• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 434
  • 158
  • 146
  • 53
  • 40
  • 22
  • 8
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1022
  • 146
  • 102
  • 99
  • 96
  • 91
  • 91
  • 91
  • 76
  • 67
  • 66
  • 65
  • 64
  • 64
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
861

Anatomy and Pharmacology of Dopamine Transporter-Mediated Reward and Locomotor Responses to Psychostimulants

O'Neill, Brian 18 December 2012 (has links)
No description available.
862

How About Running on Mars ? Influence of Sensory Coherence on the Running Pattern and on Spatial Perception in Simulated Reduced Gravity / Vad sägs om att springa på Mars? Inverkan av sensorisk koherens på löpmönstret och den rumsliga uppfattningen i simulerad reducerad gravitation

Keime, Marie January 2022 (has links)
Motor control, including locomotion, strongly depends on the gravitational field. Recent developments like lower-body positive pressure treadmills (LBPPTs) have enabled Earth- based studies on the effects of reduced body weight (BW) on walking and running. Yet, the observed adaptations to simulated hypogravity are not optimal. The present project aims at improving them by adding visual information mimicking a martian environment during running sessions on a LBPPT. Twenty-nine participants performed three sessions of four successive five-minute runs at preferred speed, alternating Earth- or Mars-like gravity (100 or 38% BW). They were displayed visual scenes using a virtual reality headset in order to assess the effects of the presence or absence of visual flow and vertical head oscillations during running. The gait was analysed using vertical ground reaction force, foot and sacrum accelerations. Evaluation of the visual vertical and of the sensitivity to the illusion of self-motion helped investigate the adaptations in the perception of gravity and motion. It was found that body weight reduction induces biomechanical adaptations independently of the visual context. Impact peak force and stance time decrease, the latter increasing flight time. Strong inter-individual differences in braking and push-off times appear at 38% BW, unobserved in previous studies at 60 and 80% BW. Additionally, the weight given to visual cues in the perceptual integration of gravity diminishes in hypogravity, in favour of increased reliance on the body long axis as a reference for verticality, all the more when visual scenes and locomotor activity are coherent. In that case, self-motion perception decreases without being influenced by hypogravity. Thus, locomotor and perceptual adaptations are impacted differently depending on a given sensory context. Motor control and spatial perception can then be updated independently relative to the gravitational and visual environment. / Integreringen av gravitationen har stor betydelse för hur rörelsen förverkligas. Nya studier visar särskilt att rörelsemönster påverkas av gravitationskontexten. Detta arbete har möjliggjorts genom utvecklingen av verktyg för att studera reducerad gravitation på jorden, särskilt löpbandet med positivt tryck (LBPPT). De anpassningar som observerats vid minskad kroppsvikt som simulerar hypogravitation verkar dock inte optimala. Syftet med detta projekt är att främja dessa anpassningar genom att lägga till visuell information som överensstämmer med rörelseaktiviteten under löppass på LBPPT. Tjugonio frivilliga deltog i tre sessioner med fyra femminuterslöpningar, där de alternerade mellan två nivåer av tyngdlöshet som efterliknar jordisk eller marsiansk gravitation (100 eller 38% kroppsvikt). Under körningen projicerades virtual reality-scener på dem för att studera effekterna av rullning och vertikala svängningar i synfältet under rörelse. Normal markreaktionskraft, fot- och masscentrumaccelerationer användes för att karakterisera det motoriska mönstret. Anpassningar av den rumsliga uppfattningen undersöktes med hjälp av tester av vertikal bedömning av gravitationen och känslighet för illusionen av självförskjutning. Minskad kroppsvikt leder till ändringar i det motoriska mönstret, oberoende av det visuella sammanhanget, och särskilt en kortare kontakttid leder till en ökad flygtid. En interindividuell differentiering, som inte observerades vid 60 och 80% kroppsvikt, uppträder i broms- och trycktid vid 38% kroppsvikt. I hypogravitet minskar dessutom den vikt som läggs vid visuell information för att integrera gravitationen till förmån för användningen av kroppsaxeln som referens, och detta desto mer som den visuella och motoriska koherensen är stark. Känslan av självrörelse minskar i detta fall, utan att hypogravitationen påverkas. Den sensoriska kontexten, som definieras av viktlöshetsnivån och den visuella kontexten, påverkar alltså anpassningar av motorik och perceptuell-rumslig anpassning på olika sätt. Rörelsekontrollen och uppfattningen av omgivningen kan därför uppdateras oberoende av varandra.
863

M8 the Four-legged Robot / M8 den fyrbenta roboten

ANFLO, FREDRIK January 2020 (has links)
In recent times robots are becoming more and more common. They are everywhere. Walking, running, swimming, flying and many of them have much in common with the creatures inhabiting this planet. A lot of it in order to make them appeal more to us, instead of simply being portrayed as stone cold machines. Continuing on the path evolution has laid out before us seems to be a wise decision to make, aspiring to efficiently utilize our knowledge about science and engineering with the vision of improving our future. With the intention to simulate a four legged animal and evaluate the means of interacting with one´s surrounding, a quadruped locomotion system together with two types of sound and voice interacting systems have been assessed. A demonstrator was built to test the real world problems and decide what kind of interacting that is most beneficial. The results indicate that voice commands and speech recognition, rather than sounds from the environment are more practical and robust as a way of interacting with one´s surroundings. / På senare tider har robotar blivit mer och mer vanliga. De är överallt. Gående, springande, simmande, flygande och många av dem har mycket gemensamt med de varelser som lever på denna jord. Mycket av detta för att tilltala oss mer, istället för att framstå som enbart iskalla maskiner. Att fortsätta på den väg som evolutionen har lagt framför oss verkar vara ett vist beslut att ta, i strävan efter att effektivt utnyttja våra kunskaper i vetenskap och ingenjörskonst med visionen om att förbättra vår framtid. Med målet att simulera ett fyrbent djur och utvärdera möjligheterna till att interagera med ens omgivning, har ett fyrbent förflyttningssystem tillsammans med två typer av ljud och röstsystem tagits fram. En prototyp kontruerades för att testa de problem som uppstår i den verkliga värden och för att kunna bedöma vilket sätt att interagera som visar vara sig mest fördelaktigt. Resultaten indikerar att röstkommandon och röstigenkänning, snarare än ljuddetektion från omgivningen är mer praktiska och robusta som ett sätt att interagera med sin närmiljö.
864

Computer Simulation of the Neural Control of Locomotion in the Cat

Harischandra, Nalin January 2008 (has links)
Locomotion is one of the most important behaviours and requires interaction between sensors at various levels of the nervous system and the limb muscles of an animal. The basic neural rhythm for locomotion in mammals has been shown to arise from local neural networks residing in the spinal cord and these networks are known as central pattern generators (CPGs). However, during the locomotion, these centres are constantly interacting with the sensory feedback signals coming from muscles, joints and peripheral skin receptors in order to adapt the stepping to varying environmental conditions. Conceptual models of mammalian locomotion have been constructed using mathematical models of locomotor subsystems based on the abundance of neurophysiological evidence obtained primarily in the cat. Several aspects of locomotor control using the cat as an animal model have been investigated employing computer simulations and here we use the same approach to address number of questions or/and hypotheses related to rhythmic locomotion in quadrupeds. Some of the involve questions are, role of mechanical linkage during deafferented walking, finding inherent stabilities/instabilities of muscle-joint interactions during normal walking, estimating phase dependent controlability of muscle action over joints. This thesis presents the basics of a biologically realistic model of mammalian locomotion and summarises methodological approaches in modelling quadruped locomotor subsystems such as CPGs, limb muscles and sensory pathways. In the first appended article, we extensively discuss the construction details of the three-dimensional computer simulator for the study of the hind leg neuro-musculo-skeletal-control system and its interactions during normal walking of the cat. The simulator with the walking model is programmed in Python scripting language with other supported open source libraries such as Open Dynamics Engine (ODE) for simulating body dynamics and OpenGL for three dimensional graphical representation. We have examined the functionality of the simulator and the walking model by simulating deafferented walking. It was possible to obtain a realistic stepping in the hind legs even without sensory feedback to the two controllers (CPGs) for each leg. We conclude that the mechanical linkages between the legs also play a major role in producing alternating gait. The use of simulations of walking in the cat for gaining insights into more complex interactions between the environment and the neuro-muscular-skeletal system is important especially for questions where a direct neurophysiological experiment can not be performed on a real walking animal. For instance, it is experimentally hard to isolate individual mechanisms without disrupting the natural walking pattern. In the second article, we introduce a different approach where we use the walking model to identify what control is necessary to maintain stability in the musculo-skeletal system. We show that the actions of most of the hindlimb muscles over the joints have an inherent stability during stepping, even without the involvement of proprioceptive feedback mechanisms. In addition, we observe that muscles generating movements in the ankle joint of the hind leg must be controlled by neural mechanisms, which may involve supraspinal structures, over the whole step cycle. / QC 20101111
865

CHANGE DETECTION OF A SCENE FOLLOWING A VIEWPOINT CHANGE: MECHANISMS FOR THE REDUCED PERFORMANCE COST WHEN THE VIEWPOINT CHANGE IS CAUSED BY VIEWER LOCOMOTION

Comishen, Michael A. 10 1900 (has links)
<p>When an observer detects changes in a scene from a viewpoint that is different from the learned viewpoint, viewpoint change caused by observer’s locomotion would lead to better recognition performance compared to a situation where the viewpoint change is caused by equivalent movement of the scene. While such benefit of observer locomotion could be caused by spatial updating through body-based information (Simons and Wang 1998), or knowledge of change of reference direction gained through locomotion (Mou et al, 2009). The effect of such reference direction information have been demonstrated through the effect of a visual cue (e.g., a chopstick) presented during the testing phase indicating the original learning viewpoint (Mou et al, 2009).</p> <p>In the current study, we re-examined the mechanisms of such benefit of observer locomotion. Six experiments were performed using a similar change detection paradigm. Experiment 1 & 2 adopted the design as that in Mou et al. (2009). The results were inconsistent with the results from Mou et al (2009) in that even with the visual indicator, the performance (accuracy and response time) in the table rotation condition was still significantly worse than that in the observer locomotion condition. In Experiments 3-5, we compared performance in the normal walking condition with conditions where the body-based information may not be reliable (disorientation or walking over a long path). The results again showed a lack of benefit with the visual indicator. Experiment 6 introduced a more salient and intrinsic reference direction: coherent object orientations. Unlike the previous experiments, performance in the scene rotation condition was similar to that in the observer locomotion condition.</p> <p>Overall we showed that the body-based information in observer locomotion may be the most prominent information. The knowledge of the reference direction could be useful but might only be effective in limited scenarios such as a scene with a dominant orientation.</p> / Master of Science (MSc)
866

Dynamic Locomotion and Whole-Body Control for Compliant Humanoids

Hopkins, Michael Anthony 26 January 2015 (has links)
With the ability to navigate natural and man-made environments and utilize standard human tools, humanoid robots have the potential to transform emergency response and disaster relief applications by serving as first responders in hazardous scenarios. Such applications will require major advances in humanoid control, enabling robots to traverse difficult, cluttered terrain with both speed and stability. To advance the state of the art, this dissertation presents a complete dynamic locomotion and whole-body control framework for compliant (torque-controlled) humanoids. We develop low-level, mid-level, and high-level controllers to enable low-impedance balancing and walking on compliant and uneven terrain. For low-level control, we present a cascaded joint impedance controller for series elastic humanoids with parallel actuation. A distributed controller architecture is implemented using a dual-axis motor controller that computes desired actuator forces and motor currents using simple models of the joint mechanisms and series elastic actuators. An inner-loop force controller is developed using feedforward and PID control with a model-based disturbance observer, enabling naturally compliant behaviors with low joint impedance. For mid-level control, we implement an optimization-based whole-body control strategy assuming a rigid body model of the robot. Joint torque setpoints are computed using an efficient quadratic program (QP) given desired joint accelerations, spatial accelerations, and momentum rates of change. Constraints on the centroidal dynamics, contact forces, and joint limits ensure admissibility of the optimized setpoints. Using this approach, we develop compliant standing and stepping behaviors based on simple feedback controllers. For high-level control, we present a dynamic planning and control approach for humanoid locomotion using a novel time-varying extension of the Divergent Component of Motion (DCM). By varying the natural frequency of the DCM, we are able to achieve generic vertical center of mass (CoM) trajectories during walking. Complementary reverse-time integration and model predictive control (MPC) strategies are proposed to generate dynamically feasible DCM plans over a multi-step preview window, supporting locomotion on uneven terrain. The proposed approach is validated through experimental results obtained using THOR, a 34 degree of freedom (DOF) series elastic humanoid. Rough terrain locomotion is demonstrated in simulation, and compliant locomotion and push recovery are demonstrated in hardware. We discuss practical considerations that led to a successful implementation on the THOR hardware platform and conclude with an application of the presented control framework for humanoid firefighting onboard the ex-USS Shadwell, a decommissioned Navy ship. / Ph. D.
867

Analytical and numerical modelling of undulatory locomotion for limbless organisms in granular/viscous media

Rodella, Andrea 26 August 2020 (has links)
Undulatory locomotion is a common and powerful strategy used in nature at different biological scales by a broad range of living organisms, from flagellated bacteria to prehistoric snakes, which have overcome the complexity of living in ”flowable” media. By taking inspiration from this evolution-induced strategy, we aim at modelling the locomotion in a granular and viscous environment with the objective to provide more insights for designing robots for soil-like media exploration. Moreover, in contrast to common types of movement, the granular locomotion is still not well understood and is an open and challenging field. We approached this phenomenon with several tools: (i.) numerically, via coupling the Finite Element Method (FEM) with the Discrete Element Method (DEM) using ABAQUS; (ii.) analytically, by employing the Lagrangian formalism to derive the equations of motion of a discrete and continuous system subject to non-conservative forces, and (iii.) experimentally, by creating an ad-hoc set up in order to observe the migration of microfibres used for the treatment of spinal cord injuries. The computational attempts to model the motion in a granular medium involved the simulation of the dynamics of an elastic beam (FEM) surrounded by rigid spherical particles (DEM). A propulsion mechanism was introduced by sinusoidally forcing the beam’s tip normally to the longitudinal axis, while the performance of the locomotion was evaluated by means of a parametric study. Depending on the parameters of the external excitation, after a transient phase, the slender body reached a steady-state with a constant translational velocity. In order to gain physical insights, we studied a simplified version of the previous continuous beam by introducing a discrete multi-bar system. The dynamics of the latter was analytically derived, by taking into account the forces exchanged between the locomotor and the environment, according to the Resistive Force Theory. By numerically solving the equations of motion and evaluating the input energy and dissipations, we were able to define the efficiency and thus provide an effective tool to optimise the locomotion. It is worth mentioning that the two approaches, despite the different physical hypothesis, show a qualitatively and quantitatively good accordance. The numerical and analytical models previously analysed have shown promising results for the interpretation of "ad-hoc" experiments that demonstrate the migration of a microfibre embedded in a spinal cord-like matrix. This migration needs to be avoided, once the regenerative microfibre is implanted in the lesioned spinal cord, for the sake of the patients health.
868

Modeling, Simulation, And Experimental Testing Of A Single-Legged Hopper

Bennett, John Anthony 01 August 2024 (has links) (PDF)
Legged robots are well-suited for navigating unstructured terrain due to their ability to perform agile dynamic motions. Building on the efforts of Cal Poly's Legged Robotics Group, this project focuses on achieving stable forward hopping with a single legged robot. A comprehensive model of leg hopping is formulated, with leg dynamics during flight and stance phases derived using Euler-Lagrange equations. During the stance phase, a spring-mass system models the leg-ground interaction. The touchdown and lift-off conditions are formulated mathematically, and state mappings between phases are determined via momentum conservation. A two-phase hybrid controller is designed, incorporating trajectory planning during flight and ground-reaction force and impedance control during stance. Numerical simulations validate the design, followed by experimental testing on a Speedgoat real-time machine within a Simulink environment, showing good correlation with simulations. The impact of a control parameters on average velocity are experimentally analyzed. The results demonstrate the controller's effectiveness in achieving stable hops and provide a method for tuning hop speeds. This research also paves the way for future projects by thoroughly documenting the leg's physical parameters and addressing the challenge of implementing reliable impact and lift-off detection during experimental testing.
869

Adaptation locomotrice suite à une lésion du système nerveux central

Blanchette, Andréanne 19 April 2018 (has links)
Les personnes présentant des déficits locomoteurs suite à une lésion du système nerveux central (SNC), deviennent, bien malgré elles, conscientes de toute la complexité que représente le contrôle de la marche. Malgré les efforts déployés lors de la réadaptation, il arrive que certains déficits locomoteurs persistent. La capacité à adapter la marche aux différentes variations de l’environnement, telles qu’un trottoir enneigé ou une plage de sable, est fréquemment affectée suite à une lésion du SNC. Le but général de cette thèse était d’utiliser un paradigme consistant à marcher en présence d’une perturbation pour évaluer la capacité d’adaptation résiduelle d’un muscle spécifique suite à une lésion du SNC. Par contre, avant l’atteinte de cet objectif, il était nécessaire de mieux comprendre les mécanismes neurophysiologiques impliqués dans l’adaptation et l’apprentissage locomoteur lors de la marche en présence d’une perturbation. Les travaux inclus dans cette thèse ont, tout d’abord, démontré qu’il est possible de modifier le patron d’activation musculaire de personnes en santé sans déficit locomoteur en appliquant une perturbation sur le membre inférieur pendant la marche et que ces modifications peuvent persister temporairement suite au retrait de la perturbation, suggérant ainsi la présence d’une recalibration des commandes centrales (Étude 1). De plus, des évidences d’apprentissage locomoteur ont été constatées lors de sessions répétées de marche avec cette perturbation (Étude 2). Par la suite, nous avons validé qu’il est possible d’induire des modifications au niveau de l’activation des fléchisseurs dorsaux, pouvant avoir un impact fonctionnel lors de la marche, en appliquant une perturbation spécifique à la cheville à l’aide d’une orthèse robotisée (Étude 3). Ces modifications ont aussi été obtenues chez certaines personnes ayant subi une lésion médullaire (Étude 4) ou un accident vasculaire cérébral (Étude 5). Cette approche pourrait permettre l’évaluation de la capacité d’adaptation résiduelle des fléchisseurs dorsaux suite à une lésion du système nerveux central et, par conséquent, être utile à la prise de décision dans la sélection d’interventions optimales en réadaptation locomotrice. / Persons affected by walking deficits following a central nervous system (CNS) lesion are aware of how complex the neural control of walking can be. Indeed, walking deficits often persist even after rehabilitation. Among these deficits, adaptation of the walking pattern to meet varied environmental demands, such as walking on a sandy beach or in snow, becomes more difficult. The main goal of this thesis was to use a paradigm consisting of walking in a perturbing environment to evaluate the residual adaptive capacity of a specific muscle group in persons who have sustained a CNS lesion. To meet this goal, however, a better understanding of the neurophysiological mechanisms involved in locomotor adaptation and learning was first necessary. The present thesis demonstrated that the muscle activation pattern of healthy subjects can be modified while walking with a perturbation applied to the lower limb and that these modifications persist temporarily after perturbation removal, suggesting the recalibration of central commands (Study 1). Furthermore, evidence of locomotor learning was observed when subjects were repeatedly exposed to a perturbation during walking (Study 2). The next study validated that it is possible to induce modifications in dorsiflexor activation of healthy subjects that may have a clinical impact on the walking pattern, by applying a specific perturbation at the ankle with a robotized ankle-foot orthosis during walking (Study 3). These modifications were also observed in some persons who sustained a spinal cord injury (Study 4) or a stroke (Study 5). Walking with a specific perturbation could be helpful to evaluate the residual adaptive capacity of ankle dorsiflexors in persons who have sustained a central nervous system lesion, and consequently, to guide decision-making for the selection of optimal rehabilitation interventions.
870

Influencing motor behavior through constraint of lower limb movement

Hovorka, Christopher Francis 27 May 2016 (has links)
Limited knowledge of the neuromechanical response to use of an ankle foot orthosis-footwear combination (AFO-FC) has created a lack of consensus in understanding orthotic motion control as a therapeutic treatment. Lack of consensus may hinder the clinician’s ability to target the motion control needs of persons with movement impairment (e.g., peripheral nerve injury, stroke, etc.). Some evidence suggests a proportional relationship between joint motion and neuromuscular activity based on the notion that use of lower limb orthoses that constrain joint motion may invoke motor slacking and decreasing levels of muscle activity. Use of AFO-FCs likely alters the biomechanical and neuromuscular output as the central control system gradually forms new movement patterns. If there is proportional relationship between muscle activation and joint motion, then it could be examined by quantifying joint motion and subsequent neuromuscular output. Considering principles of neuromechanical adjustment, my general hypothesis examines whether orthotic control of lower limb motion alters neuromuscular output in proportion to the biomechanical output as a representation of the limb’s dynamics are updated by the neural control system. The rationale for this approach is that reference knowledge of the neuromechanical response is needed to inform clinicians about how a person responds to walking with motion controlling devices such as ankle foot orthoses combined with footwear. In the first line of research, I hypothesize that a newly developed AFO which maximizes leverage and stiffness will constrain the talocrural joint and alter joint kinematics and ground reaction force patterns. To answer the hypothesis, I sampled kinematics and kinetics of healthy subjects’ treadmill walking using an AFO-FC in a STOP condition and confirmed that the AFO substantially limited the range of talocrural plantarflexion and dorsiflexion motion to 3.7° and in a FREE condition maintained talocrural motion to 24.2° compared to 27.7° in a CONTROL (no AFO) condition. A follow up controlled static loading study sampled kinematics of matched healthy subjects limbs and cadaveric limbs in the AFO STOP and FREE conditions. Findings revealed healthy and cadaveric limbs in the AFO STOP condition substantially limited their limb segment motion similar to matched healthy subjects walking in the STOP condition and in the AFO FREE condition healthy and cadaveric limbs maintained similar limb segment motion to matched healthy subjects walking in the FREE condition. In a second line of research, I hypothesize that flexibility of a newly developed footwear system will allow normal walking kinetics due to the shape and flexibility of the footwear. To answer the hypothesis, I utilized a curved-flexible footwear system integrated with an AFO in a STOP condition and sampled kinematics and kinetics of healthy subjects during treadmill walking. Results revealed subjects elicited similar cadence, stance and swing duration and effective leg-ankle-foot roll over radius compared to walking in the curved-flexible footwear integrated with the AFO in a FREE condition and a CONTROL (no AFO) condition. To validate rollover dynamics of the curved-flexible footwear system, a follow up study of healthy subjects’ treadmill walking in newly developed flat-rigid footwear system integrated with the AFO in a STOP condition revealed interrupted leg-ankle-foot rollover compared to walking in curved-flexible footwear in STOP, FREE and CONTROL conditions. In a third line of research, I hypothesize that use of an AFO that limits talocrural motion in a STOP condition will proportionally reduce activation of Tibialis Anterior, Soleus, Medial and Lateral Gastrocnemii muscles compared to a FREE and CONTROL condition due to alterations in length dependent representation of the limb’s dynamics undergoing updates to the central control system that modify the pattern of motor output. To answer the question, the same subjects and AFO-footwear presented in the first two lines of research were used in a treadmill walking protocol in STOP, FREE, and CONTROL conditions. Findings revealed the same subjects and ipsilateral AFO-footwear system presented in Aim 1 exhibited an immediate yet moderate 30% decline in EMG activity of ipsilateral Soleus (SOL), Medial Gastrocnemius (MG) and Lateral Gastrocnemius (LG) muscles in the STOP condition compared to the CONTROL condition. The reduction in EMG activity in ipsilateral SOL, MG and LG muscles continued to gradually decline during 15 minutes of treadmill walking. On the contralateral leg, there was an immediate yet small increase of 1% to 14% in EMG activity in SOL, MG, LG muscles above baseline. After 10 minutes of walking, the EMG activity in contralateral SOL, MG and LG declined to a baseline level similar to the EMG activity in the contralateral CONTROL condition. These collective findings provide compelling evidence that the moderate 30% reduction in muscle activation exhibited by subjects as they experience substantial (85%) constraint of total talocrural motion in the AFO STOP condition is not proportionally equivalent. Further, the immediate decrease in muscle activation may be due to a reactive feedback mechanism whereas the continued decline may in part be explained by a feedforward mechanism. The clinical relevance of these findings suggests that short term use of orthotic constraint of talocrural motion in healthy subjects does not substantially reduce muscle activation. These preliminary findings could be used to inform the development of orthoses and footwear as therapeutic motion control treatments in the development of motor rehabilitation protocols.

Page generated in 0.1039 seconds