B is a k-algebra polynomial, say B = k[x1; ..., xn], (where k is a field of characteristic zero) and D is a locally nilpotent derivation on B, then its kernel A = ker D satisfies A = B ∩ Frac(A). Once we have proved that A is not finitely generated over k, we find the expected counterexample. In addition, in the appendix of this work is given a proof for the Hilberts Fourteenth Problemin dimension n = 1.
|
3 |
Rigidity of Pham-Brieskorn ThreefoldsChitayat, Michael 02 May 2023 (has links)
Let $\bk$ be a field of characteristic zero. A Pham-Brieskorn ring is a $\bk$-algebra of the form $B_{a_0,\dots,a_n} = \bk[X_0,\dots,X_n] / \lb X_0^{a_0} + \cdots + X_n^{a_n} \rb$, where $n \geq 2$ and $a_0, \dots, a_n$ are positive integers. A ring $B$ is rigid if the only locally nilpotent derivation $D : B \to B$ is the zero derivation. Consider the following conjecture.
\begin{conjnonumber}\label{PBConjectureAbstract}
Let $n \geq 2$, and let $B_{a_0, \dots, a_n} = \bk[X_0, \dots, X_n] / \langle X_0^{a_0} + \cdots + X_n^{a_n} \rangle$ be a Pham-Brieskorn ring. If $\min\{a_0, \dots,a_n \} \geq 2$ and at most one element $i$ of $\{0,\dots ,n\}$ satisfies $a_i = 2$, then $B_{a_0, \dots, a_n}$ is rigid.
\end{conjnonumber}
The $n = 2$ case of the Conjecture is known to be true. In this thesis, we make progress towards solving the above conjecture. Our main results are:
\begin{enumerate}[\rm(1)]
\item For any $n \geq 3$, in order to prove the above conjecture, it suffices to prove rigidity of $B_{a_0, \dots, a_n}$ in the cases where $\bk = \Comp$ and $\cotype(a_0, \dots, a_n) = 0$.
\item For any $n \geq 2$, $X = \Proj B_{a_0, \dots, a_n}$ is a well-formed quasismooth weighted complete intersection if and only if $\cotype(a_0, \dots, a_n) = 0$.
\item When $n = 3$ and $\cotype(a_0, a_1, a_2, a_3) = 0$, $B_{a_0, a_1, a_2, a_3}$ is rigid, except possibly in the cases where, up to a permutation of the $a_i$, $(a_0, a_1, a_2, a_3) \in \{(2,3,4,12), (2,3,5,30)\}$.
\item We summarize the list of 3-dimensional Pham-Brieskorn rings $B_{a_0, a_1, a_2, a_3}$ for which rigidity is known. It follows in particular that if $B_{2,3,4,12}$ and $B_{2,3,5,30}$ are rigid then the $n = 3$ case of the above conjecture is true.
\end{enumerate}
In addition to the above, we develop techniques for proving rigidity of rings in general; prove rigidity of many Pham-Brieskorn rings whose dimension is greater than 3; give simple examples of rational projective surfaces with quotient singularities that have an ample canonical divisor and prove that the members of a certain family of singular hypersurfaces are not rational.
|
4 |
Ga-actions on Complex Affine ThreefoldsHedén, Isac January 2013 (has links)
This thesis consists of two papers and a summary. The papers both deal with affine algebraic complex varieties, and in particular such varieties in dimension three that have a non-trivial action of one of the one-dimensional algebraic groups Ga := (C, +) and Gm := (C*, ·). The methods used involve blowing up of subvarieties, the correspondances between Ga - and Gm - actions on an affine variety X with locally nilpotent derivations and Z-gradings respectively on O(X) and passing from a filtered algebra A to its associated graded algebra gr(A). In Paper I, we study Russell’s hypersurface X , i.e. the affine variety in the affine space A4 given by the equation x + x2y + z3 + t2 = 0. We reprove by geometric means Makar-Limanov’s result which states that X is not isomorphic to A3 – a result which was crucial to Koras-Russell’s proof of the linearization conjecture for Gm -actions on A3. Our method consist in realizing X as an open part of a blowup M −→ A3 and to show that each Ga -action on X descends to A3 . This follows from considerations of the graded algebra associated to O(X ) with respect to a certain filtration. In Paper II, we study Ga-threefolds X which have as their algebraic quotient the affine plane A2 = Sp(C[x, y]) and are a principal bundle above the punctured plane A2 := A2 \ {0}. Equivalently, we study affine Ga -varieties Pˆ that extend a principal bundle P over A2, being P together with an extra fiber over the origin in A2. First the trivial bundle is studied, and some examples of extensions are given (including smooth ones which are not isomorphic to A2 × A). The most basic among the non-trivial principal bundles over A2 is SL2 (C) −→ A2, A 1→ Ae1 where e1 denotes the first unit vector, and we show that any non-trivial bundle can be realized as a pullback of this bundle with respect to a morphism A2 −→ A2. Therefore the attention is then restricted to extensions of SL2(C) and find two families of such extensions via a study of the graded algebras associated with the coordinate rings O(Pˆ) '→ O(P ) with respect to a filtration which is defined in terms of the Ga -actions on P and Pˆ respectively.
|
5 |
Derivações localmente nilpotentes e os teoremas de Rentschler e JungAbreu, Kelyane Barboza de 19 February 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:20Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 685495 bytes, checksum: 924951307927847259c1bd0253812600 (MD5)
Previous issue date: 2014-02-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The main goal of this work is to furnish a proof of the well-known Rentschler s Theorem,
which describes the structure of the locally nilpotent derivations on the polynomial
ring in two indeterminates (over a field of characteristic zero), up to conjugation by tame
automorphisms. As a central application of this result, we prove Jung s Theorem, concerning
the generators of the group of automorphisms in two variables. Finally, some
examples are discussed, illustrating connections to other important topics. / O principal objetivo deste trabalho é fornecer uma demonstração do bem-conhecido
Teorema de Rentschler, que descreve a estrutura das derivações localmente nilpotentes
sobre o anel de polinômios em duas variáveis (sobre um corpo de característica zero), a
menos de conjugação por automorfismos tame . Como aplicação central deste resultado,
provamos o Teorema de Jung, sobre os geradores do grupo de automorfismos em duas
variáveis. Finalmente, alguns exemplos são discutidos, ilustrando conexões com outros
tópicos importantes.
|
Page generated in 0.1528 seconds